Abstract
目前用于治疗侵袭性真菌感染(IFI)的一线药物如两性霉素B、氟康唑和伊曲康唑等存在水溶性差、生物利用度低、毒副作用强等缺点,将药物与递送系统相结合,使其能够更有效地到达感染部位,是提高传统抗真菌药物治疗效果和安全性的良好策略。合成及仿生载体极大地促进了抗真菌药物靶向递送系统的发展。合成载体递药系统如脂质体、纳米粒、聚合物胶束、微球等,能改善抗真菌药物的理化性质、延长其血液循环时间、提高靶向性和降低毒副作用;细胞膜仿生载体递药系统如巨噬细胞膜、红细胞膜包裹递药系统等,保留了体细胞的膜结构,用来包载抗真菌药物能赋予其各种生物功能和特异靶向性,表现出更好的生物相容性和更低的毒性。本文就不同类型的抗真菌药物递送系统在治疗IFI方面的应用进行综述,同时展望了新型仿生载体在抗真菌药物递送方面的广阔前景。
Keywords: 侵袭性真菌感染, 抗真菌感染药物, 药物递送系统, 合成载体, 仿生载体, 综述
Abstract
Currently, the first-line drugs for invasive fungal infections (IFI), such as amphotericin B, fluconazole and itraconazole, have drawbacks including poor water solubility, low bioavailability, and severe side effects. Using drug delivery systems is a promising strategy to improve the efficacy and safety of traditional antifungal therapy. Synthetic and biomimetic carriers have greatly facilitated the development of targeted delivery systems for antifungal drugs. Synthetic carrier drug delivery systems, such as liposomes, nanoparticles, polymer micelles, and microspheres, can improve the physicochemical properties of antifungal drugs, prolong their circulation time, enhance targeting capabilities, and reduce toxic side effects. Cell membrane biomimetic drug delivery systems, such as macrophage or red blood cell membrane-coated drug delivery systems, retain the membrane structure of somatic cells and confer various biological functions and specific targeting abilities to the loaded antifungal drugs, exhibiting better biocompatibility and lower toxicity. This article reviews the development of antifungal drug delivery systems and their application in the treatment of IFI, and also discusses the prospects of novel biomimetic carriers in antifungal drug delivery.
Keywords: Invasive fungal infection, Antifungal infection drugs, Drug delivery system, Synthetic carrier, Biomimetic carrier, Review
目前治疗IFI的抗真菌药物主要有麦角甾醇的生物合成抑制剂如唑类化合物[1]、烯丙胺类抗真菌药物[2],影响真菌细胞膜功能的药物如多烯类化合物[3],影响真菌细胞壁的药物如棘白菌素类药物[4],核酸合成的抑制剂如氟胞嘧啶[5-6]。尽管这些药物具有良好的体外抗真菌活性,但其疏水性及对真核细胞选择性较差导致临床疗效不理想[7-8]。因此,除了设计开发新的抗真菌药物,将现有抗真菌药物与药物递送系统相结合,设计具有强效抗真菌活性和低毒性的新型制剂具有重要意义。
近年来研究的新型药物递送系统可以提高药物的稳定性、增强其溶解度和生物利用度、延长药物的半衰期,并且能在体内控制药物释放速率和时间,从而提高药物疗效,减少药物的副作用,为开发新型制剂和改良现有制剂提供了新思路[9-10]。在设计抗真菌感染药物递送系统时,需要充分考虑真菌细胞壁的特异性成分[11-12]和真菌感染微环境的生理特征[13]。本文综述了基于合成载体及细胞膜仿生载体设计的治疗IFI的药物递送系统,并结合新型仿生技术发展方向讨论了将外泌体、免疫细胞及工程细菌作为抗真菌药物传递载体的可行性。
1. 基于合成载体的药物递送系统
近年来,科学家们在利用合成载体材料制备抗真菌药物递送系统方面展开了广泛研究,包括利用脂质体、纳米粒、胶束、微球、固体脂质纳米粒等增加药物体内循环时间、降低非靶点细胞毒性、改善药物溶解性、降低用药剂量以及增加药物在特定部位的积累[14-15],对治疗IFI具有重要意义。
1.1. 脂质体
脂质体是球形的人工小囊泡,由胆固醇和天然磷脂制成,能增加药物溶解度,降低药物毒性,同时具有良好的生物相容性,可以被正常代谢[16-18],因此利用脂质体作为抗真菌药物载体具有广阔的开发前景。
自20世纪50年代以来,AmB一直是治疗IFI的主要药物[19-20],但其容易引起神经毒性、肾毒性和肝毒性[21-22]。AmB脂质体(如注射用AmB脂质体——安必素)能在降低AmB毒性的同时保留抗真菌活性[23-24],但仍存在肾毒性及菌体残留的现象,可能会导致患者感染复发甚至死亡[25-26]。因此,AmB脂质体的进一步优化对治疗IFI具有重要意义。Van Etten等[27]制备了PEG化的AmB(PEG-AmB)脂质体,将其与安必素体内外抗真菌活性进行比较。体外研究结果显示,PEG-AmB脂质体能保留AmB的抗真菌活性,而安必素由于为缓释制剂其抗真菌活性低;在严重侵袭性白念珠菌感染小鼠模型中,用PEG-AmB脂质体治疗后,肾脏中活白念珠菌数在短时间内迅速减少。PEG-AmB脂质体能在保留抗真菌活性的同时大大降低毒性,这与其血液循环时间延长及在真菌感染部位积累有关[27-28]。
DectiSomes是指一系列C型凝集素受体靶向脂质体,代表了一种基于葡聚糖的新型药物递送策略,可以大幅提高药物的疗效。Dectin-1和Dectin-2都是哺乳动物白细胞膜上的免疫受体,能以二聚体的形式与真菌细胞壁上的β-葡聚糖结合,发出真菌感染信号。Ambati等[29-30]用Dectin-1和Dectin-2的β-葡聚糖结合结构域涂覆在普通AmB脂质体上,分别制备得到DEC1-AmB脂质体和DEC2-AmB脂质体,这两种脂质体均能快速、高效地与烟曲霉、白念珠菌和新型隐球菌结合,亲和力比普通AmB脂质体强50~200倍。体外研究表明,在相同浓度下,DEC1-AmB脂质体杀死和抑制曲霉菌生长的效率比普通AmB脂质体高5~50倍,DEC2-AmB脂质体杀死或抑制念珠菌细胞的生长效率比普通AmB脂质体高1~2个数量级[31]。在肺曲霉病小鼠模型中,DEC2-AmB脂质体能更有效减少肺部曲霉菌的真菌负担,提高小鼠的存活率[32]。目前,Dectin-1和Dectin-2受体以什么方式识别真菌鲜有报道,且DectiSomes是否会诱导体内不同的免疫反应尚不清楚,因此DectiSomes的递药策略还有待进一步研究。
人类DC-SIGN是由CD209基因编码的C型凝集素病原体受体,其配体识别是由一个与膜转运和信号序列相连的碳水化合物识别域提供,可以结合各种交联的富含甘露糖和岩藻糖的糖类以及蛋白质结合物中的脂质甘露聚糖。有趣的是,不同的蛋白质异构体中表达的八个颈部重复序列(NR1至NR8)的不同组合可能会改变碳水化合物识别域的方向,以增强其与不同聚糖的结合能力[33-34]。Ambati等[35]构建了两个重组的异构体,在异构体DCS12中碳水化合物识别域与NR1和NR2结合,在异构体DCS78中碳水化合物识别域与NR7和NR8结合,再分别与AmB脂质体连接,得到DCS12-AmB脂质体和DCS78-AmB脂质体。与AmB脂质体和BSA包被的BSA-AmB脂质体相比,DCS12-AmB脂质体和DCS78-AmB脂质体在体外能与念珠菌、曲霉菌、新型隐球菌产生的多糖基质高效结合,其中DCS12-AmB脂质体比DCS78-AmB脂质体表现更好,在体外对三种真菌的抑制和杀伤力明显优于AmB脂质体或BSA-AmB脂质体。DC-SIGN的碳水化合物识别域能将包载抗真菌药物的脂质体特异性地靶向三种致病真菌,增强AmB在体内外的抗真菌作用,减少抗真菌药物使用剂量,降低药物毒性,有效克服剂量依赖性的耐药性,并能杀死顽固真菌。除真菌外,载药脂质体的DC-SIGN还能靶向不同病原体表达的同源配体,可以广泛应用于原生动物、螺旋体、细菌和病毒感染的治疗[35]。
几丁质酶的几丁质结合结构域LysM是一种能与真菌细胞壁几丁质结合的小蛋白。Taniguchi等[36]通过微生物谷氨酰胺转氨酶催化的交联反应将LysM连接到羧基端含谷氨酸的肽上,再用带棕榈酰基团Pal-K的含赖氨酸的脂质肽底物进行特异性定点修饰,得到棕榈酰化的LysM-Pal,再进一步锚定在安必素的脂质双分子层上得到LysM-AmB脂质体。LysM-AmB脂质体能在真菌菌丝上聚集,增强载药脂质体的靶向能力,极大提高了AmB对毛霉菌和隐球菌的抗真菌活性。
