Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2023 Jul 14;79(Pt 8):726–729. doi: 10.1107/S2056989023005959

Crystal structure of poly[(aceto­nitrile-κN)(μ3-7-{[bis­(pyridin-2-ylmeth­yl)amino]­meth­yl}-8-hy­droxy­quinoline-5-sulfonato-κ4 N,O:O′:O′′)sodium]

Koji Kubono a,*, Ryoichi Tanaka a, Yukiyasu Kashiwagi b, Keita Tani a, Kunihiko Yokoi a
Editor: C Schulzkec
PMCID: PMC10439408  PMID: 37601401

In the title compound, the NaI atom has a distorted square-pyramidal coordination environment. The mol­ecular structure exhibits an intra­molecular bifurcated O—H⋯[N(tertiary amine), N(pyrid­yl)] hydrogen bond. In the crystal, the mol­ecules are linked by the bridging Na—O(sulfonato) coordination bonds and the inter­molecular C—H⋯O hydrogen bonds, forming a three-dimensional network structure.

Keywords: crystal structure, coordination polymer, sodium complex, 8-hy­droxy­quinoline sulfonato, C—H⋯O inter­actions

Abstract

In the title compound, [Na(C22H19N4O4S)(CH3CN)] n , the NaI atom adopts a distorted square-pyramidal coordination geometry, formed by one N and one O atom of the qunolinol moiety in the ligand, two O atoms of sulfonate moieties of two adjacent ligands and the N atom of the coordinated aceto­nitrile solvent. The NaI atom is located well above the mean basal plane of the square-based pyramid. The apical position is occupied by a sulfonate O atom of a neighboring ligand. Three N atoms of the bis­(pyridin-2-ylmeth­yl)amine moiety in the ligand are not coordinated by the sodium atom. The mol­ecule forms an intra­molecular bifurcated O—H⋯[N(tertiary amine),N(pyridine)] hydrogen bond, generating S(6) and S(5) rings. In the crystal, four mol­ecules are linked by four Na—O(sulfonato) bridged coordination bonds, forming a supra­molecular centrosymmetric tetra­mer unit comprising an eight-membered ring, and generating a two-dimensional network sheet. The mol­ecules of different sheets form inter­molecular C—H⋯O hydrogen bonds, and thereby a three-dimensional network structure.

1. Chemical context

8-Quinolinol (Hq) is a well-known chelating ligand and analytical reagent (Wiberley et al., 1949). Metal complexes with Hq derivatives have been investigated as pharmaceutical treatments (Mo et al., 2021), magnetic materials (Ma et al., 2021) and organic light-emitting diodes (Huo et al. 2015; Back et al., 2016). As part of our research into the development of fluorescent chelate reagents for the determination of metal ions and anions, we synthesized the penta­dentate ligand, 7-{[bis-(pyridin-2-ylmeth­yl)amino]­meth­yl}-5-chloro­quinolin-8-ol (HClqdpa) containing Hq and bis(pyridin-2-ylmeth­yl)amine ­[di-(2-picol­yl)amine] (dpa) moieties (RUTSIK; Kubono et al., 2015). This ligand has only rather poor water solubility. To improve the solubility, we synthesized a new and now water-soluble fluorescent chelate reagent, based on Hq containing sulfonato-sodium and dpa moieties. Herein we report the respective synthesis and the crystal structure of its aceto­nitrile solvate complex.

2. Structural commentary

The mol­ecular structure of the title compound is shown in Fig. 1. The NaI atom (Na2) of the asymmetric unit adopts a distorted square-pyramidal geometry and coordinates N and O atoms of the quinolinol moiety in the ligand, two O atoms of the sulfonate moieties of two neighboring ligands and the N atom of aceto­nitrile solvent. The phenolic hydrogen atom H3 of the quinolinol moiety is bound to the O3 atom. The proton, therefore, does not dissociate. Three N atoms of the dpa moiety in the ligand are not coordinated by the NaI atom. 2.

Figure 1.

Figure 1

The mol­ecular structure of the title compound with atom labeling. Displacement ellipsoids are drawn at the 50% probability level. H atoms are represented by spheres of arbitrary radius. The intra­molecular O—H⋯N hydrogen bonds are shown as double-dashed lines. [Symmetry codes: (i) 2 − x, y −  Inline graphic , Inline graphic  − z; (iii) x, Inline graphic  − y, z −  Inline graphic ; (iv) 2 − x, y +  Inline graphic , Inline graphic  − z; (v) x, Inline graphic  − y, z +  Inline graphic .]

