Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2023 Jul 21;79(Pt 8):741–746. doi: 10.1107/S2056989023006096

Crystal-structure determination and Hirshfeld surface analysis of two new thio­phene derivatives: (E)-N-{2-[2-(benzo[b]thio­phen-2-yl)ethen­yl]-5-fluoro­phen­yl}benzene­sulfonamide and (E)-N-{2-[2-(benzo[b]thio­phen-2-yl)ethen­yl]-5-fluoro­phen­yl}-N-(but-2-yn-1-yl)benzene­sulfonamide

S Madhan a, M NizamMohideen a,*, Vinayagam Pavunkumar b, Arasambattu K MohanaKrishnan b
Editor: A Bricenoc
PMCID: PMC10439409  PMID: 37601405

The crystal structures of two benzo­thio­phene derivatives are described and the inter­molecular contacts in the crystals analysed using Hirshfeld surface analysis and two-dimensional fingerprint plots.

Keywords: crystal structure, thio­phene, benzo­thio­phene, flurophen­yl, phenyl­sulfonamide hydrogen bonding, Hirshfeld surface analysis

Abstract

In the title compounds, C22H16FNO2S2 (I) and C26H20FNO2S2 (II), the benzo­thio­phene rings are essentially planar with maximum deviations of 0.009 (1) and 0.001 (1) Å for the carbon and sulfur atom in compounds I and II, respectively. In I, the thio­phene ring system is almost orthogonal to the phenyl ring attached to the sulfonyl group, with a dihedral angle of 77.7 (1)°. In compound I, the mol­ecular structure is stabilized by weak C—H⋯O intra­molecular inter­actions formed by the sulfone oxygen atoms, which generate two S(5) ring motifs. In the crystal of I, N—H⋯O hydrogen bonds link the mol­ecules into R 2 2(8) rings, which are connected into a C(10) chain via C—H⋯F hydrogen bonds. Inter­molecular C—H⋯π inter­actions are also observed. In compound II, the mol­ecules are linked via C—H⋯O and C—H⋯F hydrogen bonding, generating infinite C(11) and C(13) chains running parallel to [010].

1. Chemical context

Thio­phene, C4H4S, belongs to a class of aromatic five-membered heterocycles comprising one S heteroatom. Thio­phene derivatives possess pharmacological and biological activities including anti­bacterial (Mishra et al., 2012), anti­allergic (Gillespie et al., 1985), anti-cancer and anti-toxic (Gewald et al., 1966), analgesic (Laddi et al., 1998; Chen et al., 2008), anti-inflammatory (Ferreira et al., 2006), anti­oxidant (Jarak et al., 2005), anti­tumor (Gadad et al., 1994), anti­microbial (Abdel-Rahman et al., 2003), anti­hypertensive (Monge Vega et al., 1980), anti-diabetes mellitus (Abdelhamid et al., 2009), gonadotropin releasing hormone antagonist (Sabins et al., 1944) and they are building blocks in many agrochemicals (Ansary & Omar, 2001). Thio­phene possesses promising pharmacological activities, such as anti-HIV PR inhibitor (Bonini et al., 2005) and anti-breast cancer (Brault et al., 2005). Benzo­thio­phenes are biologically energetic mol­ecules. One of the most significant drugs based on the benzo­thio­phene structure is Raloxifine, used to treat osteoporosis in postmenopausal women (Jordan, 2003). Benzo­thio­phenes are also present in luminescent components used in organic materials (Russell & Press, 1996). Thio­phene derivatives have a wide variety of applications in optical and electronic systems (Gather et al., 2008; He et al., 2009) and are used extensively in solar cells (Justin Thomas et al., 2008), organic light-emitting diodes (OLEDs) (Mazzeo et al., 2003), organic field-effect transistors (OFETs) (Zhan et al., 2007) and as NLO devices (Bedworth et al., 1996; Raposo et al., 2011). Thieno-pyridine products are used in medicine as allosteric adenosine receptors and in the treatment of adenosine-sensitive cardiac arrhythmias (Tumey et al., 2008; Grunewald et al., 2008). Recognizing the importance of such compounds in drug discovery and our ongoing research into the construction of novel thio­phene has prompted us to investigate the title thio­phene derivatives and we report herein their synthesis, crystal structures and Hirshfeld surface analysis. 1.

2. Structural commentary

The mol­ecular structure of compound I, C22H16FNO2S2 (Fig. 1), comprises a benzo­thio­phene ring system (S1/C1–C8) attached to an N-(5-fluoro-2-vinyl­phen­yl)benzene­sulfonamide (C7–C22/N1/S2/O1/O2/F1) while compound II, C26H20FNO2S2 (Fig. 2), comprises a benzo­thio­phene ring system (S1/C1–C8) attached to an N-but-2-yn-1-yl-N-(5-fluoro-2-vinyl­phen­yl)benzene­sulfonamide (C9–C15/N1/S2/O1/O2). In both compounds, the benzo­thio­phene ring systems (S1/C1–C8) are essentially planar with maximum deviations of 0.009 (1) and 0.001 (1) Å for atom C8 and S1 in compounds I and II, respectively. The mean planes of the thio­phene ring system in I make dihedral angles of 1.2 (2), 2.3 (2), 77.7 (2)° with the C1–C6, C11–C16 and C17–C22 phenyl rings. The mean planes of the thio­phene ring system in II make dihedral angles of 0.3 (2), 33.3 (2), 25.2 (2)°, respectively, with the C1–C6, C11–C16 and C17–C22 phenyl rings, The benzo­thio­phene ring system in I is almost orthogonal to the C17–C22 ring attached to sulfonyl group with dihedral angle of 77.7 (1)° in I. For both compounds, the bond lengths and angles are close to those observed for similar structures (Madhan et al., 2022, 2023).

Figure 1.

Figure 1

The mol­ecular structure of compound I, with atom labelling. Displacement ellipsoids are drawn at the 30% probability level.

Figure 2.

Figure 2

The mol­ecular structure of compound II, with atom labelling. Displacement ellipsoids are drawn at the 30% probability level.

In both compounds, the tetra­hedral configuration is distorted around atom S1. The increase in the O2—S2—O1 angle [118.64 (9) in I and 120.6 (2)° in II], with a simultaneous decrease in the N1—S2—C17 angle [106.35 (9) in I and 108.3 (2)° in II] from the ideal tetra­hedral value (109.5°) are attributed to the Thorpe–Ingold effect (Bassindale, 1984). The widening of the angles may be due to the repulsive inter­action between the two short S=O bonds. In compound II, the N1—C23 = 1.483 (6) and N1—C16 = 1.450 (5) Å bond lengths in the mol­ecule are longer than the mean Nsp 2—Csp 2 bond-length value of 1.355 (14) Å [Allen et al., 1987; Cambridge Structural Database (CSD), Version 5.37; Groom et al., 2016]. The elongation observed may be due to the electron-withdrawing character of the phenyl­sulfonyl group. In compound II, the sum of the bond angles around N1 (354.1°) indicates sp 2 hybridization.

In compound (I), the mol­ecular structure is stabilized by weak C15—H15⋯O1 intra­molecular inter­actions formed by the sulfone oxygen atoms, which generate two S(5) ring motifs (Fig. 1).

3. Supra­molecular features

In the crystal of I, the C10—H10⋯O2i hydrogen bond generates an inversion dimer with an Inline graphic (14) ring motif; within the ring, N1—H1N⋯O2ii hydrogen bonds link the mol­ecules into Inline graphic (8) ring motifs (Fig. 3 and Table 1). These rings are linked by the C(10) chain formed via the C22—H22⋯F1iii hydrogen bonds. No significant C–H⋯π inter­actions with centroid distances of less than 4Å are observed in the structure.