1.2. 纳米粒
纳米粒载体系统的发展是药物开发的一个重要里程碑,纳米粒不仅容易控制颗粒大小、表面特性,还能在特定的时间和地点有效输送特定的药物,因此受到广泛关注[37]。研究表明,纳米粒载体系统可以降低药物毒性和刺激性、延缓药物降解、改善药物在体内的分布、降低治疗剂量、提高药物安全性和疗效[38]。
PLGA是由聚乳酸嵌段和聚乙醇酸嵌段组成的高分子聚合物,具有良好的生物相容性,可以生物降解。Van De Ven等[39]采用PLGA为载体材料与AmB通过沉淀法制得载药纳米粒,其在体外无明显的溶血毒性,安全性良好,体内外抗真菌效果比安必素更好。
研究表明,细胞壁是真菌的一个特征结构,主要由壳聚糖、几丁质和糖蛋白等真菌特异性成分组成。壳聚糖是几丁质去乙酰化酶的产物,也是新型隐球菌细胞壁完整性的必需物质,能作为真菌表面的特异性靶点[40]。Tang等[41]采用乳液-溶剂蒸发法制备了负载伊曲康唑的PLGA纳米粒,然后用噬菌体展示技术[42-43]筛选出壳聚糖结合肽,进一步获得壳聚糖结合肽修饰的载药纳米粒。该载药纳米粒能特异性识别真菌表面的壳聚糖,对新型隐球菌有明显靶向性,该给药系统对新型隐球菌引起的肺部感染有很好的治疗效果,能显著提高模型小鼠的存活率。尽管PLGA纳米粒具有生物相容性好、刺激性及毒副作用小等优点,但存在刚性强、载药量低、血液循环时间较短和难以穿过血脑屏障等问题。
近年来,越来越多生物相容性好的载体材料备受关注。白蛋白作为最丰富的血清蛋白,能包裹在制剂表面增强各种纳米粒的生物相容性[44]。Casa等[45]通过去溶剂法制备了包载AmB的BSA纳米粒,其具有较高的包封率和较好的缓释作用,能极大降低药物溶血性,同时具有良好的体外抗真菌作用。Chen等[46]以人血清白蛋白为载体材料,采用纳米白蛋白结合技术制备了包载伊曲康唑的纳米粒,该纳米粒具有很好的稳定性和生物相容性。伊曲康唑在临床上常用于治疗新型隐球菌脑膜炎和曲霉菌脑脓肿,但由于疏水性强,生物利用度低,以及脑组织中的P-糖蛋白外排泵的作用,限制了其在治疗中枢神经系统真菌感染方面的应用[47-49]。冰片是一种高脂溶性双环萜烯类化合物,能够打开血脑屏障促进药物进入中枢神经系统,同时抑制P-糖蛋白介导的射流泵。Zhang等[50]基于此构建了冰片和PEG共同修饰的载伊曲康唑BSA纳米递送系统,该递送系统具有良好的生物相容性,同时可以延长药物在血液中的循环时间。与未修饰的伊曲康唑纳米粒比较,该系统能很好地穿过血脑屏障,并抑制P-糖蛋白介导的射流泵作用,提高了药物在脑组织中的积累[51-53]。
1.3. 聚合物胶束
聚合物胶束是指通过两亲性嵌段共聚物在水溶液中自组装形成的聚集胶体,具有典型的核-壳结构。与其他纳米载体相比,聚合物胶束具有粒径小、制备过程简单以及具有良好的增溶性能等优点[54]。在过去的三十年里,聚合物胶束已广泛用作药物递送载体,特别是用于递送具有高效力和显著毒性的难溶性小分子药物[55]。因此,聚合物胶束对抗真菌药物传递具有重要意义。
Yu等[56]采用PEO-PBLA胶束包载AmB,提高了药物溶解度,并通过缓慢释放药物降低毒性,改善了AmB的溶血性。Xu等[57]采用α-亚麻酸修饰的单甲氧基PEG-g-PEI共轭物包载AmB制备载药聚合物胶束,可以提高AmB的水溶性,该胶束显示出良好的储存稳定性,并且可以实现AmB的持续缓慢释放,显著降低溶血性和肾脏毒性。
Albayaty等[58-59]开发了用于包载伊曲康唑的酸碱度响应型胶束系统。该二嵌段聚合物胶束基于PEGMA和DEAEMA嵌段聚合体,具有很高的载药量。在白念珠菌生物膜的酸性微环境中,DEAEMA嵌段的叔胺被质子化,构象发生改变,伊曲康唑的释放增强。该胶束具有特定的大小和静电作用,对白念珠菌生物膜具有很高的亲和力,能显著抑制白念珠菌生物膜的活性,相比游离药物生物膜的生物量和活细胞数明显减少。
Angiopep-2是低密度脂蛋白受体相关蛋白的配体,可以有效促进药物跨过血脑屏障并在大脑中积累[60-62]。Shao等[63-64]用Angiopep-2修饰包载AmB的DSPE-PEG2000胶束,发现该载药胶束可以增加AmB的载药量,提高AmB的溶解度,降低对哺乳动物细胞的毒性;与未修饰的载药胶束和AmB脱氧胆酸盐(Fungizone)比较,Angiopep-2修饰的载药胶束显示出良好的穿透血脑屏障功能,对新型隐球菌脑膜炎小鼠展现出很好的治疗效果,其脑内AmB水平最高,脑部真菌负担明显减轻,组织病理学显示感染程度下降,小鼠中位生存时间延长。因此,脑靶向递送系统在治疗真菌引起的脑膜炎方面具有重要意义。
1.4. 微 球
将药物在适当的时间输送到目标部位,并尽量减少毒性和副作用,对于最大限度发挥药物的治疗效果至关重要。微球是一种理想的控释给药载体,具有载药能力强、生物相容性好、生物利用度高以及能使药物持续释放的特性,能够有效地将药物输送到目标部位,并通过持续释放的方式实现药物的最佳治疗效果[65-66]。
Angra等[67-68]制备了PEG 2000交联BSA的AmB微球制剂。药物释放曲线显示,该微球主要通过扩散释放。与溶液制剂比较,微球制剂持续释放时间较长,血浆中的肌酐和钾水平未上升,极大降低了AmB的毒副作用。
Pavic等[69]将制霉菌素和AmB共同包载在聚羟基脂肪酸酯微球中,该微球可持续释放药物,对白念珠菌、曲霉菌等致病真菌的抗真菌活性与游离药物相当,能成功根除白念珠菌的感染,提高受感染斑马鱼胚胎的存活率,并在100倍的最小抑菌浓度剂量下未观察到内脏毒性和致畸性。
Khan等[70]将包载AmB的PLGA微球包埋在纤维蛋白中,制备了基于纤维蛋白微球的双传递体系AmB-纤维蛋白微球。实验结果显示,AmB-纤维蛋白微球能明显延长AmB的释放时间,显著减少隐球菌感染小鼠的病原菌数,并且在降低真菌负荷及提高存活率方面明显优于游离AmB。该递药策略巧妙使用合成载体聚合物和天然来源的血浆构建双重给药微球,不仅能持续缓慢释放药物,并且在释放药物后,PLGA分解为乳酸和乙醇酸能通过正常生理代谢排出体外,而血浆是血液的一部分,易被宿主吸收,具有良好的生物相容性。因此,新型AmB-纤维蛋白微球可以保护被包封的AmB,有效降低药物的毒性,实现药物的安全递送。
研究表明,由于毛细血管的机械过滤作用,7~30 μm粒径的微球在静脉注射后可以迅速被机械截留在肺部,产生肺部被动靶向性[71]。Ramaiah等[72]以BSA为原料,采用乳液聚合法制备了载药微球,其平均粒径为10.02 μm,能最大程度地被机械截留沉积在肺部,实现药物肺部靶向。尽管微球递药系统具有良好的被动靶向性,但只有当药物载体通过肺泡-毛细血管屏障进入肺泡间隙才能有效到达疾病部位发挥治疗作用,因此药物载体穿透肺部血管的能力对药效具有重要影响。Cheng等[73]构建了一个纳米粒-微球相结合的微环境响应型微纳米白蛋白递药系统,首先制备包载AmB的BSA纳米粒,采用MMP-3敏感的双功能连接剂PN-PEG将纳米粒组装成微球,并以微球的粒径为指标,将连接剂与之孵育,通过优化配比成功制备出微环境响应型微纳米白蛋白递药系统。该响应性递送系统可以通过被动靶向快速富集到肺部,形成一个药物储库,随后由于感染微环境中MMP-3的上调而导致连接臂断裂,药物以纳米粒的形式释放,再利用BSA纳米粒本身的特异性靶向及特点,成功穿透肺部血管及血脑屏障,精准靶向到感染部位,从而实现增效减毒。
综上所述,目前合成的药物递送系统载体,无论是无机材料或聚合材料,本质上均是外来材料,具有潜在的毒性和免疫原性。因此,研究具有低毒、更强生物相容性的内源性载体具有重要意义。
2. 基于细胞膜仿生载体的药物递送系统
细胞膜仿生药物递送系统是迅速兴起的一种新型多功能药物递送系统,具有其他药物载体无法比拟的独特优势[74]。细胞膜保留了类似于体细胞的膜结构,表现出更好的生物相容性和更低的毒性。基于细胞膜的药物递送系统可以采用简单的方式生产,能将膜蛋白损失降到最低,保留的膜结构能赋予载体各种生物功能和靶向特异性[75]。巨噬细胞等吞噬细胞可以通过模式识别受体,如甘露聚糖受体、Toll样受体和清道夫受体等识别病原体相关分子模式,有效清除病原体。其衍生的细胞膜能够继承其表面的模式识别受体来识别病原菌,为药物的靶向递送提供天然配体。Li等[76]用巨噬细胞膜包裹胶原基纳米粒,不仅提高了其生物相容性,还赋予其靶向病原菌的能力,增加纳米粒在感染部位的蓄积,从而增强抗菌活性。Wang等[77]发现,当用特定的病原菌与巨噬细胞共培养时,巨噬细胞膜上识别受体的表达明显增加。受此启发,研究人员用经病原菌预处理的巨噬细胞包裹纳米粒,增强了制剂对病原菌的靶向性,在小鼠的局部和全身注射后,显示制剂在感染部位蓄积,同时具有良好的生物相容性。
研究发现,白念珠菌在体内生存需要大量游离的铁离子,而机体内的大部分铁离子以血红蛋白的形式存在。由于血红蛋白中富含铁离子,那么白念珠菌是否可以利用红细胞内血红蛋白作为铁来源?有文献提示,白念珠菌可通过CD21与红细胞上的C3d结合特异性捕获红细胞[78-79],Xie等[80]基于仿生纳米递药的策略,借助配体-受体胞质段间的相互作用成功构建了一种天然红细胞膜定向包裹的脂质体递药系统。利用红细胞膜上主要膜蛋白——带3蛋白胞质段充当“抓手”,与阳离子脂质体上修饰的胞质蛋白P4.2的肽配体结合,制备得到定向包裹的红细胞脂质体。红细胞脂质体的粒径在100 nm左右,稳定性高,血液循环时间比PEG修饰脂质体更长。更重要的是,脂质体上膜蛋白组成与天然红细胞基本一致,并检测到红细胞脂质体可以特异性靶向白念珠菌,促进药物在病灶部位富集。负载AmB后,表现出比游离药物更好的治疗效果,同时具有良好的生物相容性。
