Abstract
目的
制备负载低聚倍半硅氧烷-双氯芬酸钠(polyhedral oligomeric silsesquioxane-diclofenac sodium,POSS-DS)纳米颗粒的甲基丙烯酰透明质酸(hyaluronic acid methacrylate,HAMA)水凝胶微球,对其进行表征并探究体内外生物学特性。
方法
以八巯基POSS(sulfhydryl POSS,POSS-SH)为纳米构筑平台,采用 “点击化学”法将聚二乙醇和DS以化学键接枝其上,构建功能化纳米颗粒POSS-DS,并使用核磁共振波谱仪分析成分,透射电镜对形貌进行表征。为实现药物长期缓慢释放,将POSS-DS包载于HAMA中,通过微流控技术制备多功能水凝胶微球,即HAMA@POSS-DS;利用光镜及扫描电镜对其形态进行表征,观察体外降解及药物释放效率,采用细胞计数试剂盒8(cell counting kit 8,CCK-8)试剂盒及活/死染色法检测对软骨细胞增殖的影响;并构建软骨细胞炎症模型后用HAMA@POSS-DS进行处理,通过免疫荧光染色及实时荧光定量PCR检测相关炎症指标,即Ⅱ型胶原、聚集蛋白聚糖(aggrecan,AGG)、基质金属蛋白酶13(matrix metalloproteinase 13,MMP-13)、解聚蛋白样金属蛋白酶5(recombinant A disintegrin and metalloproteinase with thrombospondin 5,Adamts5)、速激肽1(recombinant tachykinin precursor 1,TAC1),以正常培养软骨细胞及未作处理的炎症模型分别作为对照组及空白组,进一步评估其抗炎性能。最后,通过构建大鼠膝关节骨关节炎模型,经X线片及Micro-CT检查,验证HAMA@POSS-DS对骨关节炎的治疗效果。
结果
POSS-DS纳米颗粒总体粒径均一,约100 nm。HAMA@POSS-DS为不透明球体,粒径约100 μm,呈多孔结构;体外降解周期为9周,期间缓释负载的POSS-DS。CCK-8试剂盒及活/死染色法检测显示HAMA@POSS-DS无明显细胞毒性,且其释放的POSS-DS对细胞增殖有促进作用(P<0.05)。软骨细胞抗炎实验中,HAMA@POSS-DS组Ⅱ型胶原mRNA相对表达量高于对照组和空白组、AGG mRNA相对表达量高于空白组、MMP-13、Adamts5以及TAC1 mRNA相对表达量低于空白组,上述差异均有统计学意义(P<0.05)。体内实验显示术后大鼠骨关节炎关节间隙宽度减小,但HAMA@POSS-DS可延缓关节间隙变窄进程,并改善关节周围骨赘增生情况(P<0.05)。
结论
HAMA@POSS-DS可有效改善局部炎症微环境,并显著促进软骨细胞增殖,有利于促进骨关节炎的软骨再生与修复。
Keywords: 低聚倍半硅氧烷, 水凝胶微球, 抗炎, 软骨再生, 骨关节炎
Abstract
Objective
To prepare a novel hyaluronic acid methacrylate (HAMA) hydrogel microspheres loaded polyhedral oligomeric silsesquioxane-diclofenac sodium (POSS-DS) patricles, then investigate its physicochemical characteristics and in vitro and in vivo biological properties.
Methods
Using sulfhydryl POSS (POSS-SH) as a nano-construction platform, polyethylene glycol and DS were chemically linked through the “click chemistry” method to construct functional nanoparticle POSS-DS. The composition was analyzed by nuclear magnetic resonance spectroscopy and the morphology was characterized by transmission electron microscopy. In order to achieve drug sustained release, POSS-DS was encapsulated in HAMA, and hybrid hydrogel microspheres were prepared by microfluidic technology, namely HAMA@POSS-DS. The morphology of the hybrid hydrogel microspheres was characterized by optical microscope and scanning electron microscope. The in vitro degradation and drug release efficiency were observed. Cell counting kit 8 (CCK-8) and live/dead staining were used to detect the effect on chondrocyte proliferation. Moreover, a chondrocyte inflammation model was constructed and cultured with HAMA@POSS-DS. The relevant inflammatory indicators, including collagen type Ⅱ, aggrecan (AGG), matrix metalloproteinase 13 (MMP-13), recombinant A disintegrin and metalloproteinase with thrombospondin 5 (Adamts5), and recombinant tachykinin precursor 1 (TAC1) were detected by immunofluorescence staining and real-time fluorescence quantitative PCR, with normal cultured chondrocytes and the chondrocyte inflammation model without treatment as control group and blank group respectively to further evaluate their anti-inflammatory activity. Finally, by constructing a rat model of knee osteoarthritis, the effectiveness of HAMA@POSS-DS on osteoarthritis was evaluated by X-ray film and Micro-CT examination.
Results
The overall particle size of POSS-DS nanoparticles was uniform with a diameter of about 100 nm. HAMA@POSS-DS hydrogel microspheres were opaque spheres with a diameter of about 100 μm and a spherical porous structure. The degradation period was 9 weeks, during which the loaded POSS-DS nanoparticles were slowly released. CCK-8 and live/dead staining showed no obvious cytotoxicity at HAMA@POSS-DS, and POSS-DS released by HAMA@POSS-DS significantly promoted cell proliferation (P<0.05). In the chondrocyte anti-inflammatory experiment, the relative expression of collagen type Ⅱ mRNA in HAMA@POSS-DS group was significantly higher than that in control group and blank group (P<0.05). The relative expression level of AGG mRNA was significantly higher than that of blank group (P<0.05). The relative expressions of MMP-13, Adamts5, and TAC1 mRNA in HAMA@POSS-DS group were significantly lower than those in blank group (P<0.05). In vivo experiments showed that the joint space width decreased after operation in rats with osteoarthritis, but HAMA@POSS-DS delayed the process of joint space narrowing and significantly improved the periarticular osteophytosis (P<0.05).