Figure 3.

Figure 3

A view along the a axis of the crystal packing of compound I. The hydrogen bonds (Table 1) are shown as dashed lines, and H atoms not involved in hydrogen bonding have been omitted.

Table 1. Hydrogen-bond geometry (Å, °) for I .

D—H⋯A D—H H⋯A DA D—H⋯A
C15—H15⋯O1 0.93 2.30 2.980 (3) 130
C10—H10⋯02i 0.93 2.51 3.383 (3) 157
N1—H1N⋯O2i 0.83 (2) 2.21 (2) 3.001 (2) 161 (2)
C22—H22⋯F1ii 0.93 2.44 3.116 (3) 130

Symmetry codes: (i) Inline graphic ; (ii) Inline graphic .

In thecrystal of II, mol­ecules are linked via C2—H2⋯O1i and C4⋯H4⋯F1ii inter­molecular hydrogen bonding, which generates infinite C(11) and C(13) chains running parallel to [010] (Bernstein et al., 1995). In addition, the crystal packing features inter­molecular C—H⋯π (C23—H23ACg1iii) inter­actions, where the Cg1 is the centroid of the C1–C6 ring (Table 2, Fig. 4). No significant π⋯π inter­actions with inter­centroid distances of less than 4Å are observed in either structure.

Table 2. Hydrogen-bond geometry (Å, °) for II .

Cg1 is the centroid of the C1–C6 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2⋯O1i 0.93 2.59 3.483 (7) 162
C4—H4⋯F1ii 0.93 2.52 3.188 (6) 130
C18—H18⋯S1iii 0.93 3.01 3.744 (6) 137
C23—H23ACg1iv 0.93 2.69 3.566 (6) 151

Symmetry codes: (i) Inline graphic ; (ii) Inline graphic ; (iii) Inline graphic ; (iv) Inline graphic .

Figure 4.

Figure 4

A view along the b axis of the crystal packing of compound II. The hydrogen bonds (Table 2) are shown as dashed lines, and H atoms not involved in hydrogen bonding have been omitted.

4. Hirshfeld surface analysis

A recent article by Tiekink and collaborators (Tan et al., 2019) reviews and describes the uses and utility of Hirshfeld surface analysis (Spackman & Jayatilaka, 2009), and the associated two-dimensional fingerprint plots (McKinnon et al., 2007), to analyse inter­molecular contacts in crystals. The various calculations (dnorm , curvedness and shape index and 2D fingerprint plots) were performed with CrystalExplorer17 (Turner et al., 2017).

The Hirshfeld surfaces of compounds I and II mapped over dnorm are given in Fig. 5, and the inter­molecular contacts are illustrated in Fig. 6 a for I and Fig. 7 a for II. They are colour-mapped with the normalized contact distance, d norm, from red (distances shorter than the sum of the van der Waals radii) through white to blue (distances longer than the sum of the van der Waals radii). The d norm surface was mapped over a fixed colour scale of −0.434 (red) to 1.449 (blue) for compound I and −0.119 (red) to 1.765 (blue) for compound II, where the red spots indicate the inter­molecular contacts involved in the hydrogen bonding. The electrostatic potential was also mapped on the Hirshfeld surface using a STO-3G basis set and the Hartee–Fock level of theory (Spackman et al., 2008; Jayatilaka et al., 2005). The presence of inter­actions is indicated by a red and blue colour on the shape-index surface (Fig. 6 b for I and 7b for II). Areas on the Hirshfeld surface with high curvedness tend to divide the surface into contact patches with each neighbouring mol­ecule. The coordination number in the crystal is defined by the curvedness of the Hirshfeld surface (Fig. 6 c for I and Fig. 7 c for II). The nearest neighbour coordination environment of a mol­ecule is identified from the colour patches on the Hirshfeld surface depending on their closeness to adjacent mol­ecules (Fig. 6 d for I and Fig. 7 d for II).

Figure 5.

Figure 5

The Hirshfeld surfaces of compounds I and II, mapped over d norm.

Figure 6.

Figure 6

The Hirshfeld surfaces for visualizing the inter­molecular contacts of compound I: (a) dnorm of compound I, showing the various inter­molecular contacts in the crystal, (b) shape index, (d) curvedness and (e) fragment patches.

Figure 7.

Figure 7

The Hirshfeld surfaces for visualizing the inter­molecular contacts of compound II: (a) dnorm of compound II, showing the various inter­molecular contacts in the crystal, (b) shape index, (d) curvedness and (e) fragment patches.

The fingerprint plots are given in Figs. 8 and 9. For compound I, they reveal that the principal inter­molecular contacts are H⋯H contacts at 36.9% (Fig. 8 b), H⋯C/C⋯H contacts at 26.1% (Fig. 8 c), O⋯H/H⋯O at 15.1% (Fig. 8 d), F⋯H/H⋯F at 9.2% (Fig. 8 e), C⋯C at 6.7% (Fig. 8 f), S⋯C/C⋯S at 2.2% (Fig. 8 g), S⋯H/H⋯S contacts at 0.9% (Fig. 8 i), F⋯C/C⋯F at 0.8% (Fig. 8 j), N⋯C/C⋯N at 0.7% (Fig. 8 k) and N⋯H/H⋯N contacts at 0.3% (Fig. 8 l).

Figure 8.

Figure 8

The full two-dimensional fingerprint plot for compound I, and fingerprint plots delineated into (b) H⋯H, (c) O⋯H/H⋯O, (d) C⋯H/H⋯C, (e) C⋯C and (f) N⋯H/H⋯N contacts.

Figure 9.

Figure 9

The full two-dimensional fingerprint plot for compound II, and fingerprint plots delineated into (b) C⋯C, (c) C⋯H/H⋯C, (d) C⋯·N/N⋯C, (e) C⋯O/O⋯C, (f) H⋯H, (g) N⋯H/H⋯N, (h) O⋯H/H⋯O and (I) S⋯H/H⋯S contacts.

For compound II, they reveal a similar trend, with the principal inter­molecular contacts being H⋯H/H⋯H at 41.4% (Fig. 9 b), H⋯C/C⋯H contacts at 25.1% (Fig. 9 c), O⋯H/H⋯O at 12.1% (Fig. (9d), F⋯H/H⋯F at 8.1% C⋯C at 4.6% (Fig. 9 e), C⋯·C at 4.7% (Fig. 9 f), S⋯H/H⋯S contacts at 4.5% (Fig. 9 g), S⋯C/C⋯S contacts at 2.1% (Fig. 9 h), C⋯O/O⋯C contacts at 1.0% (Fig. 9 i), F⋯S/S⋯F at 0.9% (Fig. 9 j) and O⋯O contacts at 0.3 (Fig. 9 k). In both compounds, the H⋯H inter­molecular contacts predominate, followed by the C⋯H/H⋯C and O⋯H/H⋯O contacts.