The five-coordinate geometry index, τ = (β − α)/60, derived from the two largest angles (α, β) in a structure has ideal values of 0 for square-pyramidal and of 1 for trigonal–bipyramidal geometry (Addison et al., 1984). In the title compound it is equal to 0.310. The NaI atom is located 0.7311 (8) Å above the mean basal plane [O3/N7/N11/O5iii; symmetry code: (iii) x, Inline graphic  − y, z −  Inline graphic ] of the square-based pyramid. The apical position is occupied by the O4i atom of the sulfonate moiety in a neighboring ligand with the Na2—O4i bond being 2.2602 (16) Å long [symmetry code: (i) 2 − x, y −  Inline graphic , Inline graphic  − z]. The Na2—O3(quinolinol) bond distance is 2.4248 (15) Å, longer than the equatorial Na—O(sulfonato) bond [Na2—O5iii; 2.2500 (16) Å]. The Na2—N7(quinolinol) distance is 2.467 (2) Å, shorter than the Na2—N11(aceto­nitrile) bond [2.487 (2) Å]. The chelate angle O3—Na2—N7 is 65.83 (5)°, the smallest of all the coordination angels. It agrees well with that of a related compound, (8-hy­droxy­quinoline-5-sulfonato-N 1,O 8)sodium(I) [UGUNOZ; Baskar Raj et al., 2002; O—Na—N; 64.86 (4)°]. The τ-parameter of this related compound is 0.505, and indicative of a significantly distorted trigonal–bipyramidal geometry with bond distances of Na—O(quinolinol) and Na—N(quinolinol) of 2.4892 (14) and 2.4418 (15) Å, respectively.

The title mol­ecule forms in its crystal structure an intra­molecular bifurcated O3—H3⋯(N8, N9) hydrogen bond (Table 1), resulting in S(6) and S(5) rings, which stabilize the conformation of the mol­ecule. The N10 atom in the pyridine ring is not engaged in a coordination bond, hydrogen bond or any other inter- or intra­molecular inter­action. The dihedral angle between two pyridine rings in the title compound is 88.37 (11)°. In a related compound, 7-{[bis­(pyridin-2-ylmeth­yl)amino]­meth­yl}-5-chloro­quinolin-8-ol, HClqdpa (RUTSIK; Kubono et al., 2015), the dihedral angle between two pyridine rings is 80.97 (12)°.

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3⋯N8 0.88 (2) 2.46 (3) 3.057 (2) 125 (2)
O3—H3⋯N9 0.88 (2) 1.87 (2) 2.7120 (19) 158 (3)
C31—H31⋯O6i 0.95 2.53 3.397 (3) 152
C35—H35A⋯O6ii 0.98 2.55 3.502 (4) 166

Symmetry codes: (i) Inline graphic ; (ii) Inline graphic .

Even though in HClqdpa the dpa moiety is metal-free, and only one pyridine N atom forms an intra­molecular hydrogen bond with the OH group, these angles are relatively similar. The quinoline ring of the title compound is slightly bent, with r.m.s. deviations of 0.020 (2) Å. The S—O bond distances are in the range 1.4469 (14)–1.4585 (15) Å, with O—S—O angles ranging from 112.87 (9) to 113.25 (9)°. The bond lengths and angles largely agree with those values in the related compound [UGUNOZ; Baskar Raj et al., 2002; S—O; 1.4482 (12)–1.4731 (12) Å, O—S—O; 110.92 (7)–114.35 (7)°]. The O6 atom is not coordinated by the NaI atom, and the bond distance S1—O6 is shorter than the other two.

3. Supra­molecular features

In the crystal, four mol­ecules of the title compound are linked by four bridging Na—O coordination bonds, forming a supra­molecular centrosymmetric structure based on a central eight-membered ring (Na2/O4i/S1i/O5i/Na2vi/O4iii/S1iii/O5iii) [symmetry code: (vi) 2 − x, −y, 1 − z]. The tetra­meric building block is shown in Fig. 2. A two-dimensional coordination polymer is formed by bridging coordination bonds between the NaI atom and two sulfonato O atoms of two adjacent ligands (Na2—O4i and Na2—O5iii) in the bc plane (Fig. 3). An inter­molecular C—H⋯O hydrogen bond (C31—H31⋯O6i, Table 1) is observed, forming a C(12) chain motif along the b-axis direction. In the crystal structure, mol­ecules are further linked by an inter­molecular C—H⋯O hydrogen bond [C35—H35A⋯O6ii; symmetry code: (ii) 3 − x, y −  Inline graphic , Inline graphic  − z] (Table 1), forming a C(8) chain motif running along the a-axis direction (Fig. 4). The mol­ecules are linked through the bridging Na2—O4i and Na2—O5iii coordination bonds and the inter­molecular C35—H35A⋯O6ii hydrogen bonds, forming a three-dimensional network structure.

Figure 2.

Figure 2

Supra­molecular centrosymmetric tetra­meric component of the crystal packing motif in the title compound formed by bridging coordination bonds. The intra­molecular hydrogen bonds are shown as dashed lines. H atoms not involved in the inter­actions are omitted for clarity. [Symmetry code: (i) 2 − x, y −  Inline graphic , Inline graphic  − z; (iii) x, Inline graphic  − y, z −  Inline graphic ; (vi) 2 − x, −y, 1 − z.]

Figure 3.

Figure 3

A projection along the a axis of the crystal packing of the title compound. The C—H⋯O hydrogen bonds are shown as dashed magenta lines. H atoms not involved in the inter­actions are omitted for clarity.

Figure 4.

Figure 4

A projection along the b axis of the crystal packing of the title compound. The O—H⋯N and C—H⋯O hydrogen bonds are shown as dashed lines. H atoms not involved in the inter­actions are omitted for clarity.

