Abstract
罕见病有7 000余种,全球罕见病患者总数约4.75亿,其中儿童占2/3。因每种罕见病的患病人群基数小,制药企业研发资金有限,仍有几千种罕见病还没有获得批准的治疗药物。目前,95%的罕见病患者尚无药可治,因此能够治疗罕见病的药物被称为孤儿药。为引导制药公司加大孤儿药开发力度,多国制定了罕见病药物法案,推进简化孤儿药专利申请程序,积极为孤儿药研发提供科学建议和指导。儿童是罕见病的高发群体,该文将围绕儿童罕见病药物治疗新进展进行综述。
Keywords: 罕见病, 孤儿药生产, 酶替代疗法, 小分子药物, 基因治疗, 儿童
Abstract
There are more than 7 000 rare diseases and approximately 475 million individuals with rare diseases globally, with children accounting for two-thirds of this population. Due to a relatively small patient population and limited financial resources allocated for drug research and development in pharmaceutical enterprises, there are still no drugs approved for the treatment of several thousands of these rare diseases. At present, there are no drugs for 95% of the patients with rare diseases, and consequently, the therapeutic drugs for rare diseases have been designated as orphan drugs. In order to guide pharmaceutical enterprises to strengthen the research and development of orphan drugs, various nations have enacted the acts for rare disease drugs, promoted and simplified the patent application process for orphan drugs, and provided scientific recommendations and guidance for the research and development of orphan drugs. Since there is a relatively high incidence rate of rare diseases in children, this article reviews the latest research on pharmacotherapy for children with rare diseases.
Keywords: Rare disease, Orphan drug production, Enzyme replacement therapy, Small-molecule drug, Gene therapy, Child
1983年,美国《孤儿药物法》首次提出罕见病的概念[1]。中国将罕见病定义为新生儿发病率小于1∶10 000或患病率小于1∶10 000,或总的患病人数小于14万的疾病[2]。截至2022年,美国食品和药物管理局(Food and Drug Administration,FDA)推动的“孤儿产品临床试验资助计划”已使80多种孤儿药获得FDA批准[3]。目前,我国孤儿药的本土化生产也日益受到重视[4]。与成人相比,儿童罕见病更常见,且危害更大,常危及生命。本文围绕儿童罕见病药物治疗新进展进行综述,为我国儿童罕见病研究与治疗提供参考。我们将按酶替代疗法(enzyme replacement therapy,ERT)和重组因子、小分子药物、单克隆抗体、基因疗法、超适应证药物等5类罕见病药进行逐一综述。
1. ERT和重组因子
ERT是一种通过重组DNA技术合成重组酶,将其递送至体内替代缺失或功能不全的酶的方法[5],常用于治疗溶酶体贮积症(lysosomal storage diseases,LSDs)。
溶酶体是一种负责降解细胞内各种内外源性物质的细胞器,编码各种溶酶体酶的基因的缺陷会引起LSDs。LSDs是50余种溶酶体代谢病的统称,总患病率为1∶7 700[6]。LSDs主要为常染色体隐性(autosomal recessive,AR)遗传模式致病,以黏多糖贮积症(mucopolysaccharidoses,MPS)较常见,MPS包括MPS Ⅰ、MPS Ⅱ、MPS ⅢA等11型[7]。MPS主要呈AR遗传,而MPS Ⅱ和Fabry病为X连锁隐性遗传,Danon病为X连锁显性遗传。
LSDs中,溶酶体酶的缺失主要导致糖胺聚糖的堆积,对骨骼、结缔组织、神经系统等器官系统造成损害。MPS Ⅰ由编码α-L-艾杜糖醛酸酶的IDUA基因突变引起[8];MPSⅡ由编码艾杜糖醛酸-2-硫酸酯酶的IDS基因突变引起[9];MPS ⅢA由SGSH基因突变使heparan-N-sulfamidase缺乏引起[10];MPS ⅣA由GALNS基因突变导致N-乙酰半乳糖胺-6-硫酸酯酶缺乏引起[11];MPS Ⅶ由编码β-葡糖苷酸酶的GUSB基因突变引起[12];Fabry病由GLA基因突变引起[13];尼曼-皮克病由编码酸性鞘磷脂酶的SMPD1基因突变引起[14];戈谢病由GBA1基因突变引起,使得β-葡糖脑苷脂酶的活性降低[15]。ERT可有效增加上述疾病酶浓度(表1),早期获得诊断并及时干预可有效延缓此类患儿的疾病进程。
表1.