5. Synthesis and crystallization

Compound I: To a solution of (E)-2-(2-(benzo[b]thio­phen-2-yl)vin­yl)-5-fluoro­benzenaminium chloride (1.2 g, 3.934 mmol) in dry DCM (10 mL), pyridine (0.47 mL, 5.901 mmol) and PhSO2Cl (0.6 mL, 4.721 mmol) were added and stirred at room temperature for 12 h. After completion of the reaction (monitored by TLC), it was poured into crushed ice (50 g) containing conc. HCl (5 mL), extracted with DCM (2 × 20 mL) then washed with water (2 × 20 mL) and dried (Na2SO4). Removal of solvent in vacuo followed by crystallization from di­ethyl­ether (4 mL) afforded (E)-N-{2-[2-(benzo[b]thio­phen-2-yl)ethen­yl]-5-fluoro­phen­yl}benzene­sulf­onamide as a white solid.

Compound II: To a solution of (E)-N-{2-[2-(benzo[b]thio­phen-2-yl)vin­yl]-5-fluoro­phen­yl}benzene­sulfonamide (0.70 g, 1.711 mmol) in CH3CN (10 mL), K2CO3 (0.35 g, 2.567 mmol) and 1-bromo­but-2-yne (0.22 mL, 2.567 mmol) were added and stirred at room temperature for 12 h. After completion of the reaction (monitored by TLC), it was poured into crushed ice (50 g) containing conc. HCl (5 mL), extracted with ethyl acetate (2 × 20 mL) then washed with water (2 × 20 mL) and dried (Na2SO4). Removal of solvent in vacuo followed by crystallization from methanol (4 mL) afforded (E)-N-{2-[2-(benzo[b]thio­phen-2-yl)ethen­yl]-5-fluoro­phen­yl}-N-(but-2-yn-1-yl)benzene­sulfonamide as a white solid.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3. For compound I, the NH H atoms were located in difference-Fourier maps and freely refined. For compound II, they were included in calculated positions and refined as riding: N—H = 0.93 Å with U iso(H) = 1.2U eq(N). All C-bound H atoms were positioned geometrically and constrained to ride on their parent atoms: C–H = 0.93–0.97 Å with U iso(H) = 1.5U eq(C-meth­yl) and 1.2U eq(C) for other H atoms. In compound I, the thio­phene ring is disordered over two positions with a refined occupancy ratio of 0.756 (4):0.244 (3). The geometries were regularized using soft restraints.

Table 3. Experimental details.

  I II
Crystal data
Chemical formula C22H16FNO2S2 C26H20FNO2S2
M r 409.48 461.55
Crystal system, space group Monoclinic, P21/c Monoclinic, P21/c
Temperature (K) 297 297
a, b, c (Å) 7.9588 (1), 25.9840 (4), 9.5178 (2) 9.3517 (3), 31.7075 (11), 8.6063 (3)
β (°) 96.853 (1) 115.179 (2)
V3) 1954.23 (6) 2309.45 (14)
Z 4 4
Radiation type Cu Kα Cu Kα
μ (mm−1) 2.70 2.35
Crystal size (mm) 0.15 × 0.10 × 0.08 0.11 × 0.07 × 0.02
 
Data collection
Diffractometer Bruker D8 Venture Diffractometer Bruker D8 Venture Diffractometer
Absorption correction Multi-scan (SADABS; Bruker, 2016) Multi-scan (SADABS; Bruker, 2016)
T min, T max 0.589, 0.753 0.604, 0.753
No. of measured, independent and observed [I > 2σ(I)] reflections 44325, 3597, 2964 39443, 4270, 2098
R int 0.049 0.155
(sin θ/λ)max−1) 0.604 0.605
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.042, 0.115, 1.03 0.066, 0.232, 1.00
No. of reflections 3597 4270
No. of parameters 272 291
No. of restraints 11 0
H-atom treatment H atoms treated by a mixture of independent and constrained refinement H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.21, −0.28 0.33, −0.38

Computer programs: APEX2 and SAINT (Bruker, 2016), SHELXS2018/3 (Sheldrick, 2008), SHELXL2018/3 (Sheldrick, 2015), ORTEP-3 for Windows and WinGX (Farrugia, 2012), Mercury (Macrae et al., 2020), publCIF (Westrip, 2010) and PLATON (Spek, 2020).

Supplementary Material

Crystal structure: contains datablock(s) global, I, II. DOI: 10.1107/S2056989023006096/zn2029sup1.cif

e-79-00741-sup1.cif (2.4MB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989023006096/zn2029Isup2.hkl

e-79-00741-Isup2.hkl (197.4KB, hkl)

Structure factors: contains datablock(s) II. DOI: 10.1107/S2056989023006096/zn2029IIsup3.hkl

e-79-00741-IIsup3.hkl (234.3KB, hkl)

Supporting information file. DOI: 10.1107/S2056989023006096/zn2029Isup4.cml

Supporting information file. DOI: 10.1107/S2056989023006096/zn2029IIsup5.cml

CCDC references: 2280606, 2280605

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank the SAIF, IIT, Madras, India, for the data collection.

supplementary crystallographic information

(E)-N-{2-[2-(Benzo[b]thiophen-2-yl)ethenyl]-5-fluorophenyl}benzenesulfonamide (I) . Crystal data

C22H16FNO2S2 F(000) = 848
Mr = 409.48 Dx = 1.392 Mg m3
Monoclinic, P21/c Cu Kα radiation, λ = 1.54178 Å
a = 7.9588 (1) Å Cell parameters from 9457 reflections
b = 25.9840 (4) Å θ = 3.4–68.6°
c = 9.5178 (2) Å µ = 2.70 mm1
β = 96.853 (1)° T = 297 K
V = 1954.23 (6) Å3 Block, brown
Z = 4 0.15 × 0.10 × 0.08 mm

(E)-N-{2-[2-(Benzo[b]thiophen-2-yl)ethenyl]-5-fluorophenyl}benzenesulfonamide (I) . Data collection

Bruker D8 Venture Diffractometer 2964 reflections with I > 2σ(I)
Radiation source: micro focus sealed tube Rint = 0.049
ω and φ scans θmax = 68.7°, θmin = 3.4°
Absorption correction: multi-scan (SADABS; Bruker, 2016) h = −9→9
Tmin = 0.589, Tmax = 0.753 k = −31→31
44325 measured reflections l = −11→11
3597 independent reflections

(E)-N-{2-[2-(Benzo[b]thiophen-2-yl)ethenyl]-5-fluorophenyl}benzenesulfonamide (I) . Refinement

Refinement on F2 11 restraints
Least-squares matrix: full Hydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.042 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.115 w = 1/[σ2(Fo2) + (0.0496P)2 + 0.7846P] where P = (Fo2 + 2Fc2)/3
S = 1.03 (Δ/σ)max = 0.001
3597 reflections Δρmax = 0.21 e Å3
272 parameters Δρmin = −0.28 e Å3

(E)-N-{2-[2-(Benzo[b]thiophen-2-yl)ethenyl]-5-fluorophenyl}benzenesulfonamide (I) . Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