细胞膜仿生药物递送系统继承了细胞膜独特的功能性蛋白表达的特性,具有良好的生物相容性,能延长药物血液循环时间,并赋予内核纳米粒同源靶向的能力,这种集天然细胞膜功能和纳米载体功能于一体的仿生递药系统在治疗真菌感染方面具有广阔应用前景。然而,目前细胞膜仿生药物递送系统的研究还比较初步,如各种类型的纳米载体的毒性、生物分布和机体免疫应答等需要深入研究。虽然细胞膜仿生药物递送系统才进入Ⅱ期临床试验,但其明显的优势和丰富的细胞膜来源将为疾病治疗带来更多可能性。
3. 展望
抗真菌药物自身局限性和严重的耐药性使得药物治疗IFI面临巨大挑战。合成及仿生载体与生物医药领域的快速融合极大地促进了抗真菌药物靶向递送系统的发展。采用载体对抗真菌药物进行包载,在降低药物毒性和改善疗效方面具有独特优势,不仅能提高难溶性抗真菌药物的溶解度和生物利用度,还能调节药物释放和延长药物作用时间,同时通过对药物递送系统的修饰,能改变药物对生物膜的通透性及提高靶向性。附表1总结了抗真菌药物递送系统的代表性研究药物及其在治疗IFI中的应用。然而,现有抗真菌药物递送系统多处于实验室研究阶段,开展临床研究并顺利上市的品种数量极其有限,其中很重要的一个原因是许多对真菌生长或繁殖至关重要的潜在靶点与人类具有同源性,导致大多数抗真菌药物具有严重的毒副作用。因此积极寻找免疫原性低、稳定性好、载药量高、靶向性强的新型载体材料对治疗IFI感染具有重要意义。此外,将药物靶向治疗与免疫治疗相结合,也为抗真菌药物递送系统的设计和应用提供了新的模式。
近年来,随着各种新兴的仿生技术的开发和成熟,更多新型仿生药物递送系统将对开发治疗IFI药物产生更多积极影响。例如外泌体含有脂质、多糖、蛋白质和核酸等物质,是天然的疫苗佐剂,能在先天和适应性免疫中发挥重要作用[81-84];同时外泌体具有较好的循环稳定性、生物相容性、物理化学稳定性和生物屏障渗透能力[85],在抗真菌药物递送和免疫调节方面具有巨大潜力。活细胞具有循环时间长、形态灵活、免疫原性低、特异靶向性等独特的优点,逐渐成为理想的药物递送载体[86]。一些免疫细胞具有良好的炎症趋向性,可以将药物主动靶向传递到炎症部位,实现化学治疗与免疫治疗结合。工程细菌由于可以感知宿主生理和病理指标变化,同时具有很好的体内运输能力,被广泛用于药物靶向传递[87-88],如某些工程细菌对缺氧微环境具有趋向性[89-90],可以将抗真菌药物递送至感染缺氧微环境[91-92]。此外,真菌与细菌存在某些相互作用[93-97],如链球菌能通过细胞表面多糖受体和多肽黏附素介导黏附在白念珠菌上,嗜酸乳杆菌和唾液乳杆菌能通过多糖受体相互识别与白念珠菌共聚集,这些也为设计抗真菌药物靶向性提供了思路。
Supplementary information
本文附表见电子版。
Acknowledgments
研究得到国家自然科学基金(82073789)支持
Acknowledgments
This work was supported by National Natural Science Foundation of China (82073789)
[缩略语]
侵袭性真菌感染(invasive fungal infection,IFI);两性霉素B(amphotericin B,AmB);聚乙二醇[poly(ethylene glycol),PEG];牛血清白蛋白(bovine serum albumin,BSA);聚乳酸羟基乙酸(poly lactic-co-glycolic acid,PLGA);聚(环氧乙烷)-嵌段聚(β苄基-L-天冬氨酸)[poly(ethylene oxide)-block-poly(β benzyl-L-aspartate),PBLA];聚(乙烯二醇)甲基醚甲丙烯酰酸(poly-(ethylene glycol) ethyl ether methacrylate,PEGMA);2-甲基-2-丙烯-2-(二甲基氨基)乙酯的均聚物(poly 2-(diethylamino) ethyl methacrylate,DEAEMA);基质金属蛋白酶(matrix metallo-proteinase,MMP)
利益冲突声明
所有作者均声明不存在利益冲突
Conflict of Interests
The authors declare that there is no conflict of interests
参考文献(References)
- 1.NAMI S, AGHEBATI-MALEKI A, MOROVATI H, et al. Current antifungal drugs and immunotherapeutic approaches as promising strategies to treatment of fungal diseases[J]. Biomed Pharmacother, 2019, 110: 857-868. 10.1016/j.biopha.2018.12.009 [DOI] [PubMed] [Google Scholar]
- 2.韩晓燕, 宋亚丽, 白埔, 等. 抗真菌药物的系统分类、耐药机制及新药研发进展[J]. 中国现代应用药学, 2019, 36(11): 1430-1436. [Google Scholar]; HAN Xiaoyan, SONG Yali, BAI Pu, et al. Systematic classification of antifungal drugs, resistance mechanisms and development of new drugs[J]. Chinese Journal of Modern Applied Pharmacy, 2019, 36(11): 1430-1436. (in Chinese) [Google Scholar]
- 3.HOUŠŤ J, SPÍŽEK J, HAVLÍČEK V. Antifungal drugs[J]. Metabolites, 2020, 10(3): 106. 10.3390/metabo10030106 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 4.DENNING D W. Echinocandin antifungal drugs[J]. Lancet, 2003, 362(9390): 1142-1151. 10.1016/s0140-6736(03)14472-8 [DOI] [PubMed] [Google Scholar]
- 5.LOYSE A, DROMER F, DAY J, et al. Flucytosine and cryptococcosis: time to urgently address the worldwide accessibility of a 50-year-old antifungal[J]. J Antimicrob Chemother, 2013, 68(11): 2435-2444. 10.1093/jac/dkt221 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 6.PADDA I S, PARMAR M. Flucytosine[M]. Treasure Island: StatPearls, 2023: 1-10. [Google Scholar]
- 7.SOLIMAN G M. Nanoparticles as safe and effective delivery systems of antifungal agents: achievements and challenges[J]. Int J Pharm, 2017, 523(1): 15-32. 10.1016/j.ijpharm.2017.03.019 [DOI] [PubMed] [Google Scholar]
- 8.CHANG Y L, YU S J, HEITMAN J, et al. New facets of antifungal therapy[J]. Virulence, 2017, 8(2): 222-236. 10.1080/21505594.2016.1257457 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 9.LI C, WANG J, WANG Y, et al. Recent progress in drug delivery[J]. Acta Pharm Sin B, 2019, 9(6): 1145-1162. 10.1016/j.apsb.2019.08.003 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 10.MANSOUR A, ROMANI M, ACHARYA A B, et al. Drug delivery systems in regenerative medicine: an updated review[J]. Pharmaceutics, 2023, 15(2): 695. 10.3390/pharmaceutics15020695 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 11.LATGÉ J P. The cell wall: a carbohydrate armour for the fungal cell[J]. Mol Microbiol, 2007, 66(2): 279-290. 10.1111/j.1365-2958.2007.05872.x [DOI] [PubMed] [Google Scholar]