酶替代疗法治疗溶酶体贮积症总结
疾病 | 致病基因 | 药物 | 发表年份 |
---|---|---|---|
MPS Ⅰ | IDUA | 拉罗尼酶 (Laronidase) [8] | 2019 |
MPS Ⅱ | IDS | Pabinafusp alfa [16] | 2021 |
Intrathecal idursulfase [9] | 2022 | ||
阿糖苷酶α (Alglucosidase alfa) [17] | 2021 | ||
MPS ⅢA | SGSH | Recombinant human heparan-N-sulfatase [10] | 2021 |
MPS ⅣA | GALNS | Elosulfase alfa [11] | 2022 |
MPS Ⅶ | GUSB | UX003 (Vestronidase alfa) [12] | 2019 |
戈谢病 | GBA1 | Velaglucerase alfa [15] | 2021 |
Fabry病 | GLA | JR-051 [13] | 2020 |
Agalsidase beta [5] | 2020 | ||
尼曼-皮克病 | SMPD1 | Olipudase alfa [14] | 2021 |
Pabinafusp alfa可穿过血脑屏障,治疗MPS Ⅱ[16]。但是,大多数ERT药物仍难以穿过血脑屏障,且存在静脉注射产生抗药物抗体的风险[7]。
2. 小分子药物治疗
小分子药物的优势是能够到达包括中枢神经系统在内的所有组织,并且成本低、可口服,易于制作[18],占上市罕见病药物的80%~90%[19]。
2.1. 囊性纤维化
囊性纤维化(cystic fibrosis,CF,MIM:219700)是一种AR遗传的进行性多系统疾病,患病率为1∶6 000~1∶3 000,新生儿期即可起病[20]。CF因囊性纤维化跨膜传导调节因子(cystic fibrosis transmembrane conductance regulator,CFTR)的门控突变导致CFTR蛋白异常,引起细胞膜对氯化物的运输障碍[21],最常见的门控突变体是G551D[22]。
第一个被用于治疗CF的是CFTR增效剂Ivacaftor,该药主要通过增加G551D-CFTR氯离子通道开放以增强CFTR蛋白功能[23]。2022年,Liu等[24]研发出一种新型CFTR增效剂CP-628006,这种小分子药有更高的单个G551D-CFTR激活效率和更持久的F508del-CFTR激活效应,与Ivacaftor联合使用疗效更强。
2.2. Hutchinson-Gilford早老症
Hutchinson-Gilford早老症(Hutchinson-Gilford progeria syndrome,HGPS,MIM:176670)呈常染色体显性(autosomal dominant,AD)遗传,患病率为1∶4 000 000,致病基因是LMNA基因[25]。HGPS患者多于1岁前发病,面容酷似老人,寿命一般不超过14岁[25]。LMNA基因编码核纤层蛋白A、C,纤层蛋白A可与早老蛋白结合。基因突变产生的早老蛋白一方面在核膜被法尼基化和甲基化产生堆积[26],另一方面使微管与细胞核过度耦联阻止肌动蛋白移动[27],这些改变共同造成细胞核结构和功能的损害。
2020年11月,法尼基转移酶抑制剂洛那法尼(ZokinvyTM)获得FDA治疗HGPS的批准[28],通过阻止早老蛋白法尼基化发挥作用[29]。化合物UCM-13207使早老蛋白从核膜分离以降低其浓度,并有效减少细胞DNA损伤以恢复细胞功能[30]。结合抑制剂JH4通过阻止早老蛋白-纤层蛋白A结合以改善核变性[31]。Remodelin是N-乙酰转移酶-10的新型强效选择性抑制剂,通过抑制N-乙酰转移酶-10介导微管重组而补救细胞核形状的破坏[32],可延长HGPS患儿的寿命[33]。
3. 单克隆抗体治疗
治疗性单克隆抗体(monoclonal antibody,mAb)是一种由B淋巴细胞产生的能高度特异识别抗原的抗体类药物,包括抗体片段、Fc融合蛋白及抗体-药物耦合物,通过递送细胞毒素、募集细胞和蛋白质及调节信号通路等发挥作用[34]。
自身免疫性多内分泌腺病综合征I型伴或不伴可逆性干骺端发育不良(autoimmune polyendocrine syndrome, type I, with or without reversible metaphyseal dysplasia, APS1, MIM: 240300)呈AD或AR遗传,患病率为1∶1 000 000~9∶1 000 000[35]。APS1表现为慢性皮肤黏膜念珠菌病、甲状旁腺功能减退症和肾上腺皮质功能衰竭三联征,常常导致患儿的过早死亡[36]。
