Abstract
Lens retrodots are round, oblong, or oval features in the perinuclear zone of the adult lens after the fifth decade of life and associated with cataract. Retrodots were found in 47 out of 121 eyes with cataract (39%) in the present series. They show birefringence in vivo and in vitro, and chemical studies suggest that they contain calcium oxalate. It is proposed that ascorbic acid, which is abundant in the normal human lens, is the most likely source for this oxalate. Ascorbic acid is thought to have a protective role against oxidative stress in the lens and other parts of the eye, and its level is known to be reduced in senile cataract. The presence of the retrodots may identify lenses which have been exposed to oxidative stress and are less capable of resisting oxidative damage.
Full text
PDFImages in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bensch K. G., Fleming J. E., Lohmann W. The role of ascorbic acid in senile cataract. Proc Natl Acad Sci U S A. 1985 Nov;82(21):7193–7196. doi: 10.1073/pnas.82.21.7193. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bron A. J., Habgood J. O. Morgagnian cataract. Trans Ophthalmol Soc U K. 1976 Jul;96(2):265–277. [PubMed] [Google Scholar]
- Bron A. J., Matsuda K. Specular microscopy of the human lens. Trans Ophthalmol Soc U K. 1981;101(1):163–169. [PubMed] [Google Scholar]
- Brown N. Visibility of transparent objects in the eye by retroillumination. Br J Ophthalmol. 1971 Aug;55(8):517–524. doi: 10.1136/bjo.55.8.517. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Brownlee M., Cerami A. The biochemistry of the complications of diabetes mellitus. Annu Rev Biochem. 1981;50:385–432. doi: 10.1146/annurev.bi.50.070181.002125. [DOI] [PubMed] [Google Scholar]
- Bullock J. D., Albert D. M., Skinner H. C., Miller W. H., Galla J. H. Calcium oxalate retinopathy associated with generalized oxalosis: x-ray diffraction and electron microscopic studies of crystal deposits. Invest Ophthalmol. 1974 Apr;13(4):256–265. [PubMed] [Google Scholar]
- COGAN D. G., KUWABARA T., SILBERT J., KERN H., McMURRAY V., HURLBUT C. Calcium oxalate and calcium phosphate crystals in detached retinas. AMA Arch Ophthalmol. 1958 Sep;60(3):366–371. doi: 10.1001/archopht.1958.00940080382004. [DOI] [PubMed] [Google Scholar]
- Consul B. N., Nagpal P. N. Quantitative study of the variations in the levels of glutathione and ascorbic acid in human lenses with senile cataract. Eye Ear Nose Throat Mon. 1968 Jul;47(7):336–339. [PubMed] [Google Scholar]
- DISCHE Z., ZIL H. Studies on the oxidation of cysteine to cystine in lens proteins during cataract formation. Am J Ophthalmol. 1951 May;34(5 2):104–113. doi: 10.1016/0002-9394(51)90013-x. [DOI] [PubMed] [Google Scholar]
- Dark A. J., Streeten B. W. Ultrastructural study of cataract in myotonia dystrophica. Am J Ophthalmol. 1977 Nov;84(5):666–674. doi: 10.1016/0002-9394(77)90382-8. [DOI] [PubMed] [Google Scholar]
- FENTON R. H., DEBUEN S. PHACOLYTIC GLAUCOMA AGGRAVATED BY HYPHEMA THAT FOLLOWED IRIDECTOMY. Arch Ophthalmol. 1964 Aug;72:227–230. doi: 10.1001/archopht.1964.00970020227015. [DOI] [PubMed] [Google Scholar]