(E)-N-{2-[2-(Benzo[b]thiophen-2-yl)ethenyl]-5-fluorophenyl}benzenesulfonamide (I) . Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
C1 0.7141 (2) 0.64416 (6) 0.53276 (16) 0.0782 (7)
C2 0.6743 (3) 0.69557 (7) 0.5055 (2) 0.1055 (10)
H2 0.611424 0.704923 0.420704 0.127*
C3 0.7286 (3) 0.73300 (5) 0.6050 (3) 0.1127 (11)
H3 0.701996 0.767393 0.586823 0.135*
C4 0.8226 (3) 0.71902 (7) 0.7318 (2) 0.1109 (11)
H4 0.858902 0.744059 0.798407 0.133*
C5 0.8623 (3) 0.66761 (8) 0.75906 (17) 0.1018 (9)
H5 0.925238 0.658254 0.843872 0.122*
C6 0.8081 (2) 0.63018 (5) 0.65953 (18) 0.0788 (7)
S1' 0.8669 (7) 0.56832 (19) 0.7105 (5) 0.0855 (14) 0.243 (4)
C7' 0.709 (3) 0.5902 (6) 0.4679 (19) 0.103 (8) 0.243 (4)
H7' 0.649984 0.584659 0.378833 0.124* 0.243 (4)
C8' 0.790 (5) 0.5504 (7) 0.539 (2) 0.051 (5) 0.243 (4)
S1 0.6512 (2) 0.59509 (5) 0.41950 (14) 0.0758 (4) 0.757 (4)
C7 0.8282 (9) 0.5758 (2) 0.6526 (7) 0.0900 (18) 0.757 (4)
H7 0.893320 0.557894 0.724278 0.108* 0.757 (4)
C8 0.7498 (15) 0.5511 (3) 0.5389 (9) 0.067 (3) 0.757 (4)
C9 0.7644 (3) 0.49638 (9) 0.5064 (3) 0.0754 (6)
H9 0.808242 0.474482 0.579001 0.090*
C10 0.6922 (3) 0.47259 (9) 0.3953 (3) 0.0741 (6)
H10 0.632873 0.492988 0.325994 0.089*
C11 0.6936 (3) 0.41711 (8) 0.3671 (2) 0.0673 (6)
C12 0.7752 (4) 0.38326 (10) 0.4678 (3) 0.0976 (9)
H12 0.829122 0.396833 0.551708 0.117*
C13 0.7790 (5) 0.33108 (10) 0.4481 (3) 0.1019 (10)
H13 0.835045 0.309475 0.516146 0.122*
C14 0.6980 (4) 0.31212 (9) 0.3256 (3) 0.0837 (7)
C15 0.6143 (3) 0.34215 (8) 0.2231 (3) 0.0711 (6)
H15 0.557999 0.327509 0.141557 0.085*
C16 0.6145 (3) 0.39533 (7) 0.2428 (2) 0.0578 (5)
C17 0.6983 (2) 0.40434 (7) −0.0853 (2) 0.0545 (5)
C18 0.8053 (3) 0.44596 (9) −0.0912 (3) 0.0739 (6)
H18 0.770751 0.478886 −0.069161 0.089*
C19 0.9636 (3) 0.43766 (13) −0.1303 (3) 0.0927 (8)
H19 1.037422 0.465199 −0.134587 0.111*
C20 1.0139 (3) 0.38892 (15) −0.1632 (3) 0.0947 (9)
H20 1.121259 0.383777 −0.189882 0.114*
C21 0.9072 (4) 0.34806 (12) −0.1569 (3) 0.0888 (8)
H21 0.942294 0.315210 −0.179119 0.107*
C22 0.7481 (3) 0.35538 (9) −0.1179 (2) 0.0689 (6)
H22 0.675016 0.327657 −0.113642 0.083*
N1 0.5283 (2) 0.42741 (6) 0.1368 (2) 0.0616 (4)
O1 0.40697 (18) 0.36642 (5) −0.05058 (18) 0.0706 (4)
O2 0.42235 (19) 0.45927 (5) −0.09632 (17) 0.0674 (4)
F1 0.6977 (3) 0.26050 (5) 0.3036 (2) 0.1171 (6)
S2 0.49738 (6) 0.41360 (2) −0.03136 (6) 0.05557 (17)
H1N 0.545 (3) 0.4587 (6) 0.147 (2) 0.067*

(E)-N-{2-[2-(Benzo[b]thiophen-2-yl)ethenyl]-5-fluorophenyl}benzenesulfonamide (I) . Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0989 (18) 0.0723 (15) 0.0687 (14) −0.0213 (13) 0.0318 (13) −0.0024 (12)
C2 0.132 (3) 0.0839 (19) 0.103 (2) −0.0145 (18) 0.0231 (19) 0.0204 (17)
C3 0.135 (3) 0.0621 (16) 0.149 (3) −0.0154 (17) 0.052 (3) −0.0014 (19)
C4 0.135 (3) 0.081 (2) 0.126 (3) −0.0312 (19) 0.054 (2) −0.0337 (19)
C5 0.124 (2) 0.099 (2) 0.0829 (18) −0.0240 (19) 0.0139 (17) −0.0201 (16)
C6 0.0929 (17) 0.0706 (15) 0.0766 (16) −0.0123 (13) 0.0252 (13) −0.0080 (12)
S1' 0.104 (3) 0.077 (2) 0.074 (3) −0.0128 (19) 0.004 (2) −0.0059 (19)
C7' 0.127 (16) 0.121 (16) 0.059 (10) −0.069 (13) 0.001 (8) −0.016 (10)
C8' 0.045 (12) 0.060 (8) 0.050 (8) −0.004 (5) 0.017 (5) 0.001 (6)
S1 0.1095 (10) 0.0607 (5) 0.0576 (8) −0.0079 (5) 0.0109 (6) −0.0006 (4)
C7 0.111 (4) 0.077 (3) 0.076 (4) 0.003 (2) −0.010 (3) 0.000 (3)
C8 0.065 (6) 0.067 (3) 0.071 (3) −0.009 (2) 0.017 (2) −0.003 (2)
C9 0.0896 (17) 0.0647 (14) 0.0712 (14) 0.0018 (12) 0.0068 (12) 0.0001 (11)
C10 0.1028 (18) 0.0551 (12) 0.0632 (13) −0.0022 (12) 0.0055 (12) 0.0060 (10)
C11 0.0864 (15) 0.0516 (11) 0.0647 (13) 0.0000 (10) 0.0123 (11) 0.0086 (10)
C12 0.142 (3) 0.0674 (16) 0.0772 (17) −0.0011 (16) −0.0111 (17) 0.0139 (13)
C13 0.141 (3) 0.0651 (16) 0.095 (2) 0.0093 (16) −0.0046 (19) 0.0296 (15)
C14 0.114 (2) 0.0459 (12) 0.0930 (19) 0.0051 (12) 0.0186 (16) 0.0146 (12)
C15 0.0888 (16) 0.0472 (11) 0.0783 (15) 0.0022 (11) 0.0142 (12) 0.0065 (10)
C16 0.0645 (12) 0.0457 (10) 0.0658 (12) 0.0025 (9) 0.0186 (10) 0.0083 (9)
C17 0.0545 (10) 0.0502 (10) 0.0561 (11) −0.0008 (8) −0.0041 (8) −0.0033 (8)
C18 0.0654 (13) 0.0673 (14) 0.0871 (16) −0.0139 (11) 0.0014 (12) −0.0091 (12)
C19 0.0671 (15) 0.116 (2) 0.0935 (19) −0.0253 (16) 0.0020 (14) −0.0039 (17)
C20 0.0562 (14) 0.147 (3) 0.0796 (17) 0.0120 (17) 0.0026 (12) −0.0036 (18)
C21 0.0794 (17) 0.096 (2) 0.0904 (19) 0.0269 (15) 0.0098 (14) −0.0087 (15)
C22 0.0724 (14) 0.0582 (12) 0.0752 (14) 0.0077 (10) 0.0049 (11) −0.0050 (11)
N1 0.0745 (11) 0.0401 (8) 0.0700 (11) 0.0070 (8) 0.0081 (9) 0.0009 (8)
O1 0.0613 (8) 0.0459 (7) 0.1008 (12) −0.0087 (6) −0.0061 (8) −0.0028 (7)
O2 0.0711 (9) 0.0437 (7) 0.0826 (10) 0.0098 (6) −0.0111 (7) 0.0015 (7)
F1 0.1731 (17) 0.0454 (8) 0.1300 (14) 0.0126 (9) 0.0067 (12) 0.0189 (8)
S2 0.0546 (3) 0.0379 (2) 0.0718 (3) 0.00112 (18) −0.0029 (2) −0.0018 (2)