Conclusion
HAMA@POSS-DS can effectively regulate the local inflammatory microenvironment and significantly promote chondrocyte proliferation, which is conducive to promoting cartilage regeneration and repair in osteoarthritis.
Keywords: Polyhedral oligomeric silsesquioxane, hydrogel microsphere, anti-inflammation, cartilage regeneration, osteoarthritis
骨关节炎是一种关节软骨退行性病变,严重影响患者生活质量[1]。软骨损伤后多以纤维软骨替代,相比透明软骨,其弹性较差,不利于维持关节功能[2-4]。研究发现双氯芬酸钠(diclofenac sodium,DS)能通过抑制环氧合酶活性,减少前列腺素合成,改善局部炎症微环境,为软骨再生提供有利条件[5-6]。但口服制剂易引发肝、肾功能衰竭等不良反应[7-9],注射制剂注射后滞留时间短、药物利用率低[10-11]。
近年来,大量骨关节炎治疗研究中采用水凝胶等新型生物活性材料作为药物递送载体,但大多局限于改善局部炎症环境[12-17]。而再生医学的关键是损伤组织的原位再生[18-20],因此开发一款兼具药物缓释和抗炎、促软骨修复的药物递送体系,是提高骨关节炎治疗效果的突破口。低聚倍半硅氧烷(polyhedral oligomeric silsesquioxane,POSS)是一类有机/无机纳米杂化材料[21-22],具有促细胞增殖效果[23],其中八巯基POSS (sulfhydryl POSS,POSS-SH)可通过巯基反应接枝各类功能性小分子。为此,本研究选择POSS-SH作为纳米构筑平台,采用“点击化学”法将聚乙二醇(polyethylene glycol,PEG)、DS以化学键接枝,构建POSS杂化分子,命名为POSS-DS;进一步将POSS-DS与甲基丙烯酰透明质酸(hyaluronic acid methacrylate,HAMA)结合,制备多功能水凝胶微球,将其命名为HAMA@POSS-DS;并通过体内外实验探讨其用于骨关节炎治疗的可行性。
1. 材料与方法
1.1. 实验动物及主要试剂、仪器
12周龄雄性SD大鼠30只,体质量350~400 g,购自北京维通利华实验动物技术有限公司。软骨细胞购于上海中乔新舟生物科技有限公司。
POSS-SH、PEG、无水二氯甲烷、碳酸钾、丙烯酰氯二氯甲烷、二羟甲基丙酸、四氢呋喃、透明质酸(hyaluronic acid,HA)、甲基丙烯酸酐(methacrylic acid anhydride,MA)、氢氧化钠、石蜡油、司班80、异丙醇(上述试剂均为分析级;Sigma-Aldrich公司,美国);细胞计数试剂盒8(cell counting kit 8,CCK-8;上海碧云天生物技术有限公司);活/死细胞染色试剂盒(Thermo Fisher公司,美国);兔抗Ⅱ型胶原一抗、FITC标记驴抗兔抗体(Affinity Biosciences公司,美国);Trizol试剂(Invitrogen公司,美国);反转录系统试剂盒、SYBR Premix Ex Tag Kit(Takara公司,日本); ABI 7500 型实时荧光定量PCR系统(Application Biosystems公司,美国);Ⅱ型胶原、聚集蛋白聚糖(aggrecan,AGG)、基质金属蛋白酶13(matrix metalloproteinase 13,MMP-13)、解聚蛋白样金属蛋白酶5(recombinant A disintegrin and metalloproteinase with thrombospondin 5,Adamts5)、速激肽1(recombinant tachykinin precursor 1,TAC1)以及GAPDH的特异性引物 [上海生物工程(上海)股份有限公司]。
Bruker AMX-600核磁共振波谱仪(Bruker公司,瑞士);Lambda35紫外吸收光谱仪(PerkinElmer公司,美国);光镜、荧光显微镜(Olympus公司,日本);Tecnai G2 Spirit Biotwin透射电镜(Thermo Fisher公司,美国);Sirion 200扫描电镜(Frequency Electronics公司,美国);Micro-CT成像系统(SkyScan公司,比利时);透析袋(截留相对分子质量14×103;北京索莱宝科技有限公司);微量注射泵(保定兰格恒流泵有限公司);自制改进微液流动性聚焦装置;小动物X线成像仪(Faxitron公司,美国)。
1.2. POSS-DS制备及表征
1.2.1. POSS-DS制备
① PEG丙烯酸单酯(PEG-acrylate,PEG-Ac)以及DS丙烯酸单酯(DS-acrylate,DS-Ac)制备:于200 mL三口烧瓶中依次加入1.6 g PEG(4 mmol)、60.0 mL无水二氯甲烷以及0.6 g碳酸钾(4 mmol),氮气保护下于冰水浴(0~5℃)条件下持续搅拌10 min。完全溶解后,缓慢滴加10 mL丙烯酰氯二氯甲烷溶液(4 mmol),室温下继续反应24 h。滤去过量碳酸钾,并进行萃取;无水硫酸钠吸收残留水分,旋干,获得PEG-Ac。DS-Ac制备过程与PEG-Ac一致,仅将PEG更换为DS(2 mmol)。
② POSS-DS合成:称取0.726 mg POSS-SH(1.6 mmol)、0.120 g PEG-Ac(0.120 mmol)以及二羟甲基丙酸,加入10 mL四氢呋喃充分溶解。将上述溶液转入50 mL三口烧瓶中,室温下使用365 nm紫外灯照射反应2.5 h。称取0.127 g DS-Ac(0.2 mmol)溶解在5 mL四氢呋喃中,加入至上述溶液中继续紫外灯照射反应6 h。旋蒸去除四氢呋喃,获得POSS-DS。