4. Database survey

A search of the Cambridge Structural Database (CSD, Version 5.44; April 2023; Groom et al., 2016) using ConQuest (Bruno et al., 2002) for the quinolin-8-ol-5-sulfonato fragment gave 78 hits. Of these, only two structures are NaI complexes with the quinolin-8-ol-5-sulfonato ligand, viz. (8-hy­droxy­quinoline-5-sulfonato-N 1,O 8)sodium(I) (UGUNOZ; Baskar Raj et al., 2002) and its trihydrate (BOXKOO; Viossat et al., 1982). Both the anhydrate and trihydrate of (quinolin-8-ol-5-sulfonato)­sodium form centrosymmetric dimeric structures in their crystals. Centrosymmetric dimer structures are observed in the crystals of various metal complexes with quinolin-8-ol-5-sulfonate and its derivatives. In the crystal of the anhydrous sodium complex, four Na—O(sulfonato) bridged coordination bonds construct a supra­molecular centrosymmetric eight-membered ring, similar to the title complex. A search for the fragment of 7-methyl-quinolin-8-ol-5-sulfonato gave two hits, which are 8-hy­droxy-7-[(morpholin-4-ium-4-yl)meth­yl]quin­oline-5-sulfonate aceto­nitrile solvate (UPAYIW; Kumar et al., 2021) and 8-hy­droxy-7-[(piperidin-1-ium-1-yl)meth­yl]quin­oline-5-sulfonate monohydrate (UPAYOC; Kumar et al., 2021). These compounds are metal-free ligands, and the crystal structures of their sodium salts or complexes are not reported. A search for a compound fragment in which the substituent is moved to the pyridyl ring, 2-methyl-quinolin-8-ol-5-sulfonato, gave two hits, namely aqua-{2,2′-[(1,4,10,13-tetra­oxa-7,16-di­aza­cyclo-octa­decane-7,16-di­yl)-bis­(methyl­ene)]bis­[8-(hy­droxy)quinoline-5-sulfonato]}-barium octa­hydrate (BINXEE; Thiele et al., 2018), and 2-methyl-8-hy­droxy­quinoline-5-sulfonic acid monohydrate (MHQUSO; Merritt Jr, et al., 1970).

5. Synthesis and crystallization

A suspension of paraformaldehyde (0.41 g, 14 mmol) and bis­(2-pyridyl­meth­yl)amine (1.99 g, 10 mmol) in 100 mL of MeOH was stirred for 18 h at room temperature. The solvent was removed in vacuo. To the product was added 90 mL of methanol, 8-hy­droxy­quinoline-5-sulfonic acid monohydrate (1.80 g, 10 mmol) and sodium hydroxide (0.40 g, 10 mmol) in 10 mL of water, the mixture was heated for 24 h at 353 K. The solvent was removed in vacuo to give an oily product, which was precipitated by addition of acetone (0.72 g, 31.4%). A small amount of crude solid was recrystallized from aceto­nitrile to obtain colorless crystals of the title compound. 1H NMR (CD3OD, 400 MHz): δ = 2.03 (s, 3H, aceto­nitrile), 3.90 (s, 4H), 3.97 (s, 2H), 7.23–7.26 (m, 2H), 7.56–7.59 (dd, J = 8.8 Hz, J = 4.4 Hz, 1H), 7.63 (d, J = 8.0 Hz, 2H), 7.75–7.78 (td, J = 8.0 Hz, J = 1.6 Hz, 2H), 8.22 (s, 1H), 8.45–8.47 (m, 2H), 8.81–8.83 (dd, J = 4.4 Hz, J = 1.6 Hz, 1H), 9.10–9.15 (dd, J = 8.8 Hz, J = 1.6 Hz, 1H). TG: expected weight loss for aceto­nitrile: 8.21%; found: 8.23% (around 447 to 465 K).

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2. The hy­droxy H atom was located in a difference-Fourier map and freely refined. All H atoms bound to carbon were positioned geometrically and refined using a riding model, with C—H = 0.95–0.99 Å and U iso(H) = 1.2 or 1.5U eq(C).

Table 2. Experimental details.

Crystal data
Chemical formula [Na(C22H19N4O4S)(C2H3N)]
M r 499.52
Crystal system, space group Monoclinic, P21/c
Temperature (K) 173
a, b, c (Å) 10.4951 (4), 14.1401 (5), 16.9249 (6)
β (°) 106.378 (8)
V3) 2409.77 (18)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.19
Crystal size (mm) 0.25 × 0.20 × 0.15
 
Data collection
Diffractometer Rigaku R-AXIS RAPID
Absorption correction Multi-scan (ABSCOR; Higashi, 1995)
T min, T max 0.867, 0.971
No. of measured, independent and observed [F 2 > 2.0σ(F 2)] reflections 23162, 5490, 4023
R int 0.042
(sin θ/λ)max−1) 0.648
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.044, 0.103, 1.01
No. of reflections 5490
No. of parameters 321
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.32, −0.30

Computer programs: RAPID-AUTO (Rigaku, 2006), SIR92 (Altomare, et al., 1993), SHELXL2014/7 (Sheldrick, 2015), PLATON (Spek, 2020) and CrystalStructure (Rigaku, 2016).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S2056989023005959/yz2037sup1.cif

e-79-00726-sup1.cif (701.2KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989023005959/yz2037Isup2.hkl

e-79-00726-Isup2.hkl (301KB, hkl)