- FINCHAM E. F. Photographic recording of opacities of the ocular media. Br J Ophthalmol. 1955 Feb;39(2):85–89. doi: 10.1136/bjo.39.2.85. [DOI] [PMC free article] [PubMed] [Google Scholar]
- FLOCKS M., LITTWIN C. S., ZIMMERMAN L. E. Phacolytic glaucoma; a clinicopathologic study of one hundred thirty-eight cases of glaucoma associated with hypermature cataract. AMA Arch Ophthalmol. 1955 Jul;54(1):37–45. [PubMed] [Google Scholar]
- FRIEDMAN E. A., GREENBERG J. B., MERRILL J. P., DAMMIN G. J. Consequences of ethylene glycol poisoning. Report of four cases and review of the literature. Am J Med. 1962 Jun;32:891–902. doi: 10.1016/0002-9343(62)90035-9. [DOI] [PubMed] [Google Scholar]
- Fukui H. N., Epstein D. L., Kinoshita J. H. Ascorbic acid effects on lens 86 rubidium transport. Exp Eye Res. 1973 Feb;15(2):249–253. doi: 10.1016/0014-4835(73)90126-7. [DOI] [PubMed] [Google Scholar]
- Goldberg M. F. Cytological diagnosis of phacolytic glaucoma utilizing millipore filtration of the aqueous. Br J Ophthalmol. 1967 Dec;51(12):847–853. doi: 10.1136/bjo.51.12.847. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Harding C. V., Chylack L. T., Jr, Susan S. R., Lo W. K., Bobrowski W. F. Calcium-containing opacities in the human lens. Invest Ophthalmol Vis Sci. 1983 Sep;24(9):1194–1202. [PubMed] [Google Scholar]
- Hayes B. P., Fisher R. F. Ultrastructural appearances of a lens with marked polychromatic lustre: evidence for diffraction as a cause. Br J Ophthalmol. 1984 Dec;68(12):850–858. doi: 10.1136/bjo.68.12.850. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jaeger W., Olbert D., Crusius A., Frey M. Calciumgehalt cataractöser Linsen beim Menschen--Das Verhältnis des Calciumgehaltes zu Form und Ausmass der mit Hilfe der Scheimpflug-Kamera dokumentierten Linsentrübungen. Fortschr Ophthalmol. 1985;82(4):377–381. [PubMed] [Google Scholar]
- KINOSHITA J. H. SELECTED TOPICS IN OPHTHALMIC BIOCHEMISTRY. Arch Ophthalmol. 1964 Oct;72:554–572. doi: 10.1001/archopht.1964.00970020554022. [DOI] [PubMed] [Google Scholar]
- Kawara T., Obazawa H. A new method for retroillumination photography of cataractous lens opacities. Am J Ophthalmol. 1980 Aug;90(2):186–189. doi: 10.1016/s0002-9394(14)74852-4. [DOI] [PubMed] [Google Scholar]
- Li Z. Y., Tso M. O., Wang H. M., Organisciak D. T. Amelioration of photic injury in rat retina by ascorbic acid: a histopathologic study. Invest Ophthalmol Vis Sci. 1985 Nov;26(11):1589–1598. [PubMed] [Google Scholar]
- Organisciak D. T., Wang H. M., Kou A. L. Ascorbate and glutathione levels in the developing normal and dystrophic rat retina: effect of intense light exposure. Curr Eye Res. 1984 Jan;3(1):257–267. doi: 10.3109/02713688408997208. [DOI] [PubMed] [Google Scholar]
- Organisciak D. T., Wang H. M., Li Z. Y., Tso M. O. The protective effect of ascorbate in retinal light damage of rats. Invest Ophthalmol Vis Sci. 1985 Nov;26(11):1580–1588. [PubMed] [Google Scholar]
- PIRIE A. A LIGHT-CALALYSED REACTION IN THE AQUEOUS HUMOR OF THE EYE. Nature. 1965 Jan 30;205:500–501. doi: 10.1038/205500a0. [DOI] [PubMed] [Google Scholar]