1.2.2. 观测指标
① 核磁共振波谱仪分析:将POSS-SH、PEG-Ac、DS-Ac以及POSS-DS分别溶解于氘代DMSO中,采用核磁共振波谱仪分析化学组成和结构特征。测试条件:扫描频率600 MHz,以四甲基硅烷为内标。
② 透射电镜观察和能谱分析:将1 μL POSS-DS置于1 mL无水乙醇中,超声使其分散均匀后,取少量平铺于铜网上,待无水乙醇挥发后将样品置于透射电镜,观察纳米颗粒形态及粒径,同时对样品中化学元素进行能谱分析。
1.3. HAMA@POSS-DS制备
1.3.1. HAMA合成
参考本团队既往研究方法[24]合成HAMA。取10 g HA加入500 mL PBS中加热至60℃,机械搅拌至澄清透明、完全熔化;滴加MA 10 mL,于50℃不间断机械搅拌下持续混合反应1 h;采用微量注射泵滴加浓度为5 mol/L氢氧化钠溶液,冰水浴条件下避光反应24 h。反应结束后,在搅拌同时加入PBS溶液稀释停止反应,将溶液转移至透析袋中,室温下透析1周过滤杂质。最后将HAMA水溶液冷冻过夜后进行冻干处理。
1.3.2. HAMA@POSS-DS制备
采用微流控技术,以自制改进微液流动性聚焦装置制备HAMA@POSS-DS。在含4 wt% HAMA的PBS溶液中加入1wt% POSS-DS以及0.5wt%光引发剂,充分搅拌混合至澄清透明,即为水相。于石蜡油中加入5wt%司班80充分混匀,即为油相。通过连接注射器泵的注射器控制水相和油相流量,将得到的单分散乳液滴在紫外光下进行光学交联化。用试管收集光交联后的水凝胶微球,加入适量异丙醇进行振荡洗涤2~3遍,最后以250×g离心10 min,获得HAMA@POSS-DS。见图1。
图 1.

Schematic diagram of the preparation of HAMA@POSS-DS through microfluidic technology
微流控技术制备HAMA@POSS-DS流程图
1.4. HAMA@POSS-DS体外观测
1.4.1. 光镜及扫描电镜观察
将含HAMA@POSS-DS的PBS悬液滴至载玻片,使其均匀分散单层平铺。将载玻片置于光镜明场下观察水凝胶微球形态并测量粒径大小。HAMA@POSS-DS冻干处理后呈粉末状,直接置于扫描电镜下观测表面形态及粒径大小。实验重复3次。
1.4.2. 体外降解及药物释放实验
按照文献 [25] 方法,将10 mg HAMA@POSS-DS置于5 mL PBS(pH7.4,37℃)中,加入浓度为150 U/L的透明质酸酶进行消化,每隔2 d补充1次酶溶液以保持酶活性(模拟体内生理环境)。在每周固定时间点(每周一下午14:00)光镜观察水凝胶微球形态变化,直至完全降解。测定前以250×g离心10 min,吸取上清液用于测定药物浓度,并将残留的水凝胶微球经定性滤纸吸滤后,用电子天平测定残余质量。按照以下公式计算降解率:降解率=(初始质量–残余质量)/初始质量× 100%。绘制降解曲线,分析HAMA@POSS-DS降解情况。
同时,将浓度为20 mmol/L的POSS-DS原液分别稀释至200、150、100、50、10、1 μmol/L以及100、50、10 nmol/L,然后使用紫外分光光度计测定不同浓度POSS-DS的吸光度(A)值,并以浓度为横坐标、A值为纵坐标绘制标准曲线,用于检测上清液中实际药物浓度数值。基于上述离心所得上清液A值,获得上清液中药物浓度,最终得到药物释放曲线。每个时间点观测3个样本。
1.5. HAMA@POSS-DS细胞毒性观测
1.5.1. POSS-DS最佳浓度选择
取软骨细胞制成浓度为0.5×104个/mL的细胞悬液,接种于96孔板,每孔0.5 mL。将细胞分为5组,每组6个复孔;除对照组采用DMEM培养基进行培养外,其余4组分别采用含100、10、1 μmol/L及100 nmol/L POSS-DS的DMEM培养基进行培养。于37℃、5%CO2条件下进行孵育,每2天更换1次培养基。培养12、24、48 h后,每孔加入100 μL 含CCK-8的培养基(90 μL DMEM培养基混合10 μL CCK-8溶液),继续孵育2 h。最后,在450 nm波长下检测A值,以此筛选出促进细胞增殖的POSS-DS最佳浓度进行后续实验。
1.5.2. 细胞培养及观测
① CCK-8观测:同1.5.1方法将软骨细胞接种至96孔板后,随机分为4组,每组6个复孔;除对照组采用DMEM培养基培养外,HAMA组、HAMA@POSS-DS组、POSS-DS组分别采用含HAMA(0.1 mg/mL)及最佳浓度HAMA@POSS-DS、POSS-DS的培养基进行培养。于37℃、5% CO2条件下进行孵育,每2天更换1次培养基。培养后12、24、48 h,同上法测量A值。
② 活/死细胞染色观测:取浓度为5×104个/mL的软骨细胞悬液接种于24孔板,每孔1 mL。同CCK-8观测方法分组培养12、24、48 h后,吸弃培养液,PBS清洗细胞后参照活/死细胞染色试剂盒说明进行染色,室温下孵育40 min后荧光显微镜下观察,其中活细胞呈绿色,死细胞呈红色。每组取3个视野,应用Image J软件进行细胞计数。
1.6. HAMA@POSS-DS抗炎作用观测
1.6.1. 软骨细胞炎症模型构建
取浓度为5×105个/mL的软骨细胞悬液接种于6孔板中,每孔2 mL,同时加入浓度为20 ng/mL的IL-1β。采用DMEM培养基于37℃、5%CO2条件培养0、6、12、24、48 h后,采用实时荧光定量PCR检测Ⅱ型胶原mRNA相对表达量。具体步骤:采用Trizol试剂提取细胞总RNA,分别在260 nm和280 nm处测定A值,测定RNA浓度和纯度。反转录系统试剂盒合成cDNA,用SYBR Premix Ex Tag Kit和ABI 7500 Sequencing Detection System扩增cDNA。引物序列见表1。以GAPDH作为内参,采用2–ΔΔCt法计算Ⅱ型胶原mRNA相对表达量。以不同时间点Ⅱ型胶原mRNA相对表达量为标准验证软骨细胞炎症模型构建成功后,进行后续实验。
表 1.