CCDC reference: 2279961

Additional supporting information: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Crystal data

[Na(C22H19N4O4S)(C2H3N)] F(000) = 1040.00
Mr = 499.52 Dx = 1.377 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71075 Å
a = 10.4951 (4) Å Cell parameters from 16856 reflections
b = 14.1401 (5) Å θ = 2.1–27.4°
c = 16.9249 (6) Å µ = 0.19 mm1
β = 106.378 (8)° T = 173 K
V = 2409.77 (18) Å3 Block, colorless
Z = 4 0.25 × 0.20 × 0.15 mm

Data collection

Rigaku R-AXIS RAPID diffractometer 4023 reflections with F2 > 2.0σ(F2)
Detector resolution: 10.000 pixels mm-1 Rint = 0.042
ω scans θmax = 27.4°, θmin = 2.5°
Absorption correction: multi-scan (ABSCOR; Higashi, 1995) h = −13→13
Tmin = 0.867, Tmax = 0.971 k = −18→18
23162 measured reflections l = −20→21
5490 independent reflections

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.103 H atoms treated by a mixture of independent and constrained refinement
S = 1.01 w = 1/[σ2(Fo2) + (0.0403P)2 + 1.2511P] where P = (Fo2 + 2Fc2)/3
5490 reflections (Δ/σ)max = 0.001
321 parameters Δρmax = 0.32 e Å3
0 restraints Δρmin = −0.30 e Å3
Primary atom site location: structure-invariant direct methods