- PIRIE A., VAN HEYNINGEN R., BOAG J. W. Changes in lens during the formation of x-ray cataract in rabbits. Biochem J. 1953 Jul;54(4):682–688. doi: 10.1042/bj0540682. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pau H. Die Sphärolithen der Linse. Klin Monbl Augenheilkd. 1984 Mar;184(3):159–162. doi: 10.1055/s-2008-1054431. [DOI] [PubMed] [Google Scholar]
- Pau H., Förster H. Die Doppelbrechung von Kristallen in der Linse (Sphärolithen, "Christbaumschmuck") und im Glaskörper (scintillatio nivea). Graefes Arch Clin Exp Ophthalmol. 1982;219(6):295–297. doi: 10.1007/BF00231418. [DOI] [PubMed] [Google Scholar]
- Pau H., Kaufmann R. Laser microprobe analysis (LAMMA) of spheroliths in human cataract lenses. Arch Ophthalmol. 1983 Dec;101(12):1935–1937. doi: 10.1001/archopht.1983.01040020937022. [DOI] [PubMed] [Google Scholar]
- Pirie A. Formation of N'-formylkynurenine in proteins from lens and other sources by exposure to sunlight. Biochem J. 1971 Nov;125(1):203–208. doi: 10.1042/bj1250203. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pirie A. Pathology in the eye of the naphthalene-fed rabbit. Exp Eye Res. 1968 Jul;7(3):354–357. doi: 10.1016/s0014-4835(68)80049-1. [DOI] [PubMed] [Google Scholar]
- REESE A. B., WADSWORTH J. A. Occurrence of cystoid spaces in the lens. AMA Arch Ophthalmol. 1954 Mar;51(3):315–317. doi: 10.1001/archopht.1954.00920040319005. [DOI] [PubMed] [Google Scholar]
- ROBERTSON W. V. The biochemical role of ascorbic acid in connective tissue. Ann N Y Acad Sci. 1961 Apr 21;92:159–167. doi: 10.1111/j.1749-6632.1961.tb46115.x. [DOI] [PubMed] [Google Scholar]
- Rogers K. M., Augusteyn R. C. Glutathione reductase in normal and cataractous human lenses. Exp Eye Res. 1978 Dec;27(6):719–721. doi: 10.1016/0014-4835(78)90041-6. [DOI] [PubMed] [Google Scholar]
- Tso M. O., Woodford B. J. Effect of photic injury on the retinal tissues. Ophthalmology. 1983 Aug;90(8):952–963. doi: 10.1016/s0161-6420(83)80023-2. [DOI] [PubMed] [Google Scholar]
- Tso M. O., Woodford B. J., Lam K. W. Distribution of ascorbate in normal primate retina and after photic injury: a biochemical, morphological correlated study. Curr Eye Res. 1984 Jan;3(1):181–191. doi: 10.3109/02713688408997200. [DOI] [PubMed] [Google Scholar]
- Van Heyningen R., Pirie A. The metabolism of naphthalene and its toxic effect on the eye. Biochem J. 1967 Mar;102(3):842–852. doi: 10.1042/bj1020842. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Varma S. D., Kumar S., Richards R. D. Light-induced damage to ocular lens cation pump: prevention by vitamin C. Proc Natl Acad Sci U S A. 1979 Jul;76(7):3504–3506. doi: 10.1073/pnas.76.7.3504. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Woodford B. J., Tso M. O., Lam K. W. Reduced and oxidized ascorbates in guinea pig retina under normal and light-exposed conditions. Invest Ophthalmol Vis Sci. 1983 Jul;24(7):862–867. [PubMed] [Google Scholar]
- ZIMMERMAN L. E., JOHNSON F. B. Calcium oxalate crystals within ocular tissues; a clinicopathologic and histochemical study. AMA Arch Ophthalmol. 1958 Sep;60(3):372–383. doi: 10.1001/archopht.1958.00940080388005. [DOI] [PubMed] [Google Scholar]
- Zigman S., Griess G., Yulo T., Schultz J. Ocular protein alterations by near UV light. Exp Eye Res. 1973 Mar;15(3):255–264. doi: 10.1016/0014-4835(73)90145-0. [DOI] [PubMed] [Google Scholar]