- 12.BOWMAN S M, FREE S J. The structure and synthesis of the fungal cell wall[J]. Bioessays, 2006, 28(8): 799-808. 10.1002/bies.20441 [DOI] [PubMed] [Google Scholar]
- 13.CHUNG H, LEE Y H. Hypoxia: a double-edged sword during fungal pathogenesis?[J]. Front Microbiol, 2020, 11: 1920. 10.3389/fmicb.2020.01920 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 14.NAGAVARMA B V N, YADAV H K S, AYAZ A, et al. Different techniques for preparation of polymeric nanoparticles—a review[J]. Asian J Pharm Clin Res, 2012, 5(3): 16-23. [Google Scholar]
- 15.陈水生, 周可倩, 李晓东, 等. 纳米药物递释系统在抗真菌感染治疗中的应用及机制[J]. 药学学报, 2021, 56(7): 1893-1901. [Google Scholar]; CHEN Shuisheng, ZHOU Keqian, LI Xiaodong, et al. Application and mechanism of nanomedicine in anti-fungal infection therapy[J]. Acta Pharmaceutica Sinica, 2021, 56(7): 1893-1901. (in Chinese) [Google Scholar]
- 16.AKBARZADEH A, REZAEI-SADABADY R, DAV-ARAN S, et al. Liposome: classification, preparation, and applications[J]. Nanoscale Res Lett, 2013, 8(1): 102. 10.1186/1556-276x-8-102 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 17.LIAN T, HO R J. Trends and developments in liposome drug delivery systems[J]. J Pharm Sci, 2001, 90(6): 667-680. 10.1002/jps.1023 [DOI] [PubMed] [Google Scholar]
- 18.ASADI P, MEHRAVARAN A, SOLTANLOO N, et al. Nanoliposome-loaded antifungal drugs for dermal administration: a review[J]. Curr Med Mycol, 2021, 7(1): 71-78. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 19.CAVASSIN F B, BAÚ-CARNEIRO J L, VILAS-BOAS R R, et al. Sixty years of amphotericin B: an overview of the main antifungal agent used to treat invasive fungal infections[J]. Infect Dis Ther, 2021, 10(1): 115-147. 10.1007/s40121-020-00382-7 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 20.HAMILL R J. Amphotericin B formulations: a com-parative review of efficacy and toxicity[J]. Drugs, 2013, 73(9): 919-934. 10.1007/s40265-013-0069-4 [DOI] [PubMed] [Google Scholar]
- 21.LANIADO-LABORÍN R, CABRALES-VARGAS M N. Amphotericin B: side effects and toxicity[J]. Rev Iberoam Micol, 2009, 26(4): 223-227. 10.1016/j.riam.2009.06.003 [DOI] [PubMed] [Google Scholar]
- 22.DUPONT B. Overview of the lipid formulations of amphotericin B[J]. J Antimicrob Chemother, 2002, 49(Suppl 1): 31-36. 10.1093/jac/49.suppl_1.31 [DOI] [PubMed] [Google Scholar]
- 23.ADLER-MOORE J, PROFFITT R T. AmBisome: liposomal formulation, structure, mechanism of action and pre-clinical experience[J]. J Antimicrob Chemo-ther, 2002, 49(Suppl 1): 21-30. 10.1093/jac/49.suppl_1.21 [DOI] [PubMed] [Google Scholar]
- 24.STONE N R, BICANIC T, SALIM R, et al. Liposomal Amphotericin B (AmBisome®): a review of the pharmacokinetics, pharmacodynamics, clinical exper-ience and future directions[J]. Drugs, 2016, 76(4): 485-500. 10.1007/s40265-016-0538-7 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 25.DERAY G. Amphotericin B nephrotoxicity[J]. J Antimicrob Chemoth, 2002, 49(Suppl 1): 37-41. 10.1093/jac/49.suppl_1.37 [DOI] [PubMed] [Google Scholar]
- 26.GRAYBILL J R, BOCANEGRA R, GONZALEZ G M, et al. Combination antifungal therapy of murine aspergillosis: liposomal amphotericin B and micafungin[J]. J Antimicrob Chemother, 2003, 52(4): 656-662. 10.1093/jac/dkg425 [DOI] [PubMed] [Google Scholar]
- 27.VAN ETTEN E W, KATE M T TEN, STEARNE L E, et al. Amphotericin B liposomes with prolonged circulation in blood: in vitro antifungal activity, toxicity, and efficacy in systemic candidiasis in leukopenic mice[J]. Antimicrob Agents Chemother, 1995, 39(9): 1954-1958. 10.1128/aac.39.9.1954 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 28.VAN ETTEN E W, SNIJDERS S V, VAN VIANEN W, et al. Superior efficacy of liposomal amphotericin B with prolonged circulation in blood in the treatment of severe candidiasis in leukopenic mice[J]. Anti-microb Agents Chemother, 1998, 42(9): 2431-2433. 10.1128/aac.42.9.2431 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 29.AMBATI S, FERARRO A R, KANG S E, et al. Dectin-1-targeted antifungal liposomes exhibit enhanced efficacy[J/OL]. mSphere, 2019, 4(1): e00025-00019. 10.1128/msphere.00121-19 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 30.AMBATI S, ELLIS E C, LIN J, et al. Dectin-2-targeted antifungal liposomes exhibit enhanced efficacy[J/OL]. mSphere, 2019, 4(5): e00715-19. 