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement was performed using all reflections. The weighted R-factor (wR) and goodness of fit (S) are based on F2. R-factor (gt) are based on F. The threshold expression of F2 > 2.0 sigma(F2) is used only for calculating R-factor (gt).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
S1 1.18114 (5) 0.46635 (3) 0.90911 (3) 0.03024 (12)
Na2 1.07043 (8) 0.10172 (5) 0.58208 (5) 0.03309 (19)
O3 1.02142 (14) 0.26904 (9) 0.58507 (8) 0.0319 (3)
O4 1.12279 (14) 0.55994 (10) 0.89339 (9) 0.0394 (3)
O5 1.12432 (16) 0.40982 (11) 0.96284 (9) 0.0444 (4)
O6 1.32483 (13) 0.46752 (10) 0.93467 (9) 0.0395 (3)
N7 1.18687 (17) 0.18141 (11) 0.71220 (10) 0.0315 (4)
N8 0.78852 (16) 0.40512 (11) 0.56663 (9) 0.0291 (3)
N9 0.85965 (17) 0.32740 (12) 0.43831 (10) 0.0363 (4)
N10 0.49005 (19) 0.36242 (14) 0.62557 (13) 0.0472 (5)
N11 1.2229 (2) −0.03275 (15) 0.63619 (14) 0.0582 (6)
C12 1.05317 (18) 0.31647 (13) 0.65748 (11) 0.0261 (4)
C13 1.00738 (18) 0.40634 (12) 0.66745 (11) 0.0269 (4)
C14 1.04797 (18) 0.44926 (13) 0.74581 (11) 0.0272 (4)
H14 1.014363 0.510196 0.752534 0.033*
C15 1.13363 (18) 0.40683 (13) 0.81249 (11) 0.0267 (4)
C16 1.18340 (18) 0.31472 (13) 0.80365 (11) 0.0275 (4)
C17 1.2732 (2) 0.26440 (14) 0.86880 (12) 0.0349 (5)
H17 1.301928 0.291025 0.922443 0.042*
C18 1.3174 (2) 0.17810 (15) 0.85359 (13) 0.0421 (5)
H18 1.378379 0.144070 0.896296 0.051*
C19 1.2722 (2) 0.13945 (14) 0.77409 (13) 0.0388 (5)
H19 1.305452 0.079314 0.764561 0.047*
C20 1.14255 (18) 0.26954 (12) 0.72610 (11) 0.0260 (4)
C21 0.91430 (19) 0.45661 (13) 0.59585 (12) 0.0303 (4)
H21A 0.896845 0.521199 0.612841 0.036*
H21B 0.956231 0.462263 0.550483 0.036*
C22 0.7130 (2) 0.43493 (15) 0.48490 (12) 0.0364 (5)
H22A 0.716550 0.504736 0.481568 0.044*
H22B 0.618938 0.416526 0.475797 0.044*
C23 0.7636 (2) 0.39248 (14) 0.41728 (12) 0.0324 (4)
C24 0.7072 (2) 0.42029 (16) 0.33616 (13) 0.0409 (5)
H24 0.640408 0.467689 0.323134 0.049*
C25 0.7503 (2) 0.37761 (18) 0.27478 (13) 0.0487 (6)
H25 0.713422 0.395451 0.218858 0.058*
C26 0.8473 (2) 0.30886 (17) 0.29556 (14) 0.0475 (6)
H26 0.877040 0.277717 0.254261 0.057*
C27 0.9004 (2) 0.28629 (17) 0.37764 (14) 0.0437 (5)
H27 0.968416 0.239856 0.392049 0.052*
C28 0.7092 (2) 0.41116 (14) 0.62489 (12) 0.0329 (4)
H28A 0.666499 0.474147 0.619956 0.040*
H28B 0.768646 0.405127 0.681603 0.040*
C29 0.60371 (19) 0.33608 (14) 0.61095 (12) 0.0313 (4)
C30 0.6250 (2) 0.24534 (14) 0.58610 (13) 0.0375 (5)
H30 0.706913 0.229419 0.575984 0.045*
C31 0.5256 (2) 0.17819 (16) 0.57619 (13) 0.0448 (5)
H31 0.537800 0.115726 0.558990 0.054*
C32 0.4090 (2) 0.20405 (19) 0.59181 (15) 0.0523 (6)
H32 0.338984 0.159710 0.586228 0.063*
C33 0.3958 (2) 0.2952 (2) 0.61563 (18) 0.0590 (7)
H33 0.314422 0.312303 0.625879 0.071*
C34 1.3112 (3) −0.07824 (16) 0.63605 (14) 0.0474 (6)
C35 1.4259 (3) −0.1369 (2) 0.6367 (2) 0.0806 (10)
H35A 1.481852 −0.103827 0.608024 0.121*
H35B 1.395569 −0.196938 0.608878 0.121*
H35C 1.477330 −0.149253 0.693795 0.121*
H3 0.958 (2) 0.2949 (17) 0.5457 (16) 0.051 (7)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S1 0.0311 (2) 0.0346 (3) 0.0258 (2) −0.0037 (2) 0.00925 (19) −0.00541 (19)
Na2 0.0414 (4) 0.0325 (4) 0.0282 (4) −0.0002 (3) 0.0143 (3) −0.0019 (3)
O3 0.0414 (8) 0.0307 (7) 0.0218 (7) 0.0043 (6) 0.0058 (6) 0.0001 (5)
O4 0.0424 (8) 0.0370 (8) 0.0375 (8) 0.0038 (6) 0.0093 (7) −0.0093 (6)
O5 0.0543 (10) 0.0549 (9) 0.0285 (8) −0.0145 (8) 0.0190 (7) −0.0051 (6)
O6 0.0324 (7) 0.0416 (8) 0.0412 (8) −0.0034 (6) 0.0048 (6) −0.0066 (7)
N7 0.0405 (9) 0.0257 (8) 0.0282 (9) 0.0011 (7) 0.0095 (7) 0.0010 (6)
N8 0.0304 (8) 0.0344 (8) 0.0232 (8) 0.0014 (7) 0.0088 (7) 0.0002 (6)
N9 0.0389 (10) 0.0418 (10) 0.0293 (9) 0.0014 (8) 0.0112 (8) −0.0003 (7)
N10 0.0402 (10) 0.0538 (12) 0.0549 (12) 0.0031 (9) 0.0255 (9) 0.0010 (9)
N11 0.0693 (15) 0.0459 (12) 0.0577 (14) 0.0152 (11) 0.0152 (11) −0.0014 (10)
C12 0.0290 (9) 0.0279 (9) 0.0238 (9) −0.0044 (7) 0.0112 (8) −0.0003 (7)
C13 0.0265 (9) 0.0287 (9) 0.0266 (9) −0.0023 (7) 0.0093 (8) 0.0021 (7)
C14 0.0285 (9) 0.0265 (9) 0.0285 (9) −0.0006 (7) 0.0112 (8) −0.0006 (7)
C15 0.0264 (9) 0.0303 (9) 0.0255 (9) −0.0039 (7) 0.0106 (8) −0.0035 (7)
C16 0.0281 (9) 0.0298 (9) 0.0258 (9) −0.0046 (8) 0.0096 (8) 0.0020 (7)
C17 0.0411 (12) 0.0346 (11) 0.0258 (10) −0.0037 (9) 0.0044 (9) 0.0001 (8)
C18 0.0497 (13) 0.0323 (11) 0.0354 (12) 0.0048 (10) −0.0026 (10) 0.0054 (9)
C19 0.0490 (13) 0.0281 (10) 0.0361 (11) 0.0064 (9) 0.0066 (10) 0.0025 (8)
C20 0.0294 (9) 0.0261 (9) 0.0249 (9) −0.0023 (7) 0.0115 (8) 0.0019 (7)
C21 0.0337 (10) 0.0292 (10) 0.0281 (10) −0.0002 (8) 0.0090 (8) 0.0027 (8)
C22 0.0367 (11) 0.0412 (11) 0.0295 (11) 0.0061 (9) 0.0061 (9) 0.0025 (9)
C23 0.0343 (11) 0.0340 (10) 0.0275 (10) −0.0041 (9) 0.0065 (8) 0.0010 (8)
C24 0.0452 (12) 0.0435 (12) 0.0306 (11) −0.0026 (10) 0.0053 (9) 0.0036 (9)
C25 0.0575 (15) 0.0606 (15) 0.0256 (11) −0.0131 (12) 0.0079 (10) 0.0011 (10)
C26 0.0533 (14) 0.0608 (15) 0.0327 (12) −0.0085 (12) 0.0191 (11) −0.0100 (10)
C27 0.0448 (13) 0.0514 (13) 0.0371 (12) −0.0003 (11) 0.0153 (10) −0.0065 (10)
C28 0.0358 (11) 0.0349 (11) 0.0305 (10) 0.0031 (8) 0.0133 (9) −0.0036 (8)
C29 0.0312 (10) 0.0397 (11) 0.0233 (9) 0.0025 (8) 0.0081 (8) 0.0029 (8)
C30 0.0357 (11) 0.0387 (11) 0.0372 (12) 0.0026 (9) 0.0087 (9) −0.0010 (9)
C31 0.0507 (14) 0.0426 (12) 0.0350 (12) −0.0069 (10) 0.0021 (10) 0.0012 (9)
C32 0.0462 (14) 0.0641 (16) 0.0454 (14) −0.0189 (12) 0.0112 (11) 0.0054 (12)
C33 0.0385 (13) 0.0741 (19) 0.0722 (19) −0.0056 (13) 0.0286 (13) 0.0041 (15)
C34 0.0618 (16) 0.0419 (13) 0.0405 (13) 0.0019 (12) 0.0179 (12) 0.0003 (10)
C35 0.074 (2) 0.087 (2) 0.092 (2) 0.0236 (18) 0.0406 (19) −0.0027 (19)