Primer sequence of real-time fluorescence quantitative PCR genes (5′→3′)
实时荧光定量PCR基因引物序列(5′→3′)
| 基因 Gene |
引物序列 Primer sequence |
| Ⅱ型胶原 Collagen type Ⅱ |
正向 CTCAAGTCGCTGAACAACCA Forward |
| 反向 GTCTCCGCTTCCACTG Reverse |
|
| AGG | 正向GATCTCAGGGGGGG Forward |
| 反向 TCCACAAACGTAATGCCAGA Reverse |
|
| MMP-13 | 正向 AACCAAGATGTGGAGTGCCTGATG Forward |
| 反向 CACATCAGACCAGACCTTGAAGGC Reverse |
|
| Adamts5 | 正向 TCCTCTTGGTGGCTGACTCTTCC Forward |
| 反向 TGGTTCTCGATGCTTGCATGACTG Reverse |
|
| TAC1 | 正向 GCCCTGTTAAAGGCTCTTTATG Forward |
| 反向 CTTCTTTCGTAGTTCTGCATCG Reverse |
|
| GAPDH | 正向 GAAGGTCGGTGTGAACGGATTTG Forward |
| 反向 CATGTAGACCATGTAGTTGAGGTCA Reverse |
1.6.2. 免疫荧光染色观察
参照既往研究[25],取HAMA、HAMA@POSS-DS按照1 mg/mL浓度置于DMEM培养基中自然降解2周,取浸出液用于细胞培养。
取浓度为5×104 个/mL的软骨细胞悬液接种于24孔培养板的盖玻片上,每孔1 mL,随机分为5组。对照组采用单纯DMEM培养基培养,空白组、DS组、HAMA组及HAMA@POSS-DS组的DMEM培养基中加入20 ng/mL IL-1β以模拟炎症环境,后3组进一步对应加入DS、HAMA浸出液和HAMA@POSS-DS浸出液。培养48 h后,将细胞置于4%多聚甲醛固定15 min,0.1%Triton X-100处理10 min,2%牛血清白蛋白孵育45 min;4℃与兔抗Ⅱ型胶原一抗(1∶500)孵育过夜,PBS洗涤3次,与FITC标记的驴抗兔抗体(1∶800)室温下孵育1 h;PBS洗涤3次后,分别用鬼笔环肽(1∶2 000) 和DAPI(1∶1 000)对细胞骨架和细胞核进行染色,荧光显微镜下观察Ⅱ型胶原表达强度。
1.6.3. 实时荧光定量PCR检测
将浓度为5×105个/mL的软骨细胞悬液接种于6孔板中,每孔2 mL,同1.6.2方法随机分5组进行培养,每组3个复孔。培养24 h后,取细胞同1.6.1行实时荧光定量PCR检测Ⅱ型胶原、AGG、MMP-13、Adamts5、 TAC1 mRNA相对表达量。引物序列见表1。
1.7. HAMA@POSS-DS体内观测
1.7.1. 大鼠骨关节炎模型构建及分组
将30只SD大鼠随机分为5组,分别为假手术组、PBS组、DS组、HAMA组和HAMA@POSS-DS组。经面罩异氟烷吸入麻醉、皮下注射美洛昔康(1 mg/kg)和丁丙诺啡缓释剂(1 mg/kg)麻醉后,左后肢备皮、消毒。于左侧股骨远端至胫骨近端平台作一长2~3 cm切口,切开髌腱内侧关节囊并用剪刀张开;将髌腱拨至外侧,钝性分离脂肪垫,显露内侧半月板的半月板胫侧韧带。假手术组不作其他处理,其余4组用显微外科剪切开半月板胫侧韧带并切除内侧半月板前角,然后依次缝合内侧关节囊及皮肤创面。手术完成后,用无菌生理盐水彻底冲洗关节,并重新定位髌骨;可吸收缝线缝合关节囊和皮肤。各组术后皮下注射温热生理盐水(20 mL/kg),单独饲养,自由获取食物和水,并允许自由活动;3 d内皮下注射美洛昔康(1 mg/kg,q24h)、丁丙诺啡缓释剂(1 mg/kg,q48h)。此外,PBS组、DS组、HAMA组和HAMA@POSS-DS组分别于术后第1、4、7周关节腔内注射200 μL PBS、DS溶液(1 μmol/L)、含 10 mg/mL HAMA 的PBS悬液和含10 mg/mLHAMA@POSS-DS的PBS悬液;假手术组不作特殊处理。
5组大鼠从术后1周开始每隔1 d在水平跑步机上以15 m/min速度进行1 h跑步训练,诱导膝关节骨关节炎,持续至术后8周实验结束。
1.7.2. 观测指标
① X线片检查:术后1、8周将各组大鼠同上法麻醉后,用小动物X线成像仪进行扫描成像(曝光时间6 mAs,电压32 kV),于X线片测量左膝关节间隙宽度,测量结果以假手术组进行标准化处理。