APS1的致病基因为AIRE基因,表达于胸腺CD45-MHC-Ⅱ+细胞[35]。AIRE基因突变导致自体反应性T细胞逃避免疫细胞的阴性选择,引起多系统自身免疫[37]。一项研究发现抗CD45RC mAb可抑制T细胞毒效应和恢复Treg细胞,有效延缓APS1进程,揭示了CD45RC mAb药物在APS1预防性治疗中的重要性[38]。
4. 基因疗法
基因疗法以替换、转入或编辑疾病基因等方式操纵遗传物质[39],成为近年来孤儿药的重点研究方向之一[40]。另外,二代测序在临床遗传诊断中广泛应用,CRISPR技术迅猛发展,也极大地推动了基因治疗在孤儿药研发领域中的应用。CRISPR是原核生物基因组内的一段重复序列,通过Cas酶特异性切割和修复目标DNA序列,实现目标基因敲除和碱基编辑,是一种更为经济、迅速且简单的基因编辑工具[41]。
基因治疗按治疗途径的不同可分为体内治疗和体外治疗2种[42]。体内治疗指通过局部注射携带目的基因的病毒载体进行基因编辑,病毒载体多用非整合型病毒[如腺相关病毒(adeno-associated virus,AAV)][43]。体外治疗利用自体细胞或同种异体细胞在体外转入目的基因并进行修饰,也称为细胞疗法[44]。
4.1. 基因治疗
4.1.1. Leber先天性黑蒙
Leber先天性黑蒙(Leber congenital amaurosis,LCA)是基因治疗最早成功的案例[37]。LCA是严重的遗传性视网膜营养不良症,患病率为1∶81 000~1∶30 000,多于儿童早期发病[45]。LCA已知至少有28种基因突变参与致病,遗传病因占全部病例的75%[46]。RPE65基因是LCA的重要致病基因,RPE65基因编码类视黄醇异构酶,负责维生素A在类视黄醇循环中的代谢[45]。
Voretigene neparvovec是AAV2载体相关的基因治疗药物[46],于2017年被FDA正式批准用于RPE65双等位基因突变引起的LCA[47]。AAV2载体可将有编码类视黄醇异构水解酶功能的RPE65基因导入LCA患者体内,该药物通常通过玻璃体切割术注入视网膜间隙[47]。
4.1.2. 杜氏肌营养不良
杜氏肌营养不良(Duchenne muscular dystrophy,DMD,MIM:310200)是一种X连锁肌肉萎缩性疾病,在男性新生儿中的患病率为1∶5 000[43]。DMD通常于3岁前发病,出现进行性肌无力和肌疲劳,最终发展为呼吸衰竭和心肌病,常于20岁前死亡[48]。该病由DMD基因突变引起其编码的抗肌萎缩蛋白(dystrophin,Dys)缺乏[44],Dys是抗肌萎缩蛋白结合蛋白复合物的关键成分,对维持肌纤维刚度至关重要[49]。
Gange等[47]设计了一种微抗肌萎缩蛋白转基因(AAVrh74.MHCK7.micro-dystrophin),该药物以AAV作为载体进行基因转移,可有效恢复Dys的表达。另一项研究设计出一种经密码子优化的合成转基因,编码微型化的Dys相关蛋白utrophin(μUtro),μUtro具有与Dys相似的结构和功能[50]。该研究对Dys缺陷的新生mdx小鼠应用AAV-μUtro,发现DMD小鼠模型肌坏死、再生组织和生化标志物的异常在成年之前得到完全控制[51]。
随着AAV基因治疗向人体临床试验的逐步推进,其在转导效率、组织趋向性及免疫原性等方面的要求也不断增加,这推动了更为安全、高效的AAV载体的研发。
4.2. 细胞治疗
Wiskott-Aldrich综合征(Wiskott-Aldrich syndrome,WAS,MIM:301000)是一种X连锁免疫缺陷病,由WAS基因失功能突变引起,患病率为1∶100 000[52]。WAS表现为免疫缺陷、血小板减少和湿疹三联征,常在10岁之前死亡[52]。WAS基因编码WAS蛋白,对细胞信号转导和免疫突触形成至关重要 [53]。
WAS的一线治疗是同种异体造血干细胞移植[53],但常由于供体不匹配使得患儿病死率增加[54],移植物抗宿主病对此类疾病的治疗效果有着巨大影响[55-56]。
一项研究首次开发了一种基于CRISPR/Cas9基因编辑平台的造血干细胞和祖细胞药物,在患者来源的造血干细胞和祖细胞中敲入治疗性WAS cDNA及其内源性翻译起始密码子,在60%的患者中得到满意效果[54]。
4.3. 寡核苷酸治疗
寡核苷酸治疗通过设计特定寡核苷酸序列,以沃森-克里克碱基配对原则为基础,下调或修饰致病基因、阻断RNA翻译相关蛋白等发挥作用[57]。