Geometric parameters (Å, º)

S1—O6 1.4469 (14) C17—H17 0.9500
S1—O4 1.4510 (15) C18—C19 1.405 (3)
S1—O5 1.4585 (15) C18—H18 0.9500
S1—C15 1.7808 (18) C19—H19 0.9500
S1—Na2i 3.2984 (9) C21—H21A 0.9900
Na2—O5ii 2.2500 (16) C21—H21B 0.9900
Na2—O4iii 2.2602 (16) C22—C23 1.515 (3)
Na2—O3 2.4248 (15) C22—H22A 0.9900
Na2—N7 2.4690 (18) C22—H22B 0.9900
Na2—N11 2.487 (2) C23—C24 1.390 (3)
Na2—Na2iv 3.9829 (15) C24—C25 1.383 (3)
O3—C12 1.354 (2) C24—H24 0.9500
O3—H3 0.88 (3) C25—C26 1.380 (3)
N7—C19 1.312 (3) C25—H25 0.9500
N7—C20 1.373 (2) C26—C27 1.380 (3)
N8—C22 1.449 (2) C26—H26 0.9500
N8—C28 1.461 (2) C27—H27 0.9500
N8—C21 1.466 (2) C28—C29 1.504 (3)
N9—C23 1.337 (3) C28—H28A 0.9900
N9—C27 1.350 (3) C28—H28B 0.9900
N10—C29 1.338 (3) C29—C30 1.388 (3)
N10—C33 1.347 (3) C30—C31 1.386 (3)
N11—C34 1.129 (3) C30—H30 0.9500
C12—C13 1.386 (3) C31—C32 1.372 (3)
C12—C20 1.433 (3) C31—H31 0.9500
C13—C14 1.411 (3) C32—C33 1.369 (4)
C13—C21 1.504 (3) C32—H32 0.9500
C14—C15 1.367 (3) C33—H33 0.9500
C14—H14 0.9500 C34—C35 1.459 (4)
C15—C16 1.427 (3) C35—H35A 0.9800
C16—C20 1.413 (3) C35—H35B 0.9800
C16—C17 1.423 (3) C35—H35C 0.9800
C17—C18 1.356 (3)
O6—S1—O4 113.25 (9) C17—C18—H18 120.3
O6—S1—O5 113.25 (9) C19—C18—H18 120.3
O4—S1—O5 112.87 (9) N7—C19—C18 123.96 (19)
O6—S1—C15 106.16 (9) N7—C19—H19 118.0
O4—S1—C15 105.55 (9) C18—C19—H19 118.0
O5—S1—C15 104.82 (9) N7—C20—C16 122.71 (17)
O6—S1—Na2i 139.46 (6) N7—C20—C12 117.21 (16)
O4—S1—Na2i 34.63 (6) C16—C20—C12 120.07 (16)
O5—S1—Na2i 79.43 (7) N8—C21—C13 110.84 (15)
C15—S1—Na2i 107.18 (6) N8—C21—H21A 109.5
O5ii—Na2—O4iii 127.68 (7) C13—C21—H21A 109.5
O5ii—Na2—O3 101.42 (6) N8—C21—H21B 109.5
O4iii—Na2—O3 92.56 (6) C13—C21—H21B 109.5
O5ii—Na2—N7 130.30 (7) H21A—C21—H21B 108.1
O4iii—Na2—N7 101.50 (6) N8—C22—C23 113.07 (16)
O3—Na2—N7 65.83 (5) N8—C22—H22A 109.0
O5ii—Na2—N11 88.66 (7) C23—C22—H22A 109.0
O4iii—Na2—N11 104.46 (7) N8—C22—H22B 109.0
O3—Na2—N11 148.91 (7) C23—C22—H22B 109.0
N7—Na2—N11 85.14 (7) H22A—C22—H22B 107.8
O5ii—Na2—S1iii 113.91 (5) N9—C23—C24 122.47 (19)
O4iii—Na2—S1iii 21.39 (4) N9—C23—C22 118.05 (17)
O3—Na2—S1iii 112.83 (4) C24—C23—C22 119.46 (19)
N7—Na2—S1iii 115.19 (5) C25—C24—C23 118.7 (2)
N11—Na2—S1iii 88.83 (6) C25—C24—H24 120.6
O5ii—Na2—Na2iv 57.30 (5) C23—C24—H24 120.6
O4iii—Na2—Na2iv 76.32 (5) C26—C25—C24 119.3 (2)
O3—Na2—Na2iv 132.85 (5) C26—C25—H25 120.3
N7—Na2—Na2iv 160.89 (5) C24—C25—H25 120.3
N11—Na2—Na2iv 77.20 (6) C25—C26—C27 118.6 (2)
S1iii—Na2—Na2iv 57.86 (2) C25—C26—H26 120.7
C12—O3—Na2 120.18 (11) C27—C26—H26 120.7
C12—O3—H3 114.9 (16) N9—C27—C26 122.8 (2)
Na2—O3—H3 120.7 (16) N9—C27—H27 118.6
S1—O4—Na2i 123.98 (9) C26—C27—H27 118.6
S1—O5—Na2v 148.14 (10) N8—C28—C29 112.78 (16)
C19—N7—C20 117.48 (17) N8—C28—H28A 109.0
C19—N7—Na2 124.08 (13) C29—C28—H28A 109.0
C20—N7—Na2 117.42 (12) N8—C28—H28B 109.0
C22—N8—C28 111.39 (16) C29—C28—H28B 109.0
C22—N8—C21 112.06 (15) H28A—C28—H28B 107.8