10.1128/msphere.00121-19 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 31.AMBATI S, PHAM T, LEWIS Z A, et al. DectiSomes: glycan targeting of liposomal drugs improves the treatment of disseminated Candidiasis[J/OL]. Anti-microb Agents Chemother, 2022, 66(1): e0146721. 10.1128/aac.01467-21 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 32.AMBATI S, ELLIS E C, PHAM T, et al. Antifungal liposomes directed by Dectin-2 offer a promising therapeutic option for pulmonary aspergillosis[J/OL]. mBio, 2021, 12(1): e00030-21. 10.1128/mbio.00030-21 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 33.HOLLA A, SKERRA A. Comparative analysis reveals selective recognition of glycans by the dendritic cell receptors DC-SIGN and Langerin[J]. Protein Eng Des Sel, 2011, 24(9): 659-669. 10.1093/protein/gzr016 [DOI] [PubMed] [Google Scholar]
- 34.SAWETTANAI N, LEELAYUWAPAN H, KAROO-NUTHAISIRI N, et al. Synthetic lipomannan glycan microarray reveals the importance of α(1, 2) mannose branching in DC-SIGN binding[J]. J Org Chem, 2019, 84(12): 7606-7617. 10.1021/acs.joc.8b02944 [DOI] [PubMed] [Google Scholar]
- 35.AMBATI S, PHAM T, LEWIS Z A, et al. DC-SIGN targets amphotericin B-loaded liposomes to diverse pathogenic fungi[J]. Fungal Biol Biotechnol, 2021, 8(1): 22. 10.1186/s40694-021-00126-3 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 36.TANIGUCHI H, ISHIMIME Y, MINAMIHATA K, et al. Liposomal Amphotericin B formulation displaying lipid-modified chitin-binding domains with enhanced antifungal activity[J]. Mol Pharm, 2022, 19(11): 3906-3914. 10.1021/acs.molpharmaceut.2c00388 [DOI] [PubMed] [Google Scholar]
- 37.NAMI S, AGHEBATI-MALEKI A, AGHEBATI-MALEKI L. Current applications and prospects of nanoparticles for antifungal drug delivery[J]. Excli J, 2021, 20: 562-584. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 38.HAIDER M, ABDIN S M, KAMAL L, et al. Nano-structured lipid carriers for delivery of chemotherapeu-tics: a review[J]. Pharmaceutics, 2020, 12(3): 288. 10.3390/pharmaceutics12030288 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 39.VAN DE VEN H, PAULUSSEN C, FEIJENS P B, et al. PLGA nanoparticles and nanosuspensions with ampho-tericin B: potent in vitro and in vivo alternatives to Fungizone and AmBisome[J]. J Control Release, 2012, 161(3): 795-803. 10.1016/j.jconrel.2012.05.037 [DOI] [PubMed] [Google Scholar]
- 40.BAKER L G, SPECHT C A, DONLIN M J, et al. Chitosan, the deacetylated form of chitin, is necessary for cell wall integrity in Cryptococcus neoformans[J]. Eukaryot Cell, 2007, 6(5): 855-867. 10.1128/ec.00399-06 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 41.TANG Y, WU S, LIN J, et al. Nanoparticles targeted against cryptococcal pneumonia by interactions between chitosan and its peptide ligand[J]. Nano Lett, 2018, 18(10): 6207-6213. 10.1021/acs.nanolett.8b02229 [DOI] [PubMed] [Google Scholar]
- 42.MIMMI S, MAISANO D, QUINTO I, et al. Phage display: an overview in context to drug discovery[J]. Trends Pharmacol Sci, 2019, 40(2): 87-91. 10.1016/j.tips.2018.12.005 [DOI] [PubMed] [Google Scholar]
- 43.JAROSZEWICZ W, MORCINEK-ORŁOWSKA J, PIERZYNOWSKA K, et al. Phage display and other peptide display technologies[J]. FEMS Microbiol Rev, 2022, 46(2): fuab052. 10.1093/femsre/fuab052 [DOI] [PubMed] [Google Scholar]
- 44.WANG Y, SONG Y, ZHU G, et al. Highly biocom-patible BSA-MnO2 nanoparticles as an efficient near-infrared photothermal agent for cancer therapy[J]. Chin Chem Lett, 2018, 29(11): 1685-1688. 10.1016/j.cclet.2017.12.004 [DOI] [Google Scholar]
- 45.CASA D M, KARAM T K, ALVES ADE C, et al. Bovine serum albumin nanoparticles containing ampho-tericin B: characterization, cytotoxicity and in vitro antifungal evaluation[J]. J Nanosci Nanotechnol, 2015, 15(12): 10183-10188. 10.1166/jnn.2015.11694 [DOI] [PubMed] [Google Scholar]
- 46.CHEN W, GU B, WANG H, et al. Development and evaluation of novel itraconazole-loaded intravenous nano-particles[J]. Int J Pharm, 2008, 362(1-2): 133-140. 10.1016/j.ijpharm.2008.05.039 [DOI] [PubMed] [Google Scholar]
- 47.PRIETO GARCIA L, JANZÉN D, KANEBRATT K P, et al. Physiologically based pharmacokinetic model of itraconazole and two of its metabolites to improve the predictions and the mechanistic understanding of CYP3A4 drug-drug interactions[J]. Drug Metab Dispos, 2018, 46(10): 1420-1433. 10.1124/dmd.118.081364 [DOI] [PubMed] [Google Scholar]
- 48.MIYAMA T, TAKANAGA H, MATSUO H, et al. P-glycoprotein-mediated transport of itraconazole across the blood-brain barrier[J]. Antimicrob Agents Chemo-ther, 1998, 42(7): 1738-1744. 10.1128/aac.42.7.1738 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 49.GOA K L, BARRADELL L B. Fluconazole. An update of its pharmacodynamic and pharmacokinetic properties and therapeutic use in major superficial and systemic mycoses in immunocompromised patients[J]. Drugs, 1995, 50(4): 658-690. 10.2165/00003495-199550040-00007 [DOI] [PubMed] [Google Scholar]
- 50.ZHANG Q L, FU B M, ZHANG Z J. Borneol, a novel agent that improves central nervous system drug delivery by enhancing blood-brain barrier permeability[J]. Drug Deliv, 2017, 24(1): 1037-1044. 10.1080/10717544.2017.1346002 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 51.GUO X, WU G, WANG H, et al. Pep-1&borneol-bifunctionalized carmustine-loaded micelles enhance anti-glioma efficacy through tumor-targeting and BBB-penetrating[J]. J Pharm Sci, 2019, 108(5): 1726-1735. 10.1016/j.xphs.2018.11.046 [DOI] [PubMed] [Google Scholar]
- 52.FAN X, CHAI L, ZHANG H, et al. Borneol depresses P-glycoprotein function by a NF-κB signaling mediated mechanism in a blood brain barrier in vitro model[J]. Int J Mol Sci, 2015, 16(11): 27576-27588. 10.3390/ijms161126051 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 53.ZHANG S, ASGHAR S, YANG L, et al. Borneol and poly (ethylene glycol) dual modified BSA nanoparticles as an itraconazole vehicle for brain targeting[J]. Int J Pharm, 2020, 575: 119002. 10.1016/j.ijpharm.2019.119002 [DOI] [PubMed] [Google Scholar]
- 54.GHEZZI M, PESCINA S, PADULA C, et al. Polymeric micelles in drug delivery: an insight of the techniques for their characterization and assessment in biorelevant conditions[J]. J Control Release, 2021, 332: 312-336. 10.1016/j.jconrel.2021.02.031 [DOI] [PubMed] [Google Scholar]
- 55.HWANG D, RAMSEY J D, KABANOV A V. Polymeric micelles for the delivery of poorly soluble drugs: from nanoformulation to clinical approval[J]. Adv Drug Deliv Rev, 2020, 156: 80-118. 10.1016/j.addr.2020.09.009 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 56.YU B G, OKANO T, KATAOKA K, et al. Polymeric micelles for drug delivery: solubilization and haemolytic activity of amphotericin B[J]. J Control Release, 1998, 53(1-3): 131-136. 10.1016/s0168-3659(97)00245-9 [DOI] [PubMed] [Google Scholar]
- 57.XU H, TENG F, ZHOU F, et al. Linolenic acid-modified MPEG-PEI micelles for encapsulation of amphotericin B[J]. Future Med Chem, 2019, 11(20): 2647-2662. 10.4155/fmc-2018-0580 [DOI] [PubMed] [Google Scholar]
- 58.ALBAYATY Y N, THOMAS N, RAMÍREZ-GARCÍA P D, et al. pH-Responsive copolymer micelles to enhance itraconazole efficacy against Candida albicans biofilms[J]. J Mater Chem B, 2020, 8(8): 1672-1681. 10.1039/c9tb02586c [DOI] [PubMed] [Google Scholar]
- 59.ALBAYATY Y N, THOMAS N, RAMÍREZ-GARCÍA P D, et al. Polymeric micelles with anti-virulence activity against Candida albicans in a single- and dual-species biofilm[J]. Drug Deliv Transl Res, 2021, 11(4): 1586-1597. 10.1007/s13346-021-00943-4 [DOI] [PubMed] [Google Scholar]
- 60.ZHANG X, XIE J, LI S, et al. The study on brain targeting of the amphotericin B liposomes[J]. J Drug Target, 2003, 11(2): 117-122. 10.1080/1061186031000115150 [DOI] [PubMed] [Google Scholar]
- 61.DEMEULE M, RÉGINA A, CHÉ C, et al. Identification and design of peptides as a new drug delivery system for the brain[J]. J Pharmacol Exp Ther, 2008, 324(3): 1064-1072. 10.1124/jpet.107.131318 [DOI] [PubMed] [Google Scholar]
- 62.DEMEULE M, CURRIE J C, BERTRAND Y, et al. Involvement of the low-density lipoprotein receptor-related protein in the transcytosis of the brain delivery vector angiopep-2[J]. J Neurochem, 2008, 106(4): 1534-1544. 10.1111/j.1471-4159.2008.05492.x [DOI] [PubMed] [Google Scholar]
- 63.SHAO K, HUANG R, LI J, et al. Angiopep-2 modified PE-PEG based polymeric micelles for amphotericin B delivery targeted to the brain[J]. J Control Release, 2010, 147(1): 118-126. 10.1016/j.jconrel.2010.06.018 [DOI] [PubMed] [Google Scholar]
- 64.SHAO K, WU J, CHEN Z, et al. A brain-vectored angiopep-2 based polymeric micelles for the treatment of intracranial fungal infection[J]. Biomaterials, 2012, 33(28): 6898-6907. 10.1016/j.biomaterials.2012.06.050 [DOI] [PubMed] [Google Scholar]
- 65.VARDE N K, PACK D W. Microspheres for controlled release drug delivery[J]. Expert Opin Biol Ther, 2004, 4(1): 35-51. 10.1517/14712598.4.1.35 [DOI] [PubMed] [Google Scholar]
- 66.PRASAD B, GUPTA V, DEVANNA N, et al. Micros-pheres as drug delivery system—a review[J]. Int J Biol Macromol, 2014, 5(3): 1961-1972. [Google Scholar]
- 67.ANGRA P K, OETTINGER C, BALAKRISHNA PAI S, et al. Amphotericin B microspheres: a therapeutic approach to minimize toxicity while maintaining anti-fungal efficacy[J]. J Microencapsul, 2009, 26(7): 580-587. 10.3109/02652040902797516 [DOI] [PubMed] [Google Scholar]
- 68.ANGRA P K, SIDDIG A, NETTEY H, et al. Pharmaco-kinetic and biodistribution studies of amphotericin B microspheres[J]. J Microencapsul, 2009, 26(7): 627-634. 10.3109/02652040802587173 [DOI] [PubMed] [Google Scholar]
- 69.PAVIC A, STOJANOVIC Z, PEKMEZOVIC M, et al. Polyenes in medium chain length polyhydroxyalkanoate (mcl-PHA) biopolymer microspheres with reduced toxicity and improved therapeutic effect against Candida infection in zebrafish model[J]. Pharmaceutics, 2022, 14(4): 696. 10.3390/pharmaceutics14040696 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 70.KHAN A A, JABEEN M, ALANAZI A M, et al. Antifungal efficacy of amphotericin B encapsulated fibrin microsphere for treating Cryptococcus neoformans infection in Swiss albino mice[J]. Braz J Infect Dis, 2016, 20(4): 342-348. 10.1016/j.bjid.2016.04.006 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 71.LU B, ZHANG J Q, YANG H. Lung-targeting micro-spheres of carboplatin[J]. Int J Pharm, 2003, 265(1-2): 1-11. 10.1016/s0378-5173(03)00332-6 [DOI] [PubMed] [Google Scholar]
- 72.RAMAIAH B, NAGARAJA S H, KAPANIGOWDA U G, et al. High azithromycin concentration in lungs by way of bovine serum albumin microspheres as targeted drug delivery: lung targeting efficiency in albino mice[J]. Daru, 2016, 24(1): 14. 10.1186/s40199-016-0153-x [DOI] [PMC free article] [PubMed] [Google Scholar]
- 73.CHENG L, NIU M M, YAN T, et al. Bioresponsive micro-to-nano albumin-based systems for targeted drug delivery against complex fungal infections[J]. Acta Pharm Sin B, 2021, 11(10): 3220-3230. 10.1016/j.apsb.2021.04.020 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 74.LIU H, SU Y Y, JIANG X C, et al. Cell membrane-coated nanoparticles: a novel multifunctional biomimetic drug delivery system[J]. Drug Deliv Transl Res, 2023, 13(3): 716-737. 10.1007/s13346-022-01252-0 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 75.TAN S, WU T, ZHANG D, et al. Cell or cell membrane-based drug delivery systems[J]. Theranostics, 2015, 5(8): 863-881. 10.7150/thno.11852 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 76.LI Y, XIONG J, HU Y, et al. Wrapping collagen-based nanoparticle with macrophage membrane for treating multidrug-resistant bacterial infection[J]. J Leather Sci Eng, 2022, 4(1): 1-12. 10.1186/s42825-022-00106-2 [DOI] [Google Scholar]
- 77.WANG C, WANG Y, ZHANG L, et al. Pretreated macrophage-membrane-coated gold nanocages for precise drug delivery for treatment of bacterial infections[J/OL]. Adv Mater, 2018, 30(46): e1804023. 10.1002/adma.201804023 [DOI] [PubMed] [Google Scholar]
- 78.HEIDENREICH F, DIERICH M P. Candida albicans and Candida stellatoidea, in contrast to other Candida species, bind iC3b and C3d but not C3b[J]. Infect Immun, 1985, 50(2): 598-600. 10.1128/iai.50.2.598-600.1985 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 79.CALDERONE R A, LINEHAN L, WADSWORTH E, et al. Identification of C3d receptors on Candida albicans[J]. Infect Immun, 1988, 56(1): 252-258. 10.1128/iai.56.1.252-258.1988 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 80.XIE J, SHEN Q, HUANG K, et al. Oriented assembly of cell-mimicking nanoparticles via a molecular affinity strategy for targeted drug delivery[J]. ACS Nano, 2019, 13(5): 5268-5277. 10.1021/acsnano.8b09681 [DOI] [PubMed] [Google Scholar]
- 81.RODRIGUES M L, CASADEVALL A. A two-way road: novel roles for fungal extracellular vesicles[J]. Mol Microbiol, 2018, 110(1): 11-15. 10.1111/mmi.14095 [DOI] [PubMed] [Google Scholar]
- 82.BLEACKLEY M R, DAWSON C S, ANDERSON M A. Fungal extracellular vesicles with a focus on pro-teomic analysis[J/OL]. Proteomics, 2019, 19(8): e1800232. 10.1002/pmic.201800232 [DOI] [PubMed] [Google Scholar]
- 83.WANG J, YAO Y, CHEN X, et al. Host derived exosomes-pathogens interactions: potential functions of exosomes in pathogen infection[J]. Biomed Phar-macother, 2018, 108: 1451-1459. 10.1016/j.biopha.2018.09.174 [DOI] [PubMed] [Google Scholar]
- 84.JOFFE L S, NIMRICHTER L, RODRIGUES M L, et al. Potential roles of fungal extracellular vesicles during infection[J/OL]. mSphere, 2016, 1(4): e00099-16. 10.1128/msphere.00099-16 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 85.LIN Y, LU Y, LI X. Biological characteristics of exosomes and genetically engineered exosomes for the targeted delivery of therapeutic agents[J]. J Drug Target, 2020, 28(2): 129-141. 10.1080/1061186x.2019.1641508 [DOI] [PubMed] [Google Scholar]
- 86.LI W, SU Z, HAO M, et al. Cytopharmaceuticals: an emerging paradigm for drug delivery[J]. J Control Release, 2020, 328: 313-324. 10.1016/j.jconrel.2020.08.063 [DOI] [PubMed] [Google Scholar]
- 87.RAMAN V, VAN DESSEL N, HALL C L, et al. Intracellular delivery of protein drugs with an autono-mously lysing bacterial system reduces tumor growth and metastases[J]. Nat Commun, 2021, 12(1): 6116. 10.1038/s41467-021-26367-9 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 88.GURBATRI C R, ARPAIA N, DANINO T. Engineering bacteria as interactive cancer therapies[J]. Science, 2022, 378(6622): 858-864. 10.1126/science.add9667 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 89.LI Z, WANG Y, LIU J, et al. Chemically and biologically engineered bacteria-based delivery systems for emerging diagnosis and advanced therapy[J/OL]. Adv Mater, 2021, 33(38): e2102580. 10.1002/adma.202102580 [DOI] [PubMed] [Google Scholar]
- 90.LUO C H, HUANG C T, SU C H, et al. Bacteria-mediated hypoxia-specific delivery of nanoparticles for tumors imaging and therapy[J]. Nano Lett, 2016, 16(6): 3493-3499. 10.1021/acs.nanolett.6b00262 [DOI] [PubMed] [Google Scholar]
- 91.KOWALSKI C H, MORELLI K A, SCHULTZ D, et al. Fungal biofilm architecture produces hypoxic microen-vironments that drive antifungal resistance[J]. Proc Natl Acad Sci U S A, 2020, 117(36): 22473-22483. 10.1073/pnas.2003700117 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 92.GRAHL N, PUTTIKAMONKUL S, MACDONALD J M, et al. In vivo hypoxia and a fungal alcohol dehydro-genase influence the pathogenesis of invasive pulmonary aspergillosis[J/OL]. PLoS Pathog, 2011, 7(7): e1002145. 10.1371/journal.ppat.1002145 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 93.PELEG A Y, HOGAN D A, MYLONAKIS E. Medically important bacterial-fungal interactions[J]. Nat Rev Microbiol, 2010, 8(5): 340-349. 10.1038/nrmicro2313 [DOI] [PubMed] [Google Scholar]
- 94.JENKINSON H F, LALA H C, SHEPHERD M G. Coaggregation of Streptococcus sanguis and other strep-tococci with Candida albicans[J]. Infect Immun, 1990, 58(5): 1429-1436. 10.1128/iai.58.5.1429-1436.1990 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 95.HOLMES A R, MCNAB R, JENKINSON H F. Candida albicans binding to the oral bacterium Streptococcus gordonii involves multiple adhesin-receptor interactions[J]. Infect Immun, 1996, 64(11): 4680-4685. 10.1128/iai.64.11.4680-4685.1996 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 96.HOLMES A R, GOPAL P K, JENKINSON H F. Adherence of Candida albicans to a cell surface poly-saccharide receptor on Streptococcus gordonii[J]. Infect Immun, 1995, 63(5): 1827-1834. 10.1128/iai.63.5.1827-1834.1995 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 97.OCAÑA V S, NADER-MACÍAS M E. Vaginal lacto-bacilli: self- and co-aggregating ability[J]. Br J Biomed Sci, 2002, 59(4): 183-190. 10.1080/09674845.2002.11783657 [DOI] [PubMed] [Google Scholar]
Associated Data
This section collects any data citations, data availability statements, or supplementary materials included in this article.
Supplementary Materials
本文附表见电子版。