(E)-N-{2-[2-(Benzo[b]thiophen-2-yl)ethenyl]-5-fluorophenyl}benzenesulfonamide (I) . Geometric parameters (Å, º)

C1—C2 1.3900 C11—C12 1.402 (3)
C1—C6 1.3900 C12—C13 1.369 (4)
C1—C7' 1.531 (14) C12—H12 0.9300
C1—S1 1.7058 (18) C13—C14 1.356 (4)
C2—C3 1.3900 C13—H13 0.9300
C2—H2 0.9300 C14—F1 1.358 (3)
C3—C4 1.3900 C14—C15 1.360 (3)
C3—H3 0.9300 C15—C16 1.394 (3)
C4—C5 1.3900 C15—H15 0.9300
C4—H4 0.9300 C16—N1 1.421 (3)
C5—C6 1.3900 C17—C22 1.379 (3)
C5—H5 0.9300 C17—C18 1.381 (3)
C6—C7 1.426 (6) C17—S2 1.754 (2)
C6—S1' 1.727 (5) C18—C19 1.373 (4)
S1'—C8' 1.738 (17) C18—H18 0.9300
C7'—C8' 1.356 (18) C19—C20 1.375 (4)
C7'—H7' 0.9300 C19—H19 0.9300
C8'—C9 1.446 (17) C20—C21 1.365 (4)
S1—C8 1.732 (7) C20—H20 0.9300
C7—C8 1.345 (8) C21—C22 1.375 (4)
C7—H7 0.9300 C21—H21 0.9300
C8—C9 1.463 (7) C22—H22 0.9300
C9—C10 1.298 (3) N1—S2 1.6301 (19)
C9—H9 0.9300 N1—H1N 0.828 (16)
C10—C11 1.467 (3) O1—S2 1.4222 (14)
C10—H10 0.9300 O2—S2 1.4348 (14)
C11—C16 1.393 (3)
C2—C1—C6 120.0 C16—C11—C10 122.8 (2)
C2—C1—C7' 144.2 (7) C12—C11—C10 120.3 (2)
C6—C1—C7' 95.5 (7) C13—C12—C11 122.9 (3)
C2—C1—S1 123.88 (12) C13—C12—H12 118.5
C6—C1—S1 116.11 (12) C11—C12—H12 118.5
C3—C2—C1 120.0 C14—C13—C12 117.5 (3)
C3—C2—H2 120.0 C14—C13—H13 121.3
C1—C2—H2 120.0 C12—C13—H13 121.3
C2—C3—C4 120.0 C13—C14—F1 118.9 (2)
C2—C3—H3 120.0 C13—C14—C15 123.4 (2)
C4—C3—H3 120.0 F1—C14—C15 117.7 (3)
C5—C4—C3 120.0 C14—C15—C16 118.6 (2)
C5—C4—H4 120.0 C14—C15—H15 120.7
C3—C4—H4 120.0 C16—C15—H15 120.7
C4—C5—C6 120.0 C11—C16—C15 120.7 (2)
C4—C5—H5 120.0 C11—C16—N1 119.74 (18)
C6—C5—H5 120.0 C15—C16—N1 119.6 (2)
C5—C6—C1 120.0 C22—C17—C18 121.2 (2)
C5—C6—C7 134.3 (3) C22—C17—S2 119.30 (17)
C1—C6—C7 105.7 (3) C18—C17—S2 119.49 (17)
C5—C6—S1' 114.1 (2) C19—C18—C17 118.5 (2)
C1—C6—S1' 125.9 (2) C19—C18—H18 120.7
C6—S1'—C8' 86.1 (6) C17—C18—H18 120.7
C8'—C7'—C1 120.6 (13) C18—C19—C20 120.5 (3)
C8'—C7'—H7' 119.7 C18—C19—H19 119.7
C1—C7'—H7' 119.7 C20—C19—H19 119.7
C7'—C8'—C9 126.0 (15) C21—C20—C19 120.5 (3)
C7'—C8'—S1' 110.9 (13) C21—C20—H20 119.8
C9—C8'—S1' 119.1 (13) C19—C20—H20 119.8
C1—S1—C8 90.1 (2) C20—C21—C22 120.1 (3)
C8—C7—C6 117.7 (6) C20—C21—H21 119.9
C8—C7—H7 121.1 C22—C21—H21 119.9
C6—C7—H7 121.1 C21—C22—C17 119.2 (2)
C7—C8—C9 126.3 (6) C21—C22—H22 120.4
C7—C8—S1 110.1 (5) C17—C22—H22 120.4
C9—C8—S1 122.9 (5) C16—N1—S2 124.85 (14)
C10—C9—C8' 132.4 (8) C16—N1—H1N 116.0 (16)
C10—C9—C8 126.6 (4) S2—N1—H1N 109.5 (16)
C10—C9—H9 113.8 O1—S2—O2 118.64 (9)
C8'—C9—H9 113.8 O1—S2—N1 109.32 (10)
C9—C10—C11 127.2 (2) O2—S2—N1 104.32 (9)
C9—C10—H10 116.4 O1—S2—C17 108.01 (9)
C11—C10—H10 116.4 O2—S2—C17 109.55 (10)
C16—C11—C12 116.8 (2) N1—S2—C17 106.35 (9)
C6—C1—C2—C3 0.0 C8'—C9—C10—C11 171 (2)
C7'—C1—C2—C3 −171.5 (14) C8—C9—C10—C11 −174.3 (7)
S1—C1—C2—C3 178.91 (16) C9—C10—C11—C16 −178.7 (3)
C1—C2—C3—C4 0.0 C9—C10—C11—C12 2.1 (4)
C2—C3—C4—C5 0.0 C16—C11—C12—C13 −0.1 (5)
C3—C4—C5—C6 0.0 C10—C11—C12—C13 179.2 (3)
C4—C5—C6—C1 0.0 C11—C12—C13—C14 −0.7 (5)
C4—C5—C6—C7 178.8 (4) C12—C13—C14—F1 −179.2 (3)
C4—C5—C6—S1' −179.6 (2) C12—C13—C14—C15 −0.1 (5)
C2—C1—C6—C5 0.0 C13—C14—C15—C16 1.5 (4)
C7'—C1—C6—C5 175.0 (8) F1—C14—C15—C16 −179.3 (2)
S1—C1—C6—C5 −178.99 (15) C12—C11—C16—C15 1.6 (4)
C2—C1—C6—C7 −179.1 (3) C10—C11—C16—C15 −177.7 (2)
S1—C1—C6—C7 1.9 (3) C12—C11—C16—N1 179.5 (2)
C2—C1—C6—S1' 179.5 (3) C10—C11—C16—N1 0.2 (3)
C7'—C1—C6—S1' −5.5 (8) C14—C15—C16—C11 −2.3 (4)
C5—C6—S1'—C8' −171.8 (13) C14—C15—C16—N1 179.8 (2)
C1—C6—S1'—C8' 8.7 (14) C22—C17—C18—C19 −0.1 (4)
C2—C1—C7'—C8' 171 (2) S2—C17—C18—C19 178.41 (19)
C6—C1—C7'—C8' −2 (3) C17—C18—C19—C20 0.2 (4)
C1—C7'—C8'—C9 165 (2) C18—C19—C20—C21 −0.2 (4)
C1—C7'—C8'—S1' 8 (4) C19—C20—C21—C22 0.2 (4)
C6—S1'—C8'—C7' −8 (2) C20—C21—C22—C17 −0.1 (4)
C6—S1'—C8'—C9 −167 (3) C18—C17—C22—C21 0.0 (4)
C2—C1—S1—C8 −178.8 (5) S2—C17—C22—C21 −178.48 (19)
C6—C1—S1—C8 0.1 (5) C11—C16—N1—S2 153.99 (18)
C5—C6—C7—C8 177.3 (7) C15—C16—N1—S2 −28.1 (3)
C1—C6—C7—C8 −3.8 (9) C16—N1—S2—O1 58.1 (2)
C6—C7—C8—C9 175.1 (8) C16—N1—S2—O2 −174.05 (17)
C6—C7—C8—S1 4.0 (11) C16—N1—S2—C17 −58.28 (19)
C1—S1—C8—C7 −2.2 (8) C22—C17—S2—O1 −8.2 (2)
C1—S1—C8—C9 −173.7 (9) C18—C17—S2—O1 173.24 (18)
C7'—C8'—C9—C10 15 (5) C22—C17—S2—O2 −138.77 (17)
S1'—C8'—C9—C10 170.8 (10) C18—C17—S2—O2 42.7 (2)
C7—C8—C9—C10 −178.3 (8) C22—C17—S2—N1 109.03 (18)
S1—C8—C9—C10 −8.4 (13) C18—C17—S2—N1 −69.51 (19)