C28—N8—C21 111.93 (15) N10—C29—C30 122.79 (19)
C23—N9—C27 118.06 (18) N10—C29—C28 115.47 (18)
C29—N10—C33 116.2 (2) C30—C29—C28 121.73 (18)
C34—N11—Na2 151.4 (2) C31—C30—C29 119.4 (2)
O3—C12—C13 124.01 (17) C31—C30—H30 120.3
O3—C12—C20 116.23 (16) C29—C30—H30 120.3
C13—C12—C20 119.75 (17) C32—C31—C30 118.4 (2)
C12—C13—C14 119.07 (17) C32—C31—H31 120.8
C12—C13—C21 120.28 (17) C30—C31—H31 120.8
C14—C13—C21 120.64 (16) C33—C32—C31 118.5 (2)
C15—C14—C13 122.77 (17) C33—C32—H32 120.8
C15—C14—H14 118.6 C31—C32—H32 120.8
C13—C14—H14 118.6 N10—C33—C32 124.7 (2)
C14—C15—C16 119.26 (17) N10—C33—H33 117.6
C14—C15—S1 119.96 (14) C32—C33—H33 117.6
C16—C15—S1 120.78 (14) N11—C34—C35 179.4 (3)
C20—C16—C17 117.06 (17) C34—C35—H35A 109.5
C20—C16—C15 119.07 (17) C34—C35—H35B 109.5
C17—C16—C15 123.87 (17) H35A—C35—H35B 109.5
C18—C17—C16 119.36 (19) C34—C35—H35C 109.5
C18—C17—H17 120.3 H35A—C35—H35C 109.5
C16—C17—H17 120.3 H35B—C35—H35C 109.5
C17—C18—C19 119.39 (19)
O6—S1—O4—Na2i −146.44 (9) Na2—N7—C20—C12 −13.3 (2)
O5—S1—O4—Na2i −16.08 (13) C17—C16—C20—N7 −0.6 (3)
C15—S1—O4—Na2i 97.84 (10) C15—C16—C20—N7 179.29 (17)
O6—S1—O5—Na2v 78.3 (2) C17—C16—C20—C12 −179.41 (17)
O4—S1—O5—Na2v −52.0 (2) C15—C16—C20—C12 0.5 (3)
C15—S1—O5—Na2v −166.41 (18) O3—C12—C20—N7 −0.3 (2)
Na2i—S1—O5—Na2v −61.26 (19) C13—C12—C20—N7 −178.66 (16)
Na2—O3—C12—C13 −167.32 (14) O3—C12—C20—C16 178.61 (16)
Na2—O3—C12—C20 14.4 (2) C13—C12—C20—C16 0.2 (3)
O3—C12—C13—C14 −179.49 (17) C22—N8—C21—C13 −163.21 (16)
C20—C12—C13—C14 −1.2 (3) C28—N8—C21—C13 70.82 (19)
O3—C12—C13—C21 1.3 (3) C12—C13—C21—N8 63.1 (2)
C20—C12—C13—C21 179.60 (16) C14—C13—C21—N8 −116.12 (18)
C12—C13—C14—C15 1.6 (3) C28—N8—C22—C23 −155.23 (16)
C21—C13—C14—C15 −179.20 (17) C21—N8—C22—C23 78.5 (2)
C13—C14—C15—C16 −0.9 (3) C27—N9—C23—C24 −1.4 (3)
C13—C14—C15—S1 179.41 (14) C27—N9—C23—C22 176.90 (19)
O6—S1—C15—C14 −126.08 (15) N8—C22—C23—N9 6.4 (3)
O4—S1—C15—C14 −5.59 (17) N8—C22—C23—C24 −175.17 (18)
O5—S1—C15—C14 113.80 (16) N9—C23—C24—C25 1.3 (3)
Na2i—S1—C15—C14 30.51 (16) C22—C23—C24—C25 −177.0 (2)
O6—S1—C15—C16 54.26 (17) C23—C24—C25—C26 0.1 (3)
O4—S1—C15—C16 174.74 (15) C24—C25—C26—C27 −1.3 (3)
O5—S1—C15—C16 −65.86 (17) C23—N9—C27—C26 0.2 (3)
Na2i—S1—C15—C16 −149.16 (13) C25—C26—C27—N9 1.2 (4)
C14—C15—C16—C20 −0.1 (3) C22—N8—C28—C29 72.0 (2)
S1—C15—C16—C20 179.53 (13) C21—N8—C28—C29 −161.71 (16)
C14—C15—C16—C17 179.75 (18) C33—N10—C29—C30 0.6 (3)
S1—C15—C16—C17 −0.6 (3) C33—N10—C29—C28 −178.2 (2)
C20—C16—C17—C18 1.6 (3) N8—C28—C29—N10 −145.01 (18)
C15—C16—C17—C18 −178.31 (19) N8—C28—C29—C30 36.2 (3)
C16—C17—C18—C19 −0.9 (3) N10—C29—C30—C31 −0.4 (3)
C20—N7—C19—C18 1.9 (3) C28—C29—C30—C31 178.36 (19)
Na2—N7—C19—C18 −166.24 (17) C29—C30—C31—C32 −0.3 (3)
C17—C18—C19—N7 −0.9 (4) C30—C31—C32—C33 0.7 (3)
C19—N7—C20—C16 −1.1 (3) C29—N10—C33—C32 −0.2 (4)
Na2—N7—C20—C16 167.84 (13) C31—C32—C33—N10 −0.4 (4)
C19—N7—C20—C12 177.74 (18)