② Micro-CT成像评估:各组大鼠术后8周X线片检查后,采用CO2吸入窒息法实施安乐死。按照原切口入路取术侧膝关节,尽量剔除表面多余肌肉组织后,浸泡于4%多聚甲醛溶液24 h,然后转至70%乙醇溶液中常温保存。将膝关节标本固定在Micro-CT成像系统插槽上,扫描角度0.03°,电流130 μA、电压70 kV,整合时间100 ms。根据突出骨骼轮廓和降低的骨密度测量骨赘体积,于CT图像上选择胫骨近端和股骨远端测量,其总和为每个样本骨赘总体积(total osteophyte volume,TOV)。
1.8. 统计学方法
采用GraphPad Prism 8.0软件进行统计分析。计量资料经正态性检验,均符合正态分布,以均数±标准差表示,组间比较采用单因素方差分析,两两比较采用Tukey检验;检验水准α=0.05。
2. 结果
2.1. POSS-DS表征
2.1.1. 核磁共振波谱仪分析
① POSS-SH:化学位移在0.76 ppm左右为与Si-CH2- 相连的质子氢的振动吸收峰,1.37 ppm左右为-SH质子氢的振动吸收峰,1.71 ppm左右是Si-CH2-CH2- 质子氢的振动吸收峰,2.56 ppm左右为Si-CH2-CH2-CH2- 质子氢的振动吸收峰。② PEG-Ac:6.63 ppm和6.19 ppm为乙烯基=CH2上质子氢的振动吸收峰,6.07 ppm为=CH- 上质子氢的振动吸收峰,4.21 ppm为-CH2- 上质子氢的振动吸收峰,3.69~3.39 ppm为PEG重复单元中-CH2- 上质子氢的振动吸收峰。③ DS-Ac:丙烯酰氯接枝成功表现为在6~8 ppm区间有1个三重峰,6.77、6.96、7.09 ppm处为丙酰氯特征峰,说明接枝成功。④ POSS-DS:原6.77、6.96、7.09 ppm处丙烯酰氯特征峰消失,而在1.5 ppm处有SH质子伸缩振动峰。上述结果提示DS已被成功链接在POSS上。见图2a~d。
图 2.
Preparation and characterization of POSS-DS
POSS-DS制备及表征
a~d. POSS-SH、PEG-Ac、DS-Ac、POSS-DS核磁氢谱; e. POSS-DS能谱分析;f. POSS-DS透射电镜观察(×5 000)
a-d. Nuclear magnetic hydrogen spectrum of POSS-SH, PEG-Ac, DS-Ac, and POSS-DS; e. Energy spectrum analysis of POSS-DS; f. Transmission electron microscope image of POSS-DS (×5 000)

2.1.2. 透射电镜观察
POSS-DS总体粒径均匀,约为100 nm。能谱分析结果显示,POSS-DS中硅、碳、氧等基本组成元素含量高且分布均匀,DS特有的氯元素和钠元素含量相对较少,但总体仍呈均匀分布,进一步说明POSS-DS制备成功。见图2e、f。
2.2. HAMA@POSS-DS体外观测
2.2.1. 光镜及扫描电镜观察
HAMA@POSS-DS在PBS溶液中静置后可发生沉降现象,轻轻摇晃后可形成半透明、均一分散悬液,在室温下可在较长时间内(约30 min)保持结构稳定性。光镜下水凝胶微球不透明,粒径均匀,约为100 μm。扫描电镜下观察,冻干状态下该水凝胶微球粒径在40 μm左右,整体呈疏松多孔结构。见图3a~c。
图 3.
The characterization of HAMA@POSS-DS
HAMA@POSS-DS表征
a. 大体观察;b. 光镜观察(×200);c. 扫描电镜观察(×3 000);d. 降解曲线;e. 药物释放曲线
a. General observation; b. Observation under light microscope (×200); c. Observation under scanning electron microscope (×3 000); d. Degradation curve; e. Drug release curve
2.2.2. 体外降解及药物释放实验
HAMA@POSS-DS降解过程相对缓慢,第1周降解缓慢,此后降解速率稍增加,并维持较平稳降解状态,最终在第9周时基本完全降解。药物释放曲线显示前4周药物释放速率逐步提升,4~6周稍有减缓,6周后趋于平缓。见图3d、e。
2.3. HAMA@POSS-DS细胞毒性观测
2.3.1. POSS-DS最佳浓度选择
培养12、24、48 h,与对照组相比,不同浓度POSS-DS 组A值均增高,差异有统计学意义(P<0.05);且1 μmol/L POSS-DS组高于其他浓度POSS-DS组(P<0.05),故后续实验选择1 μmol/L POSS-DS以及对应的0.1 mg/mL HAMA@POSS-DS。见图4a。
图 4.
HAMA@POSS-DS cytotoxicity detection
HAMA@POSS-DS细胞毒性观测
a. 不同POSS-DS浓度下细胞增殖情况; b. CCK-8检测结果;c. 活/死细胞染色细胞计数结果;d. 活/死细胞染色观察(荧光显微镜×200) 从左至右分别为对照组、HAMA组、HAMA@POSS-DS组、POSS-DS组,从上至下分别为培养12、24、48 h
a. Cell proliferation at different concentrations of POSS-DS; b. Results of CCK-8 test; c. Cell count results after live/dead staining; d. Live/dead staining images (Fluorescence microscope×200) From left to right for control group, HAMA group, HAMA@POSS-DS group, and POSS-DS group, respectively; from top to bottom for the incubation time of 12, 24, and 48 hours, respectively

2.3.2. CCK-8及活/死细胞染色观测
各组细胞A值及细胞计数均随培养时间增加而增加,且均未见明显死亡细胞。组间比较:HAMA组各时间点A值及细胞计数与对照组比较,差异均无统计学意义(P>0.05);HAMA@POSS-DS组仅48 h时高于对照组且差异有统计学意义(P<0.05);而POSS-DS组各时间点均明显高于对照组,差异均有统计学意义(P<0.05)。见图4 b~d。
2.4. HAMA@POSS-DS抗炎作用观测
2.4.1. 软骨细胞炎症模型构建
软骨细胞经IL-1β处理后,Ⅱ型胶原mRNA相对表达量随时间延长而显著降低,差异均有统计学意义(P<0.05)。培养48 h时降至起始水平的18%,表明软骨细胞炎症模型建立成功。
2.4.2. 免疫荧光染色观察
空白组Ⅱ型胶原荧光强度与对照组相比显著减弱。相比于空白组和HAMA组,DS组荧光强度较强,但与对照组仍存在明显差距。HAMA@POSS-DS组Ⅱ型胶原荧光强度显著强于空白组、DS组、HAMA组,甚至超过对照组。
2.4.3. 实时荧光定量PCR观测
① Ⅱ型胶原:与对照组比较,空白组、DS组、HAMA组Ⅱ型胶原mRNA相对表达量均降低,而HAMA@POSS-DS组有所升高,差异有统计学意义(P<0.05)。与空白组比较,DS组和HAMA@POSS-DS组升高(P<0.05),HAMA组差异无统计学意义(P>0.05)。
② AGG:与对照组比较,空白组、DS组、HAMA组AGG mRNA相对表达量均下降(P<0.05),而HAMA@POSS-DS组差异无统计学意义(P>0.05);与空白组比较,DS组和HAMA@POSS-DS组升高(P<0.05),HAMA组差异无统计学意义(P>0.05)。
③ MMP-13:与对照组比较,其余各组MMP-13 mRNA相对表达量均升高(P<0.05);与空白组比较, DS组、HAMA组、HAMA@POSS-DS组的MMP-13 mRNA相对表达量均降低(P<0.05)。
④ Adamts 5:除HAMA@POSS-DS组与对照组差异无统计学意义(P>0.05)外,Adamts 5 mRNA相对表达量组间差异总体与MMP-13一致。
⑤ TAC1:与对照组比较,其余各组TAC1 mRNA相对表达量均升高(P<0.05);与空白组比较,DS组和HAMA@POSS-DS组的TAC1 mRNA相对表达量下降(P<0.05),HAMA组差异无统计学意义(P>0.05)。见图5。
图 5.
Chondrocyte anti-inflammatory experiment of HAMA@POSS-DS
HAMA@POSS-DS抗炎作用观测
a. Ⅱ型胶原免疫荧光染色观察(荧光显微镜×200) 从左至右分别为对照组、空白组、DS组、HAMA组和HAMA@POSS-DS组,从上至下分别为Ⅱ型胶原、细胞核、细胞骨架及重叠图像;b. IL-1β处理后软骨细胞Ⅱ型胶原 mRNA相对表达量;c~g. 实时荧光定量PCR检测各目的基因相对表达量
a. Collagen type Ⅱ immunofluorescence staining (Fluorescence microscope×200) From left to right for control group, blank group, DS group, HAMA group, and HAMA@POSS-DS group, respectively; from top to bottom for collagen type Ⅱ, nucleus, cell skeleton, and merge images, respectively; b. Relative expression of collagen type Ⅱ mRNA in chondrocytes treated with IL-1β; c-g. Relative expression of each target gene detected by real-time fluorescence quantitative PCR

2.5. HAMA@POSS-DS体内观测
2.5.1. X线片检查
术后1周,各组大鼠相对关节间隙宽度差异无统计学意义(P>0.05)。8周时,PBS组、DS组、HAMA组和HAMA@POSS-DS组相对关节间隙宽度均小于假手术组,HAMA@POSS-DS组大于PBS组,差异有统计学意义(P<0.05);其余组间比较差异无统计学意义(P>0.05)。
2.5.2. Micro-CT成像评估
与假手术组相比,PBS组、DS组和HAMA组膝关节软骨下骨骨质明显增厚,发生了不同程度软骨下骨硬化;而HAMA@POSS-DS组未见明显上述变化。
PBS组骨赘体积最大,其次是HAMA组、DS组,HAMA@POSS-DS组及假手术组最小。其中,PBS组、HAMA组、DS组TOV与假手术组比较,PBS组与DS组、HAMA@POSS-DS组比较,差异均有统计学意义(P<0.05);其余组间比较差异均无统计学意义(P>0.05)。见图6。
图 6.
In vivo therapeutic effect of HAMA@POSS-DS
HAMA@POSS-DS体内治疗效果观测
a. 术后1周(上)、8周(下)膝关节侧位X线片 从左至右分别为假手术组、PBS组、DS组、HAMA组和HAMA@POSS-DS组;b. 术后8周Micro-CT断层影像(上)及三维重建影像(下) 从左至右分别为假手术组、PBS组、DS组、HAMA组和HAMA@POSS-DS组,箭头示骨赘;c. 术后1周各组相对关节间隙宽度;d. 术后8周各组相对关节间隙宽度;e. 术后8周各组膝关节TOV
a. Lateral X-ray films of rat knees at 1 (top) and 8 (bottom) weeks after operation From left to right for sham operation group, PBS group, DS group, HAMA group, and HAMA@POSS-DS group, respectively; b. Micro-CT tomographic images (top) and three-dimensional reconstruction images (bottom) of rat knee joints at 8 weeks after operation From left to right for sham operation group, PBS group, DS group, HAMA group, and HAMA@POSS-DS group, respectively; arrow indicated the osteophytes; c. Relative joint gap width of each group at 1 week after operation; d. Relative joint gap width of each group at 8 weeks after operation; e. Total osteophyte volume of knee in each group at 8 weeks after operation

3. 讨论
本研究通过“点击化学”法以POSS-SH为纳米构筑平台,成功合成了集抗炎、促软骨再生于一体的功能性纳米颗粒POSS-DS,并利用微流控技术制备了粒径均一、高度单分散的杂化水凝胶微球HAMA@POSS-DS。细胞实验中,HAMA@POSS-DS表现出了良好的生物相容性;与软骨细胞共培养48 h过程中,随着其负载的POSS-DS少量被缓释到培养基中,软骨细胞数量明显增多,提示POSS-DS在促进软骨细胞增殖方面具有显著优势,这与POSS骨架有利于细胞黏附密不可分[23]。此外,HAMA@POSS-DS还表现出了优异的抗炎性能。在软骨细胞抗炎实验中,HAMA@POSS-DS组在炎症环境下可有效促进软骨细胞增殖以及Ⅱ型胶原和AGG的表达,防止软骨基质流失,进而对软骨细胞起到有效保护作用。HAMA水凝胶微球缓慢的降解过程有利于其原位注射后在关节腔内的长期滞留,并缓慢释放负载的抗炎药物,这不仅大幅提升了目标药物利用率,更有助于维持稳定的药物浓度。促进软骨细胞增殖,协同缓释DS改善局部组织炎症微环境,将更有助于软骨组织的修复和再生。
骨关节炎病程早期软骨损伤仍存在逆转可能,这一阶段也是治疗的黄金时期,本研究旨在抓住骨关节炎早期阶段,探索对损伤软骨进行抢救性修复的药物缓释材料。因此,在动物实验中选取了较短的观测周期(8周)[26]。从治疗终点的影像数据可以看出,HAMA@POSS-DS复合水凝胶微球对比传统药物治疗具有显著优势,不仅在相同治疗周期内获得显著治疗效果,而且还减少了给药频率,有望减少患者在治疗过程中的痛苦,提高依从性。与以往研究中单纯将生物活性材料作为抗炎药物的递送载体不同,本研究的POSS纳米颗粒本身对细胞增殖具有显著促进作用,利用这一独特的材料优势制备出兼具抗炎和促再生的多功能微纳水凝胶微球,两方面作用相辅相成,极大地提高了骨关节炎治疗效果。未对骨关节炎晚期病程进行进一步动物实验是该研究不足之处。有了现阶段正向的实验结果,后续研究将进一步延长动物实验周期,以针对逆转骨关节炎晚期病程进行更深入探索。
利益冲突 在课题研究和文章撰写过程中不存在利益冲突;经费支持没有影响文章观点和对研究数据客观结果的分析及其报道
伦理声明 研究方案经维通利华实验动物技术有限公司机构实验动物管理和使用委员会审批(P2022076);实验动物生产许可证批准号:SCXK(浙)2019-0001,使用许可证批准号:SYXK(沪)2022-0018
作者贡献声明 姚裕斌:材料合成制备、生物实验和论文撰写;崔文国:科研设计;魏刚:指导纳米材料合成;丁婕:文献查阅和总结、英文审校和论文修改
Funding Statement
国家自然科学基金资助项目(52273133)
National Natural Science Foundation of China (52273133)
References
- 1.Zhang Y, Jordan JM. Epidemiology of osteoarthritis. Clin Geriatr Med, 2010, 26(3): 355-369.
- 2.Hashimoto Y, Nishida Y, Takahashi S, et al Transplantation of autologous bone marrow-derived mesenchymal stem cells under arthroscopic surgery with microfracture versus microfracture alone for articular cartilage lesions in the knee: A multicenter prospective randomized control clinical trial. Regen Ther. 2019;11:106–113. doi: 10.1016/j.reth.2019.06.002. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 3.Wang W, Wang X, Wang Y, et al Clinical study of autologous cartilage transplantation based on nano-hydroxyapatite in the treatment of talar osteochondral injury. J Nanosci Nanotechnol. 2021;21(2):1250–1258. doi: 10.1166/jnn.2021.18634. [DOI] [PubMed] [Google Scholar]
- 4.Mitchell ME, Giza E, Sullivan MR Cartilage transplantation techniques for talar cartilage lesions. J Am Acad Orthop Surg. 2009;17(7):407–414. doi: 10.5435/00124635-200907000-00001. [DOI] [PubMed] [Google Scholar]
- 5.Smith WL, DeWitt DL, Garavito RM Cyclooxygenases: structural, cellular, and molecular biology. Annu Rev Biochem. 2000;69:145–182. doi: 10.1146/annurev.biochem.69.1.145. [DOI] [PubMed] [Google Scholar]
- 6.Hardy MM, Seibert K, Manning PT, et al Cyclooxygenase 2-dependent prostaglandin E2 modulates cartilage proteoglycan degradation in human osteoarthritis explants. Arthritis Rheum. 2002;46(7):1789–1803. doi: 10.1002/art.10356. [DOI] [PubMed] [Google Scholar]
- 7.Elron-Gross I, Glucksam Y, Margalit R Liposomal dexamethasone-diclofenac combinations for local osteoarthritis treatment. Int J Pharm. 2009;376(1-2):84–91. doi: 10.1016/j.ijpharm.2009.04.025. [DOI] [PubMed] [Google Scholar]
- 8.Ge Z, Hu Y, Heng BC, et al Osteoarthritis and therapy. Arthritis Rheum. 2006;55(3):493–500. doi: 10.1002/art.21994. [DOI] [PubMed] [Google Scholar]
- 9.Sarzi-Puttini P, Cimmino MA, Scarpa R, et al. Osteoarthritis: an overview of the disease and its treatment strategies. Semin Arthritis Rheum, 2005, 35(1 Suppl 1): 1-10.
- 10.Gerwin N, Hops C, Lucke A Intraarticular drug delivery in osteoarthritis. Adv Drug Deliv Rev. 2006;58(2):226–242. doi: 10.1016/j.addr.2006.01.018. [DOI] [PubMed] [Google Scholar]
- 11.Evans CH, Kraus VB, Setton LA. Progress in intra-articular therapy. Nat Rev Rheumatol, 2014, 10(1): 11-22.
- 12.Xu C, Jiang Y, Wang H, et al Arthritic microenvironment actuated nanomotors for active rheumatoid arthritis therapy. Adv Sci (Weinh) 2023;10(4):e2204881. doi: 10.1002/advs.202204881. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 13.Yan X, Yang B, Chen Y, et al Anti-friction mscs delivery system improves the therapy for severe osteoarthritis. Adv Mater. 2021;33(52):e2104758. doi: 10.1002/adma.202104758. [DOI] [PubMed] [Google Scholar]
- 14.Maihöfer J, Madry H, Rey-Rico A, et al Adv Mater. 2021;33(16):e2008451. doi: 10.1002/adma.202008451. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 15.Chen P, Liu X, Gu C, et al A plant-derived natural photosynthetic system for improving cell anabolism. Nature. 2022;612(7940):546–554. doi: 10.1038/s41586-022-05499-y. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 16.Yang J, Han Y, Lin J, et al Ball-bearing-inspired polyampholyte-modified microspheres as bio-lubricants attenuate osteoarthritis. Small. 2020;16(44):e2004519. doi: 10.1002/smll.202004519. [DOI] [PubMed] [Google Scholar]
- 17.Chen H, Sun T, Yan Y, et al Cartilage matrix-inspired biomimetic superlubricated nanospheres for treatment of osteoarthritis. Biomaterials. 2020;242:119931. doi: 10.1016/j.biomaterials.2020.119931. [DOI] [PubMed] [Google Scholar]
- 18.Kim D, Lee AE, Xu Q, et al Gingiva-derived mesenchymal stem cells: potential application in tissue engineering and regenerative medicine—a comprehensive review. Front Immunol. 2021;12:667221. doi: 10.3389/fimmu.2021.667221. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 19.Samsonraj RM, Raghunath M, Nurcombe V, et al Concise review: multifaceted characterization of human mesenchymal stem cells for use in regenerative medicine. Stem Cells Transl Med. 2017;6(12):2173–2185. doi: 10.1002/sctm.17-0129. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 20.Bora P, Majumdar AS Adipose tissue-derived stromal vascular fraction in regenerative medicine: a brief review on biology and translation. Stem Cell Res Ther. 2017;8(1):145. doi: 10.1186/s13287-017-0598-y. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 21.Laird M, Herrmann N, Ramsahye N, et al Large polyhedral oligomeric silsesquioxane cages: the isolation of functionalized POSS with an unprecedented Si18 O27 core. Angew Chem Int Ed Engl. 2021;60(6):3022–3027. doi: 10.1002/anie.202010458. [DOI] [PubMed] [Google Scholar]
- 22.Chen M, Zhang Y, Zhang W, et al Polyhedral oligomeric silsesquioxane-incorporated gelatin hydrogel promotes angiogenesis during vascularized bone regeneration. ACS Appl Mater Interfaces. 2020;12(20):22410–22425. doi: 10.1021/acsami.0c00714. [DOI] [PubMed] [Google Scholar]
- 23.Wei G, Gu Y, Lin N, et al ACS Appl Mater Interfaces. 2022;14(25):29238–29249. doi: 10.1021/acsami.2c05736. [DOI] [PubMed] [Google Scholar]
- 24.Zheng D, Chen W, Ruan H, et al. Metformin-hydrogel with glucose responsiveness for chronic inflammatory suppression. Chemical Engineering Journal, 2022.
- 25.Lin F, Wang Z, Xiang L, et al Charge‐guided micro/nano‐hydrogel microsphere for penetrating cartilage matrix. Advanced Functional Materials. 2021;31(49):2107678. doi: 10.1002/adfm.202107678. [DOI] [Google Scholar]
- 26.Oei EHG, Hirvasniemi J, van Zadelhoff TA, et al Osteoarthritis year in review 2021: imaging. Osteoarthritis Cartilage. 2022;30(2):226–236. doi: 10.1016/j.joca.2021.11.012. [DOI] [PubMed] [Google Scholar]