寡核苷酸治疗可分为2种药物,包括反义寡核苷酸(antisense oligonucleotide,ASO)和小干扰RNA。ASO又可分为核糖核酸酶H1(ribonuclease H1,RNase H1)依赖性ASO和gapmer[58]。ASO是一种人工合成的单链小分子核酸聚合物,可激活RNase H1裂解目标mRNA以改变mRNA的表达[59]。RNase H1是一种内源性核酸内切酶,结合同源性mRNA后在ASO结合位点切割靶mRNA调节基因表达[58]。小干扰RNA的作用机制是引导沉默复合物中的Argonaute 2蛋白结合目标转录物,引起基因沉默[58]。
4.3.1. DMD
2016年9月,Eteplirsen(Exondys51)获得FDA的加速批准,是第一种获批治疗DMD的磷酸二酰胺吗啡寡聚物,其机制与51号外显子的跳跃有关[60]。Eteplirsen可操纵DMD的Dys转录本剪接并使阅读框得到恢复[61]。一项观察性研究证明了Eteplirsen对无法行走或在治疗过程中失去行走能力的患儿的潜在益处[60]。
Golodirsen(SRP-4053)是一种新型磷酸二酰胺吗啡寡聚物,于2019年被FDA批准,与Dys的前体mRNA互补并恢复该mRNA的阅读框,与53号外显子的跳跃有关,其安全性、药代动力学和生物活性均得到了验证[62]。
4.3.2. Batten病
Batten病也称神经元蜡样质脂褐质沉积症,是一组包含13种神经退行性疾病的遗传性疾病,是儿童痴呆症最常见的形式[63]。
对于该疾病的特定基因突变,研究者为一位神经元蜡样质脂褐质沉积症7型儿童制定了为期一年的“N-of-1”个性化治疗方案[64]。研究团队设计出了一种ASO药物——Milasen,该药物靶向患儿6号外显子剪接到6号内含子的隐秘剪接位点及其附近剪接增强剂[64]。经过Milasen治疗,患儿癫痫发作频率和持续时间都下降至少50%。该药物的使用为孤儿药的个性化治疗提供了可参考依据,也为个性化基因组医学提供了范例。
5. “超适应证”使用治疗药物和老药新用
“老药新用”指发现了某已知药品的新性质或功能并用于新领域。再利用药物的安全性和质量在先前研究和长期使用中均已得到验证,其不良反应发生的风险相对较低,可更快开始临床试验,对于罕见病的治疗更加有利。
5.1. 普萘洛尔治疗Lafora肌阵挛性癫痫
Lafora肌阵挛性癫痫(Lafora disease,LD,MIM:254780)是一种致命的神经退行性疾病,患病率小于1∶1 000 000[65],特征是患儿全身癫痫发作和快速进展为植物状态。LD由EPM2A或EPM2B基因突变引起[66]。
普萘洛尔最初用于高血压、特发性震颤和焦虑。证据表明,普萘洛尔抗血管生成、促凋亡和抗炎特性也可应用在不同的罕见病中[67-68]。一项动物实验研究表明,普萘洛尔作为炎症调节剂,可减少星形胶质细胞和小胶质细胞炎症化,对LD早期治疗有潜在效果[66]。
5.2. 除草剂治疗尿黑酸尿症
尿黑酸尿症(alkaptonuria,AKU,MIM:203500)呈AR遗传,患病率为1∶250 000[69],由编码尿黑酸1,2双加氧酶的HGD基因突变引起,婴儿期即可起病[70]。该病主要为酪氨酸代谢障碍引起,酪氨酸参与儿茶酚胺神经递质的生物合成,对神经的兴奋和抑制起重要作用[71]。
尼替西农最初被作为除草剂开发,后来被发现可以用于抑制尿黑酸堆积并延缓AKU的疾病进展。一项研究报告了一组AKU患者在尼替西农治疗试验前后24 h的变化,发现用药后患者尿液中神经代谢物去甲肾上腺素减少,肾上腺素、3-甲氧酪胺增多,证明尼替西农可使AKU患者的神经递质代谢得到改善[69]。
6. 小结
综上,在过去的十年中,生物制药行业在为罕见病群体提供新疗法方面取得了一定进展。但孤儿药的开发仍然受有限的罕见病人数限制,也受高昂的研发和治疗费用掣肘。为加快开发罕见病新疗法的进程,未来需要投入更多关注和出台更好的激励措施。
利益冲突声明
所有作者均声明不存在利益冲突。
参 考 文 献
- 1. 97th United States Congress . Public law 97-414 an act to amend the Federal Food, Drug, and Cosmetic Act to facilitate the development of drugs for rare diseases and conditions, and for other purposes[Z]. Washington: Senate and House of Representatives of the United States of America in Congress assembled, 1983. [Google Scholar]
- 2. 尹薇. 中国罕见病定义研究报告发布: 患病人数小于14万为罕见病[EB/OL]. (2021-09-12)[2023-03-15]. https://baijiahao.baidu.com/s?id=1710682019865110353&wfr=spider&for=pc.
- 3. Rubin R. New funding for research into rare diseases treatments[J]. JAMA, 2022, 328(19): 1898-1899. DOI: 10.1001/jama.2022.18479. [DOI] [PubMed] [Google Scholar]
- 4. 陈晨, 韩晓红. 中国罕见病药物临床试验10年现状分析: 基于《第一批罕见病目录》[J]. 协和医学杂志, 2022, 13(6): 1028-1035. DOI: 10.12290/xhyxzz.2022-0010. [DOI] [Google Scholar]
- 5. Lachmann RH. Treating lysosomal storage disorders: what have we learnt?[J]. J Inherit Metab Dis, 2020, 43(1): 125-132. DOI: 10.1002/jimd.12131. [DOI] [PubMed] [Google Scholar]
- 6. Kleppin S. Enzyme replacement therapy for lysosomal storage diseases[J]. J Infus Nurs, 2020, 43(5): 243-245. DOI: 10.1097/NAN.0000000000000390. [DOI] [PubMed] [Google Scholar]
- 7. Parini R, Deodato F. Intravenous enzyme replacement therapy in mucopolysaccharidoses: clinical effectiveness and limitations[J]. Int J Mol Sci, 2020, 21(8): 2975. DOI: 10.3390/ijms21082975. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 8. Jameson E, Jones S, Remmington T. Enzyme replacement therapy with laronidase (Aldurazyme®) for treating mucopolysaccharidosis type I[J]. Cochrane Database Syst Rev, 2019, 6(6): CD009354. DOI: 10.1002/14651858.CD009354.pub5. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 9. Muenzer J, Vijayaraghavan S, Stein M, et al. Long-term open-label phase I/II extension study of intrathecal idursulfase-IT in the treatment of neuronopathic mucopolysaccharidosis II[J]. Genet Med, 2022, 24(7): 1437-1448. DOI: 10.1016/j.gim.2022.04.002. [DOI] [PubMed] [Google Scholar]
- 10. Wijburg FA, Heap F, Rust S, et al. Long-term safety and clinical outcomes of intrathecal heparan-N-sulfatase in patients with Sanfilippo syndrome type A[J]. Mol Genet Metab, 2021, 134(4): 317-322. DOI: 10.1016/j.ymgme.2021.09.003. [DOI] [PubMed] [Google Scholar]
- 11. Lee CL, Chuang CK, Chiu HC, et al. Clinical utility of elosulfase alfa in the treatment of Morquio A syndrome[J]. Drug Des Devel Ther, 2022, 16: 143-154. DOI: 10.2147/DDDT.S219433. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 12. Dubot P, Sabourdy F, Plat G, et al. First report of a patient with MPS type VII, due to novel mutations in GUSB, who underwent enzyme replacement and then hematopoietic stem cell transplantation[J]. Int J Mol Sci, 2019, 20(21): 5345. DOI: 10.3390/ijms20215345. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 13. Nakamura K, Kawashima S, Tozawa H, et al. Pharmacokinetics and pharmacodynamics of JR-051, a biosimilar of agalsidase beta, in healthy adults and patients with Fabry disease: phase I and II/III clinical studies[J]. Mol Genet Metab, 2020, 130(3): 215-224. DOI: 10.1016/j.ymgme.2020.04.003. [DOI] [PubMed] [Google Scholar]
- 14. Diaz GA, Jones SA, Scarpa M, et al. One-year results of a clinical trial of olipudase alfa enzyme replacement therapy in pediatric patients with acid sphingomyelinase deficiency[J]. Genet Med, 2021, 23(8): 1543-1550. DOI: 10.1038/s41436-021-01156-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 15. Sagara R, Ishigaki M, Otsuka M, et al. Long-term safety and effectiveness of velaglucerase alfa in Gaucher disease: 6-year interim analysis of a post-marketing surveillance in Japan[J]. Orphanet J Rare Dis, 2021, 16(1): 502. DOI: 10.1186/s13023-021-02119-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 16. Okuyama T, Eto Y, Sakai N, et al. A phase 2/3 trial of pabinafusp alfa, IDS fused with anti-human transferrin receptor antibody, targeting neurodegeneration in MPS-II[J]. Mol Ther, 2021, 29(2): 671-679. DOI: 10.1016/j.ymthe.2020.09.039. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 17. Diaz-Manera J, Kishnani PS, Kushlaf H, et al. Safety and efficacy of avalglucosidase alfa versus alglucosidase alfa in patients with late-onset Pompe disease (COMET): a phase 3, randomised, multicentre trial[J]. Lancet Neurol, 2021, 20(12): 1012-1026. DOI: 10.1016/S1474-4422(21)00241-6. [DOI] [PubMed] [Google Scholar]
- 18. Schmidt D, Thompson C. Case studies in rare disease small molecule discovery and development[J]. Bioorg Med Chem Lett, 2020, 30(21): 127462. DOI: 10.1016/j.bmcl.2020.127462. [DOI] [PubMed] [Google Scholar]
- 19. Tambuyzer E, Vandendriessche B, Austin CP, et al. Therapies for rare diseases: therapeutic modalities, progress and challenges ahead[J]. Nat Rev Drug Discov, 2020, 19(2): 93-111. DOI: 10.1038/s41573-019-0049-9. [DOI] [PubMed] [Google Scholar]
- 20. Scotet V, Gutierrez H, Farrell PM. Newborn screening for CF across the globe—where is it worthwhile?[J]. Int J Neonatal Screen, 2020, 6(1): 18. DOI: 10.3390/ijns6010018. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 21. Mall MA, Mayer-Hamblett N, Rowe SM. Cystic fibrosis: emergence of highly effective targeted therapeutics and potential clinical implications[J]. Am J Respir Crit Care Med, 2020, 201(10): 1193-1208. DOI: 10.1164/rccm.201910-1943SO. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 22. Bobadilla JL, Macek M, Fine JP, et al. Cystic fibrosis: a worldwide analysis of CFTR mutations—correlation with incidence data and application to screening[J]. Hum Mutat, 2002, 19(6): 575-606. DOI: 10.1002/humu.10041. [DOI] [PubMed] [Google Scholar]
- 23. Yu H, Burton B, Huang CJ, et al. Ivacaftor potentiation of multiple CFTR channels with gating mutations[J]. J Cyst Fibros, 2012, 11(3): 237-245. DOI: 10.1016/j.jcf.2011.12.005. [DOI] [PubMed] [Google Scholar]
- 24. Liu J, Berg AP, Wang Y, et al. A small molecule CFTR potentiator restores ATP-dependent channel gating to the cystic fibrosis mutant G551D-CFTR [J]. Br J Pharmacol, 2022, 179(7): 1319-1337. DOI: 10.1111/bph.15709. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 25. Wang J, Yu Q, Ma X, et al. Hutchinson-Gilford progeria syndrome complicated with stroke: a report of 2 cases and literature review[J]. Front Pediatr, 2022, 10: 1056225. DOI: 10.3389/fped.2022.1056225. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 26. Koblan LW, Erdos MR, Wilson C, et al. In vivo base editing rescues Hutchinson-Gilford progeria syndrome in mice[J]. Nature, 2021, 589(7843): 608-614. DOI: 10.1038/s41586-020-03086-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 27. Chang W, Wang Y, Luxton GWG, et al. Imbalanced nucleocytoskeletal connections create common polarity defects in progeria and physiological aging[J]. Proc Natl Acad Sci U S A, 2019, 116(9): 3578-3583. DOI: 10.1073/pnas.1809683116. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 28. Macicior J, Marcos-Ramiro B, Ortega-Gutiérrez S. Small-molecule therapeutic perspectives for the treatment of progeria[J]. Int J Mol Sci, 2021, 22(13): 7190. DOI: 10.3390/ijms22137190. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 29. Dhillon S. Lonafarnib: first approval[J]. Drugs, 2021, 81(2): 283-289. DOI: 10.1007/s40265-020-01464-z. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 30. Marcos-Ramiro B, Gil-Ordóñez A, Marín-Ramos NI, et al. Isoprenylcysteine carboxylmethyltransferase-based therapy for Hutchinson-Gilford progeria syndrome[J]. ACS Cent Sci, 2021, 7(8): 1300-1310. DOI: 10.1021/acscentsci.0c01698. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 31. Lee SJ, Jung YS, Yoon MH, et al. Interruption of progerin-lamin A/C binding ameliorates Hutchinson-Gilford progeria syndrome phenotype[J]. J Clin Invest, 2016, 126(10): 3879-3893. DOI: 10.1172/JCI84164. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 32. Larrieu D, Britton S, Demir M, et al. Chemical inhibition of NAT10 corrects defects of laminopathic cells[J]. Science, 2014, 344(6183): 527-532. DOI: 10.1126/science.1252651. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 33. Balmus G, Larrieu D, Barros AC, et al. Targeting of NAT10 enhances healthspan in a mouse model of human accelerated aging syndrome[J]. Nat Commun, 2018, 9(1): 1700. DOI: 10.1038/s41467-018-03770-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 34. Zeng R, Glaubitz S, Schmidt J. Antibody therapies in autoimmune inflammatory myopathies: promising treatment options[J]. Neurotherapeutics, 2022, 19(3): 911-921. DOI: 10.1007/s13311-022-01220-z. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 35. Ossart J, Moreau A, Autrusseau E, et al. Breakdown of immune tolerance in AIRE-deficient rats induces a severe autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy-like autoimmune disease[J]. J Immunol, 2018, 201(3): 874-887. DOI: 10.4049/jimmunol.1701318. [DOI] [PubMed] [Google Scholar]
- 36. Chascsa DM, Ferré EMN, Hadjiyannis Y, et al. APECED-associated hepatitis: clinical, biochemical, histological and treatment data from a large, predominantly American cohort[J]. Hepatology, 2021, 73(3): 1088-1104. DOI: 10.1002/hep.31421. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 37. Besnard M, Padonou F, Provin N, et al. AIRE deficiency, from preclinical models to human APECED disease[J]. Dis Model Mech, 2021, 14(2): dmm046359. DOI: 10.1242/dmm.046359. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 38. Besnard M, Sérazin C, Ossart J, et al. Anti-CD45RC antibody immunotherapy prevents and treats experimental autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy syndrome[J]. J Clin Invest, 2022, 132(7): e156507. DOI: 10.1172/JCI156507. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 39. de Souza FHC, Miossi R, de Moraes JCB, et al. Favorable rituximab response in patients with refractory idiopathic inflammatory myopathies[J]. Adv Rheumatol, 2018, 58(1): 31. DOI: 10.1186/s42358-018-0030-z. [DOI] [PubMed] [Google Scholar]
- 40. Dunbar CE, High KA, Joung JK, et al. Gene therapy comes of age[J]. Science, 2018, 359(6372): eaan4672. DOI: 10.1126/science.aan4672. [DOI] [PubMed] [Google Scholar]
- 41. Zhang XE, Liu C, Dai J, et al. Enabling technology and core theory of synthetic biology[J]. Sci China Life Sci, 2023: 1-44. DOI: 10.1007/s11427-022-2214-2. Epub ahead of printDOI: 10.1007/s11427-022-2214-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 42. 桂怡婷, 李强, 桂永浩. 罕见病的基因治疗应用与展望[J]. 临床儿科杂志, 2020, 38(10): 794-798. DOI: 10.3969/j.issn.1000-3606.2020.10.018. [DOI] [Google Scholar]
- 43. Mendell JR, Al-Zaidy SA, Rodino-Klapac LR, et al. Current clinical applications of in vivo gene therapy with AAVs[J]. Mol Ther, 2021, 29(2): 464-488. DOI: 10.1016/j.ymthe.2020.12.007. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 44. Bulcha JT, Wang Y, Ma H, et al. Viral vector platforms within the gene therapy landscape[J]. Signal Transduct Target Ther, 2021, 6(1): 53. DOI: 10.1038/s41392-021-00487-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 45. Huang CH, Yang CM, Yang CH, et al. Leber's congenital amaurosis: current concepts of genotype-phenotype correlations[J]. Genes (Basel), 2021, 12(8): 1261. DOI: 10.3390/genes12081261. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 46. Padhy SK, Takkar B, Narayanan R, et al. Voretigene neparvovec and gene therapy for Leber's congenital amaurosis: review of evidence to date[J]. Appl Clin Genet, 2020, 13: 179-208. DOI: 10.2147/TACG.S230720. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 47. Gange WS, Sisk RA, Besirli CG, et al. Perifoveal chorioretinal atrophy after subretinal voretigene neparvovec-rzyl for RPE65-mediated Leber congenital amaurosis[J]. Ophthalmol Retina, 2022, 6(1): 58-64. DOI: 10.1016/j.oret.2021.03.016. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 48. Tjondrokoesoemo A, Schips TG, Sargent MA, et al. Cathepsin S contributes to the pathogenesis of muscular dystrophy in mice[J]. J Biol Chem, 2016, 291(19): 9920-9928. DOI: 10.1074/jbc.M116.719054. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 49. Asher DR, Thapa K, Dharia SD, et al. Clinical development on the frontier: gene therapy for Duchenne muscular dystrophy[J]. Expert Opin Biol Ther, 2020, 20(3): 263-274. DOI: 10.1080/14712598.2020.1725469. [DOI] [PubMed] [Google Scholar]
- 50. Abreu NJ, Waldrop MA. Overview of gene therapy in spinal muscular atrophy and Duchenne muscular dystrophy[J]. Pediatr Pulmonol, 2021, 56(4): 710-720. DOI: 10.1002/ppul.25055. [DOI] [PubMed] [Google Scholar]
- 51. Song Y, Morales L, Malik AS, et al. Non-immunogenic utrophin gene therapy for the treatment of muscular dystrophy animal models[J]. Nat Med, 2019, 25(10): 1505-1511. DOI: 10.1038/s41591-019-0594-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 52. Malik MA, Masab M. Wiskott-Aldrich Syndrome[M]//StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing. [PubMed] [Google Scholar]
- 53. Magnani A, Semeraro M, Adam F, et al. Long-term safety and efficacy of lentiviral hematopoietic stem/progenitor cell gene therapy for Wiskott-Aldrich syndrome[J]. Nat Med, 2022, 28(1): 71-80. DOI: 10.1038/s41591-021-01641-x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 54. Rai R, Romito M, Rivers E, et al. Targeted gene correction of human hematopoietic stem cells for the treatment of Wiskott-Aldrich syndrome[J]. Nat Commun, 2020, 11(1): 4034. DOI: 10.1038/s41467-020-17626-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 55. Ciftciler R, Goker H, Buyukasık Y, et al. The experience of allogeneic hematopoietic stem cell transplantation in a patient with X-linked adrenoleukodystrophy[J]. Transfus Apher Sci, 2020, 59(1): 102583. DOI: 10.1016/j.transci.2019.06.019. [DOI] [PubMed] [Google Scholar]
- 56. Zhu J, Eichler F, Biffi A, et al. The changing face of adrenoleukodystrophy[J]. Endocr Rev, 2020, 41(4): 577-593. DOI: 10.1210/endrev/bnaa013. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 57. Klim JR, Vance C, Scotter EL. Antisense oligonucleotide therapies for amyotrophic lateral sclerosis: existing and emerging targets[J]. Int J Biochem Cell Biol, 2019, 110: 149-153. DOI: 10.1016/j.biocel.2019.03.009. [DOI] [PubMed] [Google Scholar]
- 58. Aoki Y, Wood MJA. Emerging oligonucleotide therapeutics for rare neuromuscular diseases[J]. J Neuromuscul Dis, 2021, 8(6): 869-884. DOI: 10.3233/JND-200560. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 59. Miller TM, Pestronk A, David W, et al. An antisense oligonucleotide against SOD1 delivered intrathecally for patients with SOD1 familial amyotrophic lateral sclerosis: a phase 1, randomised, first-in-man study[J]. Lancet Neurol, 2013, 12(5): 435-442. DOI: 10.1016/S1474-4422(13)70061-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 60. Alfano LN, Charleston JS, Connolly AM, et al. Long-term treatment with eteplirsen in nonambulatory patients with Duchenne muscular dystrophy[J]. Medicine (Baltimore), 2019, 98(26): e15858. DOI: 10.1097/MD.0000000000015858. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 61. Aartsma-Rus A, Arechavala-Gomeza V. Why dystrophin quantification is key in the eteplirsen saga[J]. Nat Rev Neurol, 2018, 14(8): 454-456. DOI: 10.1038/s41582-018-0033-8. [DOI] [PubMed] [Google Scholar]
- 62. Frank DE, Schnell FJ, Akana C, et al. Increased dystrophin production with golodirsen in patients with Duchenne muscular dystrophy[J]. Neurology, 2020, 94(21): e2270-e2282. DOI: 10.1212/WNL.0000000000009233. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 63. McShane A, Mole SE. Sex bias and omission exists in Batten disease research: systematic review of the use of animal disease models[J]. Biochim Biophys Acta Mol Basis Dis, 2022, 1868(11): 166489. DOI: 10.1016/j.bbadis.2022.166489. [DOI] [PubMed] [Google Scholar]
- 64. Kim J, Hu C, Moufawad El Achkar C, et al. Patient-customized oligonucleotide therapy for a rare genetic disease[J]. N Engl J Med, 2019, 381(17): 1644-1652. DOI: 10.1056/NEJMoa1813279. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 65. Rubio T, Viana R, Moreno-Estellés M, et al. TNF and IL6/Jak2 signaling pathways are the main contributors of the glia-derived neuroinflammation present in Lafora disease, a fatal form of progressive myoclonus epilepsy[J]. Neurobiol Dis, 2023, 176: 105964. DOI: 10.1016/j.nbd.2022.105964. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 66. Mollá B, Heredia M, Sanz P. Modulators of neuroinflammation have a beneficial effect in a Lafora disease mouse model[J]. Mol Neurobiol, 2021, 58(6): 2508-2522. DOI: 10.1007/s12035-021-02285-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 67. Cuesta AM, Gallardo-Vara E, Casado-Vela J, et al. The role of propranolol as a repurposed drug in rare vascular diseases[J]. Int J Mol Sci, 2022, 23(8): 4217. DOI: 10.3390/ijms23084217. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 68. Dimiene I, Bieksiene K, Zaveckiene J, et al. Effective initial treatment of diffuse pulmonary lymphangiomatosis with sirolimus and propranolol: a case report[J]. Medicina (Kaunas), 2021, 57(12): 1308. PMID: 34946253; DOI: 10.3390/medicina57121308. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 69. Davison AS, Norman B, Milan AM, et al. Assessment of the effect of once daily nitisinone therapy on 24-h urinary metadrenalines and 5-hydroxyindole acetic acid excretion in patients with alkaptonuria after 4 weeks of treatment[J]. JIMD Rep, 2018, 41: 1-10. DOI: 10.1007/8904_2017_72. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 70. Zatkova A, Ranganath L, Kadasi L. Alkaptonuria: current perspectives[J]. Appl Clin Genet, 2020, 13: 37-47. DOI: 10.2147/TACG.S186773. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 71. Vilboux T, Kayser M, Introne W, et al. Mutation spectrum of homogentisic acid oxidase (HGD) in alkaptonuria[J]. Hum Mutat, 2009, 30(12): 1611-1619. DOI: 10.1002/humu.21120. [DOI] [PMC free article] [PubMed] [Google Scholar]