Symmetry codes: (i) −x+2, y+1/2, −z+3/2; (ii) x, −y+1/2, z−1/2; (iii) −x+2, y−1/2, −z+3/2; (iv) −x+2, −y, −z+1; (v) x, −y+1/2, z+1/2.

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
O3—H3···N8 0.88 (2) 2.46 (3) 3.057 (2) 125 (2)
O3—H3···N9 0.88 (2) 1.87 (2) 2.7120 (19) 158 (3)
C31—H31···O6iii 0.95 2.53 3.397 (3) 152
C35—H35A···O6vi 0.98 2.55 3.502 (4) 166

Symmetry codes: (iii) −x+2, y−1/2, −z+3/2; (vi) −x+3, y−1/2, −z+3/2.

Funding Statement

Funding for this research was provided by: JSPS KAKENHI (grant No. JP20K05565).

References

  1. Addison, A. W., Rao, N. T., Reedijk, J., van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349–1356.
  2. Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350.
  3. Back, S. H., Park, J. H., Cui, C. & Ahn, D. J. (2016). Nat. Commun. 7, 10234. [DOI] [PMC free article] [PubMed]
  4. Baskar Raj, S., Muthiah, P. T., Bocelli, G. & Olla, R. (2002). Acta Cryst. E58, m513–m516.
  5. Bruno, I. J., Cole, J. C., Edgington, P. R., Kessler, M., Macrae, C. F., McCabe, P., Pearson, J. & Taylor, R. (2002). Acta Cryst. B58, 389–397. [DOI] [PubMed]
  6. Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
  7. Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.
  8. Huo, Y., Lu, J., Lu, T., Fang, X., Ouyang, X., Zhang, L. & Yuan, G. (2015). New J. Chem. 39, 333–341.
  9. Kubono, K., Kado, K., Kashiwagi, Y., Tani, K. & Yokoi, K. (2015). Acta Cryst. E71, 1545–1547. [DOI] [PMC free article] [PubMed]
  10. Kumar, A., Sardhalia, V., Sahoo, P. R., Kumar, A. & Kumar, S. (2021). J. Mol. Struct. 1235, 130233.
  11. Ma, S., Zhang, T., Zhao, J.-P., Liu, Z.-Y. & Liu, F.-C. (2021). Dalton Trans. 50, 1307–1312. [DOI] [PubMed]
  12. Merritt, L. L. Jr & Duffin, B. (1970). Acta Cryst. B26, 734–744.
  13. Mo, X., Chen, K., Chen, Z., Chu, B., Liu, D., Liang, Y., Xiong, J., Yang, Y., Cai, J. & Liang, F. (2021). Inorg. Chem. 60, 16128–16139. [DOI] [PubMed]
  14. Rigaku (2006). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.
  15. Rigaku (2016). CrystalStructure. Rigaku Corporation, Tokyo, Japan.
  16. Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8.
  17. Spek, A. L. (2020). Acta Cryst. E76, 1–11. [DOI] [PMC free article] [PubMed]
  18. Thiele, N. A., MacMillan, S. N. & Wilson, J. J. (2018). J. Am. Chem. Soc. 140, 17071–17078. [DOI] [PMC free article] [PubMed]
  19. Viossat, B., Khodadad, P. & Rodier, N. (1982). Bull. Soc. Chim. Fr. 72, 289–291.
  20. Wiberley, S. E. & Bassett, L. G. (1949). Anal. Chem. 21, 609–612.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S2056989023005959/yz2037sup1.cif

e-79-00726-sup1.cif (701.2KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989023005959/yz2037Isup2.hkl

e-79-00726-Isup2.hkl (301KB, hkl)

CCDC reference: 2279961

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES