Abstract
偏侧咀嚼是颞下颌关节紊乱(TMD)的重要危险因素,TMD患者中存在偏侧咀嚼的比例较高,偏侧咀嚼人群更易出现髁突短小、髁突移位、关节结节斜度和关节窝深度增大的改变,临床研究表明偏侧咀嚼与TMD症状和体征亦存在较强相关性。动物研究表明偏侧咀嚼会影响下颌骨的生长发育和损伤修复活动。长期偏侧咀嚼后关节内受力环境的改变造成颞下颌关节(TMJ)结构重建失衡、咀嚼肌纤维结构发生转化甚至破坏,导致双侧肌肉运动不协调。TMJ局部释放的神经肽P物质和降钙素基因相关肽增加所导致关节神经源性疾病可能是导致TMD发生的机制。本文就偏侧咀嚼对TMJ结构的影响、偏侧咀嚼与TMD的关系及其可能引起TMD的相关机制的研究进展做一综述。
Keywords: 偏侧咀嚼, 颞下颌关节, 颞下颌关节紊乱, 生物力学, 咀嚼肌, 神经系统, 综述
Abstract
Chewing-side preference is one of the risk factors for temporomandibular disorders (TMD), and people with chewing-side preference is more prone to have short and displaced condyles, increased articular eminence inclination and glenoid fossa depth. The proportion of TMD patients with chewing-side preference is often higher than that of the normal subjects. Clinical studies have shown a strong correlation between chewing-side preference and TMD symptoms and signs; and animal studies have shown that chewing-side preference can affect the growth, development, damage and repair of the mandible. After long-term unilateral mastication, changes in the stress within the joint cause the imbalance of temporomandibular joint (TMJ) structural reconstruction, the transformation and even destruction of the fiber structure of masticatory muscle, resulting in uncoordinated movement of bilateral muscles. The joint neurogenic diseases caused by the increase of neuropeptide substance P and calcitonin-gene-related-peptide (CGRP) released locally by TMJ may be the mechanism of TMD. This article reviews the research progress of the influence of chewing-side preference on the structure of TMJ, the relationship between chewing-side preference and TMD, and the related mechanisms.
Keywords: Chewing-side preference, Temporomandibular joint, Temporomandibular disorders, Biomechanics, Masticatory muscle, Nervous system, Review
咀嚼是在神经系统的支配下,通过咀嚼肌的收缩,使颞下颌关节、颌骨、牙齿及牙周组织产生的节律性运动。下颌的闭口、咬合和开口三个连续运动构成了咀嚼运动的基本单位——咀嚼环。在整个咀嚼运动中,当一侧的咀嚼环次数比另一侧多30%时则称为偏侧咀嚼或咀嚼偏向侧[1]。偏侧咀嚼的病因可能是多因素的,且同时受到中枢因素和外周因素的影响[2]。中枢因素指咀嚼运动的偏向侧可能与眼、手、脚等身体器官的偏向侧一样受中枢神经系统的控制,外周因素则包括牙列因素(如牙缺失或龋齿、根尖周炎等疾病)、关节因素、咀嚼肌因素等。研究表明,偏侧咀嚼在乳牙列、混合牙列和恒牙列受试者中的发生率分别约为87%、82%和76%[1,3-4]。
双侧TMJ是一对联动关节,正常状态下咬合、肌肉和关节协调一致,维持着口颌系统的稳定。偏侧咀嚼时双侧TMJ负荷分布不对称,双侧咀嚼肌收缩强度不均,破坏了咬合、咀嚼肌和TMJ之间的形态及功能的协调性,TMJ的解剖结构会随之发生改变。TMJ功能紊乱时常表现为TMD。TMD是一组涉及咀嚼肌、颞下颌关节及其相关结构的疾病。TMD的临床表现主要为面部和耳前区的局部疼痛、下颌运动受限以及下颌运动时的关节弹响和杂音[5-6]。TMD是口腔颌面部疼痛的主要原因之一,在20~40岁人群中发病率最高。2021年的一项系统评价和Meta分析显示,TMD的患病率在成人中为31%,在儿童和青少年中为11%[7]。TMD具备病因复杂的特点,其中咬合因素与TMD的关系一直存在争议,目前许多学者对偏侧咀嚼与TMJ及TMD的关系进行了研究。本文就偏侧咀嚼对TMJ结构的影响、偏侧咀嚼与TMD的关系及其可能引起TMD的相关机制的研究进展做一综述,以供同行参考。
1. 偏侧咀嚼对颞下颌关节结构的影响
TMJ的上部是颞骨关节窝,下方为关节盘和髁突以及附着的关节囊和韧带,研究表明偏侧咀嚼对TMJ髁突、关节窝和关节盘的结构会产生影响。
1.1. 偏侧咀嚼对TMJ髁突的影响
下颌骨髁突是一种椭球形骨性结构,通过狭窄的髁突颈部与下颌骨升支相连。姜华等[8]发现右侧偏侧咀嚼患者双侧关节间隙和髁突颈部宽度存在显著差异,偏向侧关节后间隙、后上间隙、外间隙和上间隙均小于非偏向侧,偏向侧髁颈宽度大于非偏向侧。吕云松等[9]比较了TMD伴偏侧咀嚼患者和健康者的锥形束CT,发现TMD伴偏侧咀嚼患者存在双侧TMJ结构异常,偏向侧髁突内、后间隙减小,非偏向侧关节前间隙代偿性增大。李佳[10]报道,与无偏侧咀嚼习惯组比较,偏侧咀嚼组偏向侧髁突整体变小并发生上移,这与姜华等[8]发现的髁突后间隙、上间隙减小一致。然而Costa等[11]报道偏侧咀嚼对下颌髁突和冠突的体积无明显影响。
1.2. 偏侧咀嚼对TMJ窝的影响
关节窝是位于下颌骨髁突上方的骨性结构,其前方为关节结节,在下颌运动中主要由关节结节后斜面和髁突前斜面承受功能负荷,其中关节结节斜度决定了髁突运动的路径以及关节盘在髁突表面的旋转程度[12]。Jiang等[13]发现偏侧咀嚼组偏向侧的关节结节斜度比非偏向侧更大。此外Ma等[14]发现TMD伴偏侧咀嚼组的关节结节斜度显著高于TMD不伴偏侧咀嚼组和健康组,且前两组的关节窝深度均比健康组更大,发生该现象的原因可能是偏侧咀嚼患者偏向侧髁突位置的变化和负荷的增加。在正常的咀嚼运动中,工作侧髁突处于后上位[15-16];偏侧咀嚼患者会不断在咀嚼偏向侧的关节重复运动,而不是双侧交替,导致关节过度负荷并产生适应性改变[4,15]。
1.3. 偏侧咀嚼对TMJ盘的影响
关节盘是TMJ髁突与关节窝之间的“软垫子”,在关节运动过程中发挥减弱和分散压力的作用。关节结节是髁突和关节盘运动的前界,当偏侧咀嚼导致关节结节斜度和关节窝深度增大时,髁突运动过程中更易发生关节盘移位[12,17-18]。研究发现TMJ盘前移位伴偏侧咀嚼患者偏向侧TMJ发生不可复性关节盘前移位和疼痛、关节杂音的比例显著高于非偏向侧,且偏侧咀嚼与TMJ盘前移位患者的疼痛症状、关节盘前移位侧别相关,此类患者出现疼痛和双侧TMJ盘前移位的比例显著高于TMJ盘前移位无偏侧咀嚼患者[19]。
由于偏侧咀嚼患者的年龄、性别、偏向侧以及偏侧咀嚼中枢、外周因素和持续时间均可能对TMJ的结构改变存在影响,而现有研究的样本量和样本类型有限,故偏侧咀嚼患者TMJ结构的改变还有待于更全面的研究。
2. 偏侧咀嚼与颞下颌关节紊乱的关系
TMD的病因复杂,对于咬合因素与其关系的研究尚存在许多争议,但是目前大多数的临床研究表明偏侧咀嚼是TMD的重要危险因素,相关的文献资料见表1。
表1.
偏侧咀嚼与颞下颌关节紊乱的关系
研究目的 | 研究对象 | 研究方法 | 主要研究结果 | 参考文献 |
---|---|---|---|---|
TMD患者偏 侧咀嚼比 例高于健 康人群 |
754名医学生 | 问卷调查、临床检查(参照RDC/TMD) | TMD患病率为31.7%;TMD患者中56.5%有偏侧咀嚼,显著高于健康者,偏侧咀嚼是TMD的高危因素之一 | [20] |
506名大学生 | 问卷调查、临床检查(参照RDC/TMD) | 偏侧咀嚼与应激之间的相互作用是影响TMD重要的相关因素之一 | [21] | |
109例TMD患者, 109名健康者 |
问卷调查 | TMD组中偏侧咀嚼占比(69.7%)显著高于对照组(54.1%),偏侧咀嚼可能是TMD的重要危险因素之一 | [22] | |
700名医学生 | 问卷调查、临床检查(参照RDC/TMD) | TMD患病率为42.40%,终模型多因素逻辑回归分析显示偏侧咀嚼是TMD危险因素之一 | [23] | |
36例TMD患者, 34名健康者 |
临床检查(参照RDC/TMD)、X线 | TMD患者咀嚼时采用慢性偏侧咀嚼模式的占比(33.33%)显著高于对照组未患TMD组和轻中度TMD组 | [24] | |
616名男性民用飞行员 | 问卷调查、临床检查(参照RDC/TMD) | TMD患病率为33.3%,偏侧咀嚼与TMD显著相关 | [25] | |
519名大学生 | 问卷调查、临床检查 | 偏侧咀嚼在未患TMD组、轻度TMD组、中度TMD组、重度TMD组中的发生率分别为36.8%、46.9%、54.6%、65.0%,偏侧咀嚼与TMD显著相关 | [26] | |
偏侧咀嚼者 与TMD临 床表现有关 |
120例咀嚼系统功能障碍患者 | 临床检查 | 偏侧咀嚼与张口疼痛和关节区疼痛显著相关 | [27] |
1056名受试者 | 问卷调查 | 偏侧咀嚼与口面部疼痛显著相关 | [28] | |
146名受试者 | 问卷调查、临床检查 | 偏侧咀嚼与下颌运动受限显著相关 | [29] | |
127名口腔医学生 | 问卷调查 | 偏侧咀嚼与关节弹响、张口受限、面部疼痛显著相关 | [30] | |
4086名受试者 | 问卷调查、临床检查 | 偏侧咀嚼与单侧面部肌肉、关节疼痛、关节弹响显著相关 | [31] | |
90例TMD患者, 20例健康者 |
锥形束CT、临床检查(参照RDC/TMD) | TMD伴偏侧咀嚼患者出现关节疼痛的比例(23%)明显高于TMD无偏侧咀嚼患者 | [32] | |
100例TMJOA患者 | 锥形束CT、临床检查 | TMJOA伴偏侧咀嚼患者出现疼痛比例略高于TMJOA无偏侧咀嚼者,髁突出现表面骨质破坏和磨短变平的比例显著高于TMJOA无偏侧咀嚼者 | [33] |
TMD:颞下颌关节紊乱;RDC/TMD:颞下颌关节紊乱研究诊断标准;TMJOA:颞下颌关节骨关节炎.
临床研究发现,TMD患者存在偏侧咀嚼的比例高于正常人群。Wu等[20]对754名医学生进行TMD患病率和相关风险因素分析表明,TMD组存在偏侧咀嚼的比例为56.5%,显著高于健康者,国内外诸多研究结果与其一致[21-24]。Yu等[25]发现616名男性民用飞机飞行员中TMD患病率为33.3%,其中焦虑和偏侧咀嚼是TMD最显著的相关因素。Yalçın等[26]对519名土耳其大学生的调查结果显示,偏侧咀嚼在无TMD组、轻度TMD组、中度TMD组、重度TMD组的发生率分别为36.8%、46.9%、54.6%、65.0%,提示偏侧咀嚼与TMD存在相关性。
此外,诸多研究表明偏侧咀嚼与TMD症状或体征存在相关性。Chua等[27]观察了120例咀嚼系统功能障碍患者,发现偏侧咀嚼与开口疼痛和关节疼痛显著相关。研究显示,偏侧咀嚼患者口面部疼痛、下颌运动受限、关节弹响的发生更多[28-30]。此外,Diernberger等[31]发现偏侧咀嚼人群中出现单侧的面部肌肉、TMJ疼痛或关节弹响的比例高于无偏侧咀嚼人群。Ma等[32]报道TMD伴偏侧咀嚼患者相比TMD无偏侧咀嚼患者出现关节疼痛的比例更高。翟孝庭等[33]研究发现,与TMJOA不伴偏侧咀嚼的患者比较,TMJOA伴偏侧咀嚼的患者可能更易出现疼痛,髁突出现表面骨质破坏和磨短变平的比例更高,所以偏侧咀嚼可能是TMJOA发展的促进因素。目前大部分的临床研究分析了偏侧咀嚼是否为TMD的可能危险因素,但较少细化分析偏侧咀嚼患者的年龄、性别和持续时间等变量的影响,所以还需要样本量更大、设计更全面的临床研究进一步探索。
3. 偏侧咀嚼导致颞下颌关节紊乱的相关机制
口颌系统的稳定依赖于咬合、TMJ、咀嚼肌以及神经系统的协调稳定,本文进一步对偏侧咀嚼后TMJ的生物力学环境改变、咀嚼肌功能改变以及神经系统改变可能导致TMD的机制进行讨论。
3.1. 生物力学环境
髁突作为下颌骨生长发育中心,其生长发育直接影响下颌骨的发育,在髁突形成过程中最关键的为髁突软骨,而软骨组织对机械环境敏感,应力刺激在调节骨发育和骨生长过程中发挥重要作用[34]。BMP2是一种合成代谢因子,具有诱导骨和软骨形成的功能,在TMJ软骨的生长发育和损伤后的修复中发挥着重要作用[35-36]。研究发现,偏侧咀嚼大鼠咀嚼侧髁突软骨中BMP2的表达均高于同组非咀嚼侧及正常组,偏侧咀嚼组咀嚼侧软骨厚度大于同组非咀嚼侧及正常组[37]。这可能是由于咀嚼侧髁突软骨受压增大使软骨中一些炎症因子如IL-1β和TNF-α的表达增加,从而促进BMP2高表达[38]。增加的BMP2通过促进软骨细胞的增殖和分化[39],参与髁突软骨的改建和修复活动,从而造成髁突软骨厚度增加。与此相反,非咀嚼侧髁突软骨受力减小,髁突软骨的厚度也减小,提示软骨中细胞增殖、分化活动减弱,与Pirttiniemi等[40]的动物实验结果一致。此外,Farias-Neto等[41]发现偏侧咀嚼大鼠的髁突软骨中Ⅱ型胶原、IL-1和VEGF表达均有上调,其中拔牙侧VEGF的表达高于非拔牙侧。这些蛋白质可通过调节基质金属蛋白酶的产生从而降解软骨基质。偏侧咀嚼时,拔牙侧髁突以滑动为主,非拔牙侧髁突则以转动为主,故拔牙侧VEGF表达的增加可能是因为该侧髁突滑动的需要和髁突受力环境改变使得软骨发生重塑。
Ma等[42]研究发现偏侧咀嚼过程中,咀嚼侧髁突的平均位移和移动加速度显著低于非咀嚼侧髁突,咀嚼侧髁突轨迹角明显大于非咀嚼侧髁突,非咀嚼侧髁突在前后和上下方向的位移分别比咀嚼侧髁突的位移多89.37%和62.01%。此时咀嚼侧髁突以转动为主,关节受压区主要发生在髁突初始位置附近甚至上方,非咀嚼侧髁突以滑动为主,关节受压区主要在关节窝前表面的平坦区,因此长期单侧咀嚼可能导致非咀嚼侧关节窝前表面向前重建和咀嚼侧关节窝加深[13,43],这与Ma等[14]报道的偏侧咀嚼人群关节结节斜度和关节窝深度增大的结果一致。此外对下颌运动的有限元分析表明[44],偏侧咀嚼时非咀嚼侧关节盘会受到更大的正中-侧向压力,从而导致患者出现盘后区和咀嚼肌区的疼痛[45]。王延秀等[46]发现,偏侧咀嚼大鼠相比对照组髁突骨小梁骨细胞减少、骨陷窝空虚、软骨层变薄,关节盘表面局部变粗糙、关节盘胶原纤维排列紊乱、胶原纤维间水肿、关节盘局部嗜碱性变,关节盘表面滑膜细胞明显增生。李晓光等[47]进一步研究发现,正常对照大鼠TMJ滑膜光滑,偏侧咀嚼大鼠TMJ可见滑膜细胞增生或消失、血管扩张出血、血管数增多、滑膜下组织致密,提示偏侧咀嚼可引起TMJ滑膜损伤。故长期偏侧咀嚼时双侧关节髁突运动模式的改变造成关节内受力差异,可能引起双侧TMJ重建失衡,导致TMJ结构发生病理改变,继而可能导致TMD的发生[8,43]。
3.2. 咀嚼肌功能
王子娴等[48]通过拔除一侧后牙模拟临床患者长期一侧缺牙后出现偏侧咀嚼的现象建立偏侧咀嚼动物模型,发现实验组拔牙侧钙离子含量明显高于对照组,实验组非拔牙侧Ⅰ型肌纤维/(Ⅰ+Ⅱ)型肌纤维比例高于正常对照组,Ⅰ型纤维比例与CaN活性呈正相关。Bani等[49]通过磨除大鼠一侧后牙牙尖造成错,发现两周后细胞内钙离子含量明显升高。钙离子是与调控骨骼肌生理机能密切相关的第二信使,在骨骼肌损伤和疲劳时伴细胞内钙离子含量升高。CaN是骨骼肌重塑的重要信号分子[50],肌纤维类型的转化可以通过钙依赖性信号传导途径CaN通路进行调控。这表明长期偏侧咀嚼引起咀嚼肌组织中钙离子含量升高。高含量的钙离子激活了与骨骼肌生长和肌纤维转化有关的信号通路——CaN通路,从而促进编码慢肌表型蛋白基因转录,诱导偏侧咀嚼侧肌纤维从Ⅱ型转化到Ⅰ型,从而导致双侧咀嚼肌运动不协调。
目前已有研究证明,咀嚼功能与咬肌、颞肌的肌电图活动有关[51]。偏侧咀嚼会导致双侧咀嚼肌运动强度不均,研究显示咀嚼偏向侧咬肌和颞肌的肌电活动明显高于非偏向侧[52]。此外Hedenberg-Magnusson等[53]发现偏侧咀嚼会引起大量局灶性炎症细胞浸润,此类细胞可产生前列腺素E2等致痛物质,导致肌纤维断裂等,说明偏侧咀嚼可能会对咀嚼肌组织结构造成损伤并引起咀嚼肌痛。还有研究显示,偏侧咀嚼与咬合力和咬合接触面积的不对称性呈正相关[4,54]。所以偏侧咀嚼会造成双侧咀嚼肌运动强度不对称甚至咀嚼肌的损伤、咬合力分布不均,这将造成双侧后牙磨耗程度不一,甚至咬合关系的紊乱,从而破坏TMJ、咀嚼肌和咬合关系的协调,导致TMD的发生。
3.3. 神经系统反应
三叉神经节是TMJ的神经元组成部分,其通过在TMJ局部释放神经肽参与关节的神经源性炎性疾病的发生与发展。三叉神经节细胞合成P物质和CGRP,并通过神经节细胞的中枢突和周围突分别被输送至三叉神经感觉核和TMJ,P物质和CGRP具有增强伤害性信息传递的功能。此外,P物质和CGRP还可促进血管壁通透性增加和炎症介质的释放,导致局部水肿和炎症细胞浸润,引起神经源性炎症反应[55]。有研究报道偏侧咀嚼大鼠三叉神经节内P物质和CGRP及其相应蛋白的表达均呈上调趋势[56]。李晓光等[57]进一步发现偏侧咀嚼大鼠咀嚼侧关节内P物质的合成明显高于非咀嚼侧。故偏侧咀嚼可能通过P物质和CGRP的表达增加来影响TMD的发生发展,但关于此方面的动物研究有限,其具体机制仍需进一步研究。
4. 结语
TMD在口腔临床上患病率高,其致病因素复杂,目前大多数临床研究表明偏侧咀嚼是TMD的重要危险因素之一,长期偏侧咀嚼后关节内生物力学环境改变以及咀嚼肌功能改变可造成TMJ结构重建失衡、咀嚼肌纤维结构发生转化甚至破坏,这提示口腔医生在临床工作过程中,对健康人群和TMD患者均需关注其偏侧咀嚼现象和具体形成原因,尽早改善偏侧咀嚼情况,以防止TMD的发生或加重。此外,偏侧咀嚼后TMJ局部释放的P物质和CGRP增加可导致神经源性炎症反应[55],这可能是TMD发生的机制,而这些神经肽的表达在TMD发生过程中的具体机制仍需进一步的探索。
Acknowledgments
研究得到国家自然科学基金(82020108011)支持
Acknowledgments
This work was supported by National Natural Science Foundation of China (82020108011)
[缩略语]
颞下颌关节(temporomandibular joint,TMJ);颞下颌关节紊乱(temporomandibular disorders,TMD);颞下颌关节骨关节炎(temporomandibular joint osteoarthritis,TMJOA);骨形成蛋白(bone morphogenetic protein,BMP);肿瘤坏死因子(tumor necrosis factor,TNF);血管内皮生长因子(vascular endothelial growth factor,VEGF);钙调神经磷酸酶(calcineurin, CaN);降钙素基因相关肽(calcitonin gene related peptide,CGRP)
利益冲突声明
所有作者均声明不存在利益冲突
Conflict of Interests
The authors declare that there is no conflict of interests
参考文献(References)
- 1.BARCELLOS D C, GONÇALVES S E, SILVA M A DA, et al. Prevalence of chewing side preference in the deciduous, mixed and permanent dentitions[J]. J Contemp Dent Pract, 2011, 12(5): 339-342. 10.5005/jp-journals-10024-1056 [DOI] [PubMed] [Google Scholar]
- 2.SEREL A S, İNAL Ö, DEMIR N, et al. Chewing side preference is associated with hemispheric laterality in healthy adults[J]. Somatosens Mot Res, 2017, 34(2): 92-95. 10.1080/08990220.2017.1308923 [DOI] [PubMed] [Google Scholar]
- 3.DONNELL S T MC, HECTOR M P, HANNIGAN A. Chewing side preferences in children[J]. J Oral Rehabil, 2004, 31(9): 855-860. 10.1111/j.1365-2842.2004.01316.x [DOI] [PubMed] [Google Scholar]
- 4.MARTINEZ-GOMIS J, LUJAN-CLIMENT M, PALAU S, et al. Relationship between chewing side preference and handedness and lateral asymmetry of peripheral factors[J]. Arch Oral Biol, 2009, 54(2): 101-107. 10.1016/j.archoralbio.2008.09.006 [DOI] [PubMed] [Google Scholar]
- 5.SVENSSON P, BAAD-HANSEN L, PIGG M, et al. Guidelines and recommendations for assessment of somatosensory function in oro-facial pain conditions—a taskforce report[J]. J Oral Rehabil, 2011, 38(5): 366-394. 10.1111/j.1365-2842.2010.02196.x [DOI] [PubMed] [Google Scholar]
- 6.LIST T, JENSEN R H. Temporomandibular disorders: old ideas and new concepts[J]. Cephalalgia, 2017, 37(7): 692-704. 10.1177/0333102416686302 [DOI] [PubMed] [Google Scholar]
- 7.VALESAN L F, DA-CAS C D, RéUS J C, et al. Prevalence of temporomandibular joint disorders: a systematic review and meta-analysis[J]. Clin Oral Investig, 2021, 25(2): 441-453. 10.1007/s00784-020-03710-w [DOI] [PubMed] [Google Scholar]
- 8.姜华, 王照五, 刘洪臣, 等. 右侧偏侧咀嚼对颞下颌关节形态的影响[J]. 上海口腔医学, 2010, 19(6): 607-610. [PubMed] [Google Scholar]; JIANG Hua, WANG Zhaowu, LIU Hongchen, et al. Effect of right chewing-side preference on morphological temporomandibular joint changes[J]. Shanghai Journal of Stomatology, 2010, 19(6): 607-610. (in Chinese) [PubMed] [Google Scholar]
- 9.吕云松, 李朝晖. 颞下颌关节紊乱综合征伴偏侧咀嚼患者锥形束CT特征分析[J]. 上海口腔医学, 2022, 31(6): 653-656. [PubMed] [Google Scholar]; Yunsong LYU, LI Zhaohui. Cone beam CT imaging findings in patients with temporomandibular joint disorder syndrome and unilateral chewing[J]. Shanghai Journal of Stomatology, 2022, 31(6): 653-656. (in Chinese) [PubMed] [Google Scholar]
- 10.李 佳. 夜磨牙及偏侧咀嚼患者颞下颌关节CBCT测量分析[D]. 天津: 天津医科大学, 2016. [Google Scholar]; LI Jia. CBCT measurement and analysis of temporo-mandibular joint in patients with sleep bruxism and unilateral side chewing[D]. Tianjin: Tianjin Medical University, 2016. (in Chinese) [Google Scholar]
- 11.COSTA E D, GOMES A F, ASSIS A C S, et al. Volumetric evaluation of temporomandibular joints in patients with a chewing-side preference: a CBCT study[J]. Gen Dent, 2021, 69(1): 38-43. [PubMed] [Google Scholar]
- 12.AL-RAWI N H, UTHMAN A T, SODEIFY S M. Spatial analysis of mandibular condyles in patients with temporomandibular disorders and normal controls using cone beam computed tomography[J]. Eur J Dent, 2017, 11(1): 99-105. 10.4103/ejd.ejd_202_16 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 13.JIANG H, LI C, WANG Z, et al. Assessment of osseous morphology of temporomandibular joint in asymptomatic participants with chewing-side preference[J]. J Oral Rehabil, 2015, 42(2): 105-112. 10.1111/joor.12240 [DOI] [PubMed] [Google Scholar]
- 14.MA J, WANG J, HUANG D, et al. Cone-beam computed tomographic assessment of the inclination of the articular eminence in patients with temporo-mandibular disorders and chewing side preference[J]. BMC Oral Health, 2021, 21(1): 396. 10.1186/s12903-021-01760-4 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 15.MIYAWAKI S, TANIMOTO Y, KAWAKAMI T, et al. Motion of the human mandibular condyle during mastication[J]. J Dent Res, 2001, 80(2): 437-442. 10.1177/00220345010800020701 [DOI] [PubMed] [Google Scholar]
- 16.TOMONARI H, KWON S, KUNINORI T, et al. Differences between the chewing and non-chewing sides of the mandibular first molars and condyles in the closing phase during chewing in normal subjects[J]. Arch Oral Biol, 2017, 81: 198-205. 10.1016/j.archoralbio.2017.05.006 [DOI] [PubMed] [Google Scholar]
- 17.ISBERG A, WESTESSON P L. Steepness of articular eminence and movement of the condyle and disk in asymptomatic temporomandibular joints[J]. Oral Surg Oral Med Oral Pathol Oral Radiol Endod, 1998, 86(2): 152-157. 10.1016/s1079-2104(98)90117-2 [DOI] [PubMed] [Google Scholar]
- 18.RABELO K A, SOUSA M S L, TORRES M G G, et al. Condyle excursion angle, articular eminence inclination, and temporomandibular joint morphologic relations with disc displacement[J]. J Oral Maxillofac Surg, 2017, 75(5): 938.e1-938.e10. 10.1016/j.joms.2017.01.019 [DOI] [PubMed] [Google Scholar]
- 19.黄东宗, 章巧, 翟孝庭, 等. 偏侧咀嚼与颞下颌关节盘前移位患者移位类型及临床症状的相关性分析[J]. 中华口腔医学杂志, 2021, 56(8): 753-758. 10.3760/cma.j.cn112144-20210119-00029 [DOI] [Google Scholar]; HUANG Dongzong, ZHANG Qiao, ZHAI Xiaoting, et al. Analysis of the correlation between chewing side preference and disc displacement types and clinical symptoms in patients with anterior disc displacement of temporomandibular joint[J]. Chinese Journal of Stomatology, 2021, 56(8): 753-758. (in Chinese) 10.3760/cma.j.cn112144-20210119-00029. 10.3760/cma.j.cn112144-20210119-00029 [DOI] [PubMed] [Google Scholar]
- 20.WU J, HUANG Z, CHEN Y, et al. Temporomandi-bular disorders among medical students in China: prevalence, biological and psychological risk factors[J]. BMC Oral Health, 2021, 21(1): 549. 10.1186/s12903-021-01916-2 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 21.CASANOVA-ROSADO J F, MEDINA-SOLÍS C E, VALLEJOS-SÁNCHEZ A A, et al. Prevalence and associated factors for temporomandibular disorders in a group of Mexican adolescents and youth adults[J]. Clin Oral Investig, 2006, 10(1): 42-49. 10.1007/s00784-005-0021-4 [DOI] [PubMed] [Google Scholar]
- 22.胡欣欣, 朱耀旻, 何柳婷, 等. 109例颞下颌关节紊乱病相关因素分析[J]. 上海口腔医学, 2017, 26(2): 213-216. [PubMed] [Google Scholar]; HU Xinxin, ZHU Yaomin, HE Liuting, et al. Investi-gation of related risk factors of temporomandibular disorders in 109 patients[J]. Shanghai Journal of Stomatology, 2017, 26(2): 213-216. (in Chinese) [PubMed] [Google Scholar]
- 23.贾梦莹, 胡露露, 许颖捷, 等. 新疆医科大学大学生颞下颌关节紊乱病相关因素分析[J]. 上海口腔医学, 2018, 27(5): 482-485. [PubMed] [Google Scholar]; JIA Mengying, HU Lulu, XU Yingjie, et al. Logistic regression analysis of risk factors of temporomandi-bular disorder in undergraduates of Xinjiang Medical University[J]. Shanghai Journal of Stomatology, 2018, 27(5): 482-485. (in Chinese) [PubMed] [Google Scholar]
- 24.WEBER P, CORRêA E C R, BOLZAN G D P, et al. Chewing and swallowing in young women with temporo-mandibular disorder[J]. Codas, 2013, 25(4): 375-380. 10.1590/s2317-17822013005000005 [DOI] [PubMed] [Google Scholar]
- 25.YU Q, LIU Y, CHEN X, et al. Prevalence and associated factors for temporomandibular disorders in Chinese civilian pilots[J]. Int Arch Occup Environ Health, 2015, 88(7): 905-911. 10.1007/s00420-015-1018-1 [DOI] [PubMed] [Google Scholar]
- 26.YALÇIN YELER D, YILMAZ N, KORALTAN M, et al. A survey on the potential relationships between TMD, possible sleep bruxism, unilateral chewing, and occlusal factors in Turkish university students[J]. Cranio, 2017, 35(5): 308-314. 10.1080/08869634.2016.1239851 [DOI] [PubMed] [Google Scholar]
- 27.CHUA E K, TAY D K, TAN B Y, et al. A profile of patients with temporomandibular disorders in Singapore—a descriptive study[J]. Ann Acad Med Singap, 1989, 18(6): 675-680. [PubMed] [Google Scholar]
- 28.RIKMASARI R, YUBILIANA G, MAULINA T. Risk factors of orofacial pain: a population-based study in West Java Province, Indonesia[J]. Open Dent J, 2017, 11: 710-717. 10.2174/1874210601711010710 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 29.WITTER D J, KREULEN C M, MULDER J, et al. Signs and symptoms related to temporomandibular disorders—follow-up of subjects with shortened and complete dental arche[J]. J Dent, 2007, 35(6): 521-527. 10.1016/j.jdent.2007.02.003 [DOI] [PubMed] [Google Scholar]
- 30.TAY D K, SOH G, TAN L S, et al. The prevalence of unilateral mastication in a non-patient population: a pilot study[J]. Ann Acad Med Singap, 1989, 18(5): 556-559. [PubMed] [Google Scholar]
- 31.DIERNBERGER S, BERNHARDT O, SCHWAHN C, et al. Self-reported chewing side preference and its associations with occlusal, temporomandibular and prosthodontic factors: results from the population-based Study of Health in Pomerania (SHIP-0)[J]. J Oral Rehabil, 2008, 35(8): 613-620. 10.1111/j.1365-2842.2007.01790.x [DOI] [PubMed] [Google Scholar]
- 32.MA J, WANG J, HUANG D, et al. A comparative study of condyle position in temporomandibular disorder patients with chewing side preference using cone-beam computed tomography[J]. J Oral Rehabil, 2022, 49(2): 265-271. 10.1111/joor.13293 [DOI] [PubMed] [Google Scholar]
- 33.翟孝庭, 黄东宗, 胡一帆, 等. 伴偏侧咀嚼颞下颌关节骨关节炎患者的临床症状及锥形束CT影像分析[J]. 中华口腔医学杂志, 2022, 57(7): 688-693. 10.3760/cma.j.cn112144-20220430-00226 [DOI] [Google Scholar]; ZHAI Xiaoting, HUANG Dongzong, HU Yifan, et al. Analysis of the characteristic of clinical symptoms and cone-beam CT imaging changes in temporomandi-bular joint osteoarthritis patients with chewing side preference[J]. Chinese Journal of Stomatology, 2022, 57(7): 688-693. (in Chinese) 10.3760/cma.j.cn112144-20220430-00226. 10.3760/cma.j.cn112144-20220430-00226 [DOI] [PubMed] [Google Scholar]
- 34.FELSENTHAL N, ZELZER E. Mechanical regulation of musculoskeletal system development[J]. Development, 2017, 144(23): 4271-4283. 10.1242/dev.151266 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 35.SIEKER J T, KUNZ M, WEIßENBERGER M, et al. Direct bone morphogenetic protein 2 and Indian hedgehog gene transfer for articular cartilage repair using bone marrow coagulates[J]. Osteoarthritis Cartilage, 2015, 23(3): 433-442. 10.1016/j.joca.2014.11.008 [DOI] [PubMed] [Google Scholar]
- 36.TANIYAMA T, MASAOKA T, YAMADA T, et al. Repair of osteochondral defects in a rabbit model using a porous hydroxyapatite collagen composite impregnated with bone morphogenetic protein-2[J]. Artif Organs, 2015, 39(6): 529-535. 10.1111/aor.12409 [DOI] [PubMed] [Google Scholar]
- 37.李晓峰, 罗伟, 孙伟, 等. 偏侧咀嚼对大鼠髁突软骨中骨形成蛋白2表达的影响[J]. 中华老年口腔医学杂志, 2016, 14(1): 10-13. 10.3969/j.issn.1672-2973.2016.01.003 [DOI] [Google Scholar]; LI Xiaofeng, LUO Wei, SUN Wei, et al. Effect of unilateral chewing on the expression of bone morpho-genetic protein 2 in rat condylar cartilage[J]. Chinese Journal of Geriatric Stomatology, 2016, 14(1): 10-13. (in Chinese) 10.3969/j.issn.1672-2973.2016.01.003. 10.3969/j.issn.1672-2973.2016.01.003 [DOI] [Google Scholar]
- 38.FUKUI N, ZHU Y, MALONEY W J, et al. Stimulation of BMP-2 expression by pro-inflammatory cytokines IL-1 and TNF-alpha in normal and osteoarthritic chondrocytes[J]. J Bone Joint Surg Am, 2003, 85(A Suppl 3): 59-66. 10.2106/00004623-200300003-00011 [DOI] [PubMed] [Google Scholar]
- 39.TAKANO-YAMAMOTO T, SOMA S, NAKAGAWA K, et al. Comparison of the effects of hydrostatic compressive force on glycosaminoglycan synthesis and proliferation in rabbit chondrocytes from mandibular condylar cartilage, nasal septum, and spheno-occipital synchondrosis in vitro[J]. Am J Orthod Dentofacial Orthop, 1991, 99(5): 448-455. 10.1016/s0889-5406(05)81578-1 [DOI] [PubMed] [Google Scholar]
- 40.PIRTTINIEMI P, KANTOMAA T, SORSA T. Effect of decreased loading on the metabolic activity of the mandibular condylar cartilage in the rat[J]. Eur J Orthod, 2004, 26(1): 1-5. 10.1093/ejo/26.1.1 [DOI] [PubMed] [Google Scholar]
- 41.FARIAS-NETO A, MARTINS A, SÁNCHEZ-AYALA A, et al. The effect of posterior tooth loss on the expression of type II collagen, IL-1β and VEGF in the condylar cartilage of growing rats[J]. Arch Oral Biol, 2012, 57(11): 1551-1557. 10.1016/j.archoralbio.2012.05.002 [DOI] [PubMed] [Google Scholar]
- 42.MA H, SHU J, ZHENG T, et al. The effect of mandibular movement on temporomandibular joint morphology while eating French fries[J]. Ann Anat, 2022, 244: 151992. 10.1016/j.aanat.2022.151992 [DOI] [PubMed] [Google Scholar]
- 43.SANTANA-MORA U, LÓPEZ-CEDRÚN J, MORA M J, et al. Temporomandibular disorders: the habitual chewing side syndrome[J/OL]. PLoS One, 2013, 8(4): e59980. 10.1371/journal.pone.0059980 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 44.COMMISSO M S, MARTÍNEZ-REINA J, OJEDA J, et al. Finite element analysis of the human mastication cycle[J]. J Mech Behav Biomed Mater, 2015, 41: 23-35. 10.1016/j.jmbbm.2014.09.022 [DOI] [PubMed] [Google Scholar]
- 45.YASHIRO K, IWATA A, TAKADA K, et al. Temporo-mandibular joint articulations on working side during chewing in adult females with cross-bite and mandibular asymmetry[J]. J Oral Rehabil, 2015, 42(3): 163-172. 10.1111/joor.12266 [DOI] [PubMed] [Google Scholar]
- 46.王延秀, 赵海兰, 卢会青, 等. 偏侧咀嚼对大鼠颞下颌关节影响的研究[J]. 泰山医学院学报, 2005, 26(2): 104-107. 10.3969/j.issn.1004-7115.2005.02.009 [DOI] [Google Scholar]; WANG Yanxiu, ZHAO Hailan, LU Huiqing, et al. Changes of temporomandibular joint in unilateral chew in rats[J]. Journal of Taishan Medical College, 2005, 26(2): 104-107. (in Chinese) 10.3969/j.issn.1004-7115.2005.02.009. 10.3969/j.issn.1004-7115.2005.02.009 [DOI] [Google Scholar]
- 47.李晓光, 杨光, 王延秀, 等. 偏侧咀嚼对大鼠颞下颌关节滑膜影响的研究[J]. 口腔医学研究, 2010, 26(2): 194-196. [Google Scholar]; LI Xiaoguang, YANG Guang, WANG Yanxiu, et al. Changes of temporomandibular joint synovial membrane with unilateral chew in rats[J]. Journal of Oral Science Research, 2010, 26(2): 194-196. (in Chinese) [Google Scholar]
- 48.王子娴, 徐龙博, 祁冬, 等. 偏侧咀嚼致咀嚼肌功能紊乱发病机制的研究[J]. 华西口腔医学杂志, 2011, 29(1): 96-99. 10.3969/j.issn.1000-1182.2011.01.023 [DOI] [PubMed] [Google Scholar]; WANG Zixia, XU Longbo, QI Dong, et al. Research about the mechanism in masticatory muscle dysfunc-tional induced by hemimastication[J]. West China Journal of Stomatology, 2011, 29(1): 96-99. (in Chinese) 10.3969/j.issn.1000-1182.2011.01.023. 10.3969/j.issn.1000-1182.2011.01.023 [DOI] [PubMed] [Google Scholar]
- 49.BANI D, BANI T, BERGAMINI M. Morphologic and biochemical changes of the masseter muscles induced by occlusal wear: studies in a rat model[J]. J Dent Res, 1999, 78(11): 1735-1744. 10.1177/00220345990780111101 [DOI] [PubMed] [Google Scholar]
- 50.PANDORF C E, JIANG W H, QIN A X, et al. Calcineurin plays a modulatory role in loading-induced regulation of type Ⅰ myosin heavy chain gene expression in slow skeletal muscle[J]. Am J Physiol Regul Integr Comp Physiol, 2009, 297(4): R1037-R1048. 10.1152/ajpregu.00349.2009 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 51.FUEKI K, SUGIURA T, YOSHIDA E, et al. Association between food mixing ability and electromyographic activity of jaw-closing muscles during chewing of a wax cube[J]. J Oral Rehabil, 2008, 35(5): 345-352. 10.1111/j.1365-2842.2008.01849.x [DOI] [PubMed] [Google Scholar]
- 52.GOMES S G F, CUSTODIO W, FAOT F, et al. Chewing side, bite force symmetry, and occlusal contact area of subjects with different facial vertical patterns[J]. Braz Oral Res, 2011, 25(5): 446-452. 10.1590/s1806-83242011005000014 [DOI] [PubMed] [Google Scholar]
- 53.HEDENBERG-MAGNUSSON B, ERNBERG M, ALSTERGREN P, et al. Pain mediation by prostag-landin E2 and leukotriene B4 in the human masseter muscle[J]. Acta Odontol Scand, 2001, 59(6): 348-355. 10.1080/000163501317153185 [DOI] [PubMed] [Google Scholar]
- 54.ROVIRA-LASTRA B, FLORES-OROZCO E I, AYUSO-MONTERO R, et al. Peripheral, functional and postural asymmetries related to the preferred chewing side in adults with natural dentition[J]. J Oral Rehabil, 2016, 43(4): 279-285. 10.1111/joor.12369 [DOI] [PubMed] [Google Scholar]
- 55.HUTCHINS B, SPEARS R, HINTON R J, et al. Calcitonin gene-related peptide and substance P immunoreactivity in rat trigeminal ganglia and brainstem following adjuvant-induced inflammation of the temporomandibular joint[J]. Arch Oral Biol, 2000, 45(4): 335-345. 10.1016/s0003-9969(99)00129-6 [DOI] [PubMed] [Google Scholar]
- 56.何玉玲, 方秀斌, 郑晓辉, 等. 偏侧咀嚼大鼠三叉神经节内PPTA mRNA、CGRP mRNA及其相应蛋白的表达变化[J]. 解剖科学进展, 2004, 10(1): 5-8. [Google Scholar]; HE Yuling, FANG Xiubin, ZHENG Xiaohui, et al. The expression of PPTA mRNA, CGRP mRNA and their proteins in trigeminal ganglia of rats with unilateral chewing[J]. Progress of Anatomical Sciences, 2004, 10(1): 5-8. (in Chinese) [Google Scholar]
- 57.李晓光, 高慎强, 孙惠清, 等. 单侧咀嚼大鼠颞颌关节内P物质表达[J]. 重庆医学, 2007, 36(9): 826-828. 10.3969/j.issn.1671-8348.2007.09.020 [DOI] [Google Scholar]; LI Xiaoguang, GAO Shenqiang, SUN Huiqing, et al. Changes of expression of substance P of unilateral chew in rat[J]. Chongqing Medicine, 2007, 36(9): 826-828. (in Chinese) 10.3969/j.issn.1671-8348.2007.09.020. 10.3969/j.issn.1671-8348.2007.09.020 [DOI] [Google Scholar]