(E)-N-{2-[2-(Benzo[b]thiophen-2-yl)ethenyl]-5-fluorophenyl}benzenesulfonamide (I) . Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C15—H15···O1 0.93 2.30 2.980 (3) 130
C10—H10···02i 0.93 2.51 3.383 (3) 157
N1—H1N···O2i 0.83 (2) 2.21 (2) 3.001 (2) 161 (2)
C22—H22···F1ii 0.93 2.44 3.116 (3) 130

Symmetry codes: (i) −x+1, −y+1, −z; (ii) x, −y+1/2, z−1/2.

(E)-N-{2-[2-(Benzo[b]thiophen-2-yl)ethenyl]-5-fluorophenyl}-N-(but-2-yn-1-yl)benzenesulfonamide (II) . Crystal data

C26H20FNO2S2 F(000) = 960
Mr = 461.55 Dx = 1.327 Mg m3
Monoclinic, P21/c Cu Kα radiation, λ = 1.54178 Å
a = 9.3517 (3) Å Cell parameters from 3616 reflections
b = 31.7075 (11) Å θ = 2.8–65.4°
c = 8.6063 (3) Å µ = 2.35 mm1
β = 115.179 (2)° T = 297 K
V = 2309.45 (14) Å3 Solid, white
Z = 4 0.11 × 0.07 × 0.02 mm

(E)-N-{2-[2-(Benzo[b]thiophen-2-yl)ethenyl]-5-fluorophenyl}-N-(but-2-yn-1-yl)benzenesulfonamide (II) . Data collection

Bruker D8 Venture Diffractometer 2098 reflections with I > 2σ(I)
Radiation source: micro focus sealed tube Rint = 0.155
ω and φ scans θmax = 68.8°, θmin = 5.2°
Absorption correction: multi-scan (SADABS; Bruker, 2016) h = −11→11
Tmin = 0.604, Tmax = 0.753 k = −37→38
39443 measured reflections l = −10→10
4270 independent reflections

(E)-N-{2-[2-(Benzo[b]thiophen-2-yl)ethenyl]-5-fluorophenyl}-N-(but-2-yn-1-yl)benzenesulfonamide (II) . Refinement

Refinement on F2 Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: full H-atom parameters constrained
R[F2 > 2σ(F2)] = 0.066 w = 1/[σ2(Fo2) + (0.1325P)2] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.232 (Δ/σ)max < 0.001
S = 1.00 Δρmax = 0.33 e Å3
4270 reflections Δρmin = −0.37 e Å3
291 parameters Extinction correction: SHELXL-2018/3 (Sheldrick 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraints Extinction coefficient: 0.0040 (6)

(E)-N-{2-[2-(Benzo[b]thiophen-2-yl)ethenyl]-5-fluorophenyl}-N-(but-2-yn-1-yl)benzenesulfonamide (II) . Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

(E)-N-{2-[2-(Benzo[b]thiophen-2-yl)ethenyl]-5-fluorophenyl}-N-(but-2-yn-1-yl)benzenesulfonamide (II) . Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.2549 (6) 0.32808 (15) −0.0285 (6) 0.0669 (12)
C2 0.2360 (6) 0.33934 (17) −0.1918 (6) 0.0778 (14)
H2 0.311900 0.355578 −0.207042 0.093*
C3 0.1029 (7) 0.32600 (17) −0.3309 (7) 0.0825 (15)
H3 0.089065 0.333320 −0.441041 0.099*
C4 −0.0110 (6) 0.30184 (16) −0.3096 (6) 0.0763 (14)
H4 −0.100010 0.293249 −0.405677 0.092*
C5 0.0054 (6) 0.29044 (15) −0.1498 (6) 0.0722 (13)
H5 −0.071951 0.274308 −0.137015 0.087*
C6 0.1408 (5) 0.30337 (14) −0.0042 (5) 0.0626 (11)
C7 0.1836 (6) 0.29535 (14) 0.1732 (6) 0.0673 (12)
H7 0.122120 0.279321 0.212083 0.081*
C8 0.3227 (5) 0.31338 (13) 0.2798 (5) 0.0609 (11)
C9 0.3969 (6) 0.31034 (15) 0.4648 (6) 0.0682 (12)
H9 0.350312 0.292242 0.514847 0.082*
C10 0.5265 (6) 0.33107 (14) 0.5712 (6) 0.0633 (12)
H10 0.571084 0.350331 0.523168 0.076*
C11 0.6030 (5) 0.32555 (13) 0.7581 (5) 0.0586 (11)
C12 0.5852 (6) 0.28800 (14) 0.8336 (6) 0.0659 (12)
H12 0.521274 0.266825 0.763600 0.079*
C13 0.6595 (6) 0.28137 (15) 1.0084 (6) 0.0702 (13)
H13 0.646816 0.256223 1.056735 0.084*
C14 0.7527 (6) 0.31322 (16) 1.1085 (6) 0.0718 (13)
C15 0.7743 (6) 0.35085 (15) 1.0435 (6) 0.0694 (13)
H15 0.836300 0.371959 1.115842 0.083*
C16 0.7016 (5) 0.35672 (13) 0.8677 (5) 0.0585 (11)
C17 0.6526 (6) 0.45543 (14) 0.9821 (6) 0.0688 (13)
C18 0.5818 (8) 0.43930 (18) 1.0789 (7) 0.0899 (17)
H18 0.505581 0.418355 1.033546 0.108*
C19 0.6226 (9) 0.4539 (2) 1.2444 (9) 0.106 (2)
H19 0.574503 0.442786 1.310278 0.128*
C20 0.7344 (9) 0.4848 (2) 1.3093 (9) 0.109 (2)
H20 0.762946 0.494415 1.420623 0.131*
C21 0.8042 (9) 0.5017 (2) 1.2151 (9) 0.109 (2)
H21 0.878624 0.523052 1.260868 0.130*
C22 0.7647 (7) 0.48710 (16) 1.0491 (7) 0.0872 (16)
H22 0.812980 0.498474 0.983836 0.105*
C23 0.8877 (6) 0.40504 (16) 0.8143 (7) 0.0763 (14)
H23A 0.925473 0.380835 0.773623 0.092*
H23B 0.882648 0.428675 0.740500 0.092*
C24 1.0039 (6) 0.41494 (15) 0.9891 (7) 0.0764 (14)
C25 1.0953 (7) 0.42202 (17) 1.1328 (8) 0.0886 (17)
C26 1.2031 (8) 0.4310 (2) 1.3114 (8) 0.117 (2)
H26A 1.143024 0.438114 1.374590 0.175*
H26B 1.270375 0.454214 1.315234 0.175*
H26C 1.266516 0.406545 1.361637 0.175*
N1 0.7255 (4) 0.39583 (10) 0.7947 (5) 0.0613 (10)
O1 0.4505 (4) 0.41733 (11) 0.7156 (4) 0.0851 (11)
O2 0.6400 (5) 0.46681 (11) 0.6790 (5) 0.0949 (12)
S1 0.40923 (16) 0.34048 (5) 0.16627 (16) 0.0776 (5)
S2 0.60508 (16) 0.43535 (4) 0.77698 (15) 0.0715 (4)
F1 0.8245 (4) 0.30760 (10) 1.2817 (3) 0.0982 (10)

(E)-N-{2-[2-(Benzo[b]thiophen-2-yl)ethenyl]-5-fluorophenyl}-N-(but-2-yn-1-yl)benzenesulfonamide (II) . Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.060 (3) 0.078 (3) 0.063 (3) −0.003 (2) 0.026 (2) −0.005 (2)
C2 0.073 (3) 0.097 (4) 0.066 (3) −0.005 (3) 0.033 (3) 0.000 (3)
C3 0.080 (4) 0.107 (4) 0.059 (3) 0.005 (3) 0.029 (3) −0.003 (3)
C4 0.074 (3) 0.089 (3) 0.062 (3) 0.001 (3) 0.025 (3) −0.013 (2)
C5 0.063 (3) 0.079 (3) 0.066 (3) −0.008 (2) 0.019 (2) −0.013 (2)
C6 0.060 (3) 0.071 (3) 0.056 (2) −0.001 (2) 0.024 (2) −0.008 (2)
C7 0.065 (3) 0.072 (3) 0.065 (3) −0.015 (2) 0.028 (2) −0.005 (2)
C8 0.063 (3) 0.064 (2) 0.057 (2) −0.005 (2) 0.027 (2) −0.003 (2)
C9 0.068 (3) 0.071 (3) 0.061 (3) −0.007 (2) 0.023 (2) −0.004 (2)
C10 0.064 (3) 0.065 (3) 0.059 (2) −0.001 (2) 0.025 (2) 0.000 (2)
C11 0.057 (3) 0.061 (2) 0.057 (2) 0.000 (2) 0.024 (2) 0.0004 (19)
C12 0.068 (3) 0.064 (3) 0.066 (3) −0.003 (2) 0.029 (2) 0.000 (2)
C13 0.076 (3) 0.070 (3) 0.067 (3) 0.000 (3) 0.034 (3) 0.007 (2)
C14 0.079 (3) 0.081 (3) 0.049 (2) 0.007 (3) 0.021 (2) 0.009 (2)
C15 0.070 (3) 0.070 (3) 0.060 (3) −0.001 (2) 0.020 (2) −0.001 (2)
C16 0.062 (3) 0.056 (2) 0.057 (2) 0.002 (2) 0.025 (2) 0.0017 (18)
C17 0.076 (3) 0.063 (3) 0.070 (3) 0.003 (2) 0.033 (3) −0.001 (2)
C18 0.107 (5) 0.085 (3) 0.081 (4) −0.009 (3) 0.044 (3) −0.010 (3)
C19 0.132 (6) 0.106 (4) 0.096 (5) 0.003 (4) 0.063 (4) −0.003 (4)
C20 0.134 (6) 0.110 (5) 0.079 (4) 0.016 (5) 0.042 (4) −0.019 (4)
C21 0.119 (5) 0.096 (4) 0.099 (5) −0.019 (4) 0.034 (4) −0.035 (4)
C22 0.099 (4) 0.072 (3) 0.088 (4) −0.016 (3) 0.038 (3) −0.014 (3)
C23 0.074 (3) 0.076 (3) 0.081 (3) −0.009 (3) 0.035 (3) −0.005 (2)
C24 0.068 (3) 0.068 (3) 0.090 (4) −0.008 (3) 0.031 (3) −0.005 (3)
C25 0.081 (4) 0.075 (3) 0.101 (4) −0.008 (3) 0.030 (3) −0.008 (3)
C26 0.102 (5) 0.123 (5) 0.093 (4) −0.012 (4) 0.010 (4) −0.015 (4)
N1 0.064 (2) 0.0555 (19) 0.061 (2) −0.0017 (17) 0.0238 (18) 0.0022 (16)
O1 0.062 (2) 0.084 (2) 0.088 (2) 0.0006 (18) 0.0117 (18) −0.0075 (18)
O2 0.139 (3) 0.0680 (19) 0.077 (2) 0.000 (2) 0.045 (2) 0.0174 (17)
S1 0.0655 (8) 0.0998 (9) 0.0656 (7) −0.0180 (7) 0.0261 (6) −0.0056 (6)
S2 0.0822 (9) 0.0616 (6) 0.0625 (7) 0.0020 (6) 0.0229 (6) 0.0030 (5)
F1 0.114 (2) 0.107 (2) 0.0552 (16) −0.0063 (19) 0.0187 (16) 0.0166 (15)

(E)-N-{2-[2-(Benzo[b]thiophen-2-yl)ethenyl]-5-fluorophenyl}-N-(but-2-yn-1-yl)benzenesulfonamide (II) . Geometric parameters (Å, º)

C1—C2 1.387 (7) C15—C16 1.382 (6)
C1—C6 1.409 (7) C15—H15 0.9300
C1—S1 1.729 (5) C16—N1 1.450 (5)
C2—C3 1.376 (7) C17—C18 1.365 (7)
C2—H2 0.9300 C17—C22 1.387 (7)
C3—C4 1.386 (7) C17—S2 1.747 (5)
C3—H3 0.9300 C18—C19 1.388 (8)
C4—C5 1.367 (7) C18—H18 0.9300
C4—H4 0.9300 C19—C20 1.368 (9)
C5—C6 1.411 (6) C19—H19 0.9300
C5—H5 0.9300 C20—C21 1.349 (9)
C6—C7 1.426 (6) C20—H20 0.9300
C7—C8 1.358 (6) C21—C22 1.394 (8)
C7—H7 0.9300 C21—H21 0.9300
C8—C9 1.444 (6) C22—H22 0.9300
C8—S1 1.738 (5) C23—C24 1.467 (7)
C9—C10 1.340 (6) C23—N1 1.483 (6)
C9—H9 0.9300 C23—H23A 0.9700
C10—C11 1.466 (6) C23—H23B 0.9700
C10—H10 0.9300 C24—C25 1.188 (7)
C11—C12 1.400 (6) C25—C26 1.464 (8)
C11—C16 1.406 (6) C26—H26A 0.9600
C12—C13 1.378 (6) C26—H26B 0.9600
C12—H12 0.9300 C26—H26C 0.9600
C13—C14 1.372 (7) N1—S2 1.648 (4)
C13—H13 0.9300 O1—S2 1.431 (4)
C14—F1 1.361 (5) O2—S2 1.431 (4)
C14—C15 1.369 (7)
C2—C1—C6 121.0 (4) C15—C16—C11 121.1 (4)
C2—C1—S1 128.2 (4) C15—C16—N1 119.7 (4)
C6—C1—S1 110.8 (3) C11—C16—N1 119.2 (4)
C3—C2—C1 118.7 (5) C18—C17—C22 119.6 (5)
C3—C2—H2 120.6 C18—C17—S2 119.9 (4)
C1—C2—H2 120.6 C22—C17—S2 120.4 (4)
C2—C3—C4 121.1 (5) C17—C18—C19 120.6 (6)
C2—C3—H3 119.4 C17—C18—H18 119.7
C4—C3—H3 119.4 C19—C18—H18 119.7
C5—C4—C3 121.0 (5) C20—C19—C18 119.1 (7)
C5—C4—H4 119.5 C20—C19—H19 120.4
C3—C4—H4 119.5 C18—C19—H19 120.4
C4—C5—C6 119.4 (5) C21—C20—C19 121.4 (6)
C4—C5—H5 120.3 C21—C20—H20 119.3
C6—C5—H5 120.3 C19—C20—H20 119.3
C1—C6—C5 118.7 (4) C20—C21—C22 119.9 (6)
C1—C6—C7 111.9 (4) C20—C21—H21 120.0
C5—C6—C7 129.5 (5) C22—C21—H21 120.0
C8—C7—C6 113.6 (4) C17—C22—C21 119.3 (6)
C8—C7—H7 123.2 C17—C22—H22 120.3
C6—C7—H7 123.2 C21—C22—H22 120.3
C7—C8—C9 126.1 (4) C24—C23—N1 115.7 (4)
C7—C8—S1 111.7 (3) C24—C23—H23A 108.3
C9—C8—S1 122.2 (3) N1—C23—H23A 108.3
C10—C9—C8 126.3 (5) C24—C23—H23B 108.3
C10—C9—H9 116.9 N1—C23—H23B 108.3
C8—C9—H9 116.9 H23A—C23—H23B 107.4
C9—C10—C11 124.7 (5) C25—C24—C23 177.7 (6)
C9—C10—H10 117.7 C24—C25—C26 177.9 (7)
C11—C10—H10 117.7 C25—C26—H26A 109.5
C12—C11—C16 117.4 (4) C25—C26—H26B 109.5
C12—C11—C10 120.8 (4) H26A—C26—H26B 109.5
C16—C11—C10 121.8 (4) C25—C26—H26C 109.5
C13—C12—C11 122.1 (4) H26A—C26—H26C 109.5
C13—C12—H12 118.9 H26B—C26—H26C 109.5
C11—C12—H12 118.9 C16—N1—C23 117.3 (4)
C14—C13—C12 117.6 (4) C16—N1—S2 117.7 (3)
C14—C13—H13 121.2 C23—N1—S2 119.1 (3)
C12—C13—H13 121.2 C1—S1—C8 92.1 (2)
F1—C14—C15 118.2 (4) O2—S2—O1 120.6 (2)
F1—C14—C13 118.5 (4) O2—S2—N1 105.5 (2)
C15—C14—C13 123.3 (4) O1—S2—N1 105.9 (2)
C14—C15—C16 118.4 (4) O2—S2—C17 108.5 (2)
C14—C15—H15 120.8 O1—S2—C17 107.5 (2)
C16—C15—H15 120.8 N1—S2—C17 108.3 (2)
C6—C1—C2—C3 0.2 (8) C10—C11—C16—N1 1.5 (7)
S1—C1—C2—C3 180.0 (4) C22—C17—C18—C19 −0.9 (9)
C1—C2—C3—C4 0.1 (8) S2—C17—C18—C19 177.7 (5)
C2—C3—C4—C5 −0.1 (8) C17—C18—C19—C20 0.3 (10)
C3—C4—C5—C6 −0.2 (8) C18—C19—C20—C21 0.8 (11)
C2—C1—C6—C5 −0.5 (7) C19—C20—C21—C22 −1.1 (11)
S1—C1—C6—C5 179.7 (4) C18—C17—C22—C21 0.6 (9)
C2—C1—C6—C7 179.8 (5) S2—C17—C22—C21 −178.0 (5)
S1—C1—C6—C7 −0.1 (5) C20—C21—C22—C17 0.5 (10)
C4—C5—C6—C1 0.5 (7) C15—C16—N1—C23 64.9 (6)
C4—C5—C6—C7 −179.8 (5) C11—C16—N1—C23 −115.9 (5)
C1—C6—C7—C8 0.6 (6) C15—C16—N1—S2 −87.9 (5)
C5—C6—C7—C8 −179.0 (5) C11—C16—N1—S2 91.3 (5)
C6—C7—C8—C9 −179.2 (4) C24—C23—N1—C16 −69.7 (5)
C6—C7—C8—S1 −0.9 (5) C24—C23—N1—S2 82.7 (5)
C7—C8—C9—C10 −173.6 (5) C2—C1—S1—C8 179.8 (5)
S1—C8—C9—C10 8.3 (7) C6—C1—S1—C8 −0.4 (4)
C8—C9—C10—C11 −176.8 (4) C7—C8—S1—C1 0.7 (4)
C9—C10—C11—C12 24.6 (7) C9—C8—S1—C1 179.1 (4)
C9—C10—C11—C16 −158.0 (5) C16—N1—S2—O2 −171.5 (3)
C16—C11—C12—C13 0.5 (7) C23—N1—S2—O2 36.2 (4)
C10—C11—C12—C13 178.0 (5) C16—N1—S2—O1 −42.6 (4)
C11—C12—C13—C14 0.2 (7) C23—N1—S2—O1 165.2 (3)
C12—C13—C14—F1 178.7 (4) C16—N1—S2—C17 72.5 (4)
C12—C13—C14—C15 0.4 (8) C23—N1—S2—C17 −79.8 (4)
F1—C14—C15—C16 −180.0 (4) C18—C17—S2—O2 156.6 (5)
C13—C14—C15—C16 −1.6 (8) C22—C17—S2—O2 −24.9 (5)
C14—C15—C16—C11 2.4 (7) C18—C17—S2—O1 24.6 (5)
C14—C15—C16—N1 −178.4 (4) C22—C17—S2—O1 −156.9 (4)
C12—C11—C16—C15 −1.8 (7) C18—C17—S2—N1 −89.4 (5)
C10—C11—C16—C15 −179.3 (4) C22—C17—S2—N1 89.1 (4)
C12—C11—C16—N1 179.0 (4)

(E)-N-{2-[2-(Benzo[b]thiophen-2-yl)ethenyl]-5-fluorophenyl}-N-(but-2-yn-1-yl)benzenesulfonamide (II) . Hydrogen-bond geometry (Å, º)

Cg1 is the centroid of the C1–C6 ring.

D—H···A D—H H···A D···A D—H···A
C2—H2···O1i 0.93 2.59 3.483 (7) 162
C4—H4···F1ii 0.93 2.52 3.188 (6) 130
C18—H18···S1iii 0.93 3.01 3.744 (6) 137
C23—H23A···Cg1iv 0.93 2.69 3.566 (6) 151

Symmetry codes: (i) x, y, z−1; (ii) x−1, y, z−2; (iii) x, y, z+1; (iv) x+1, y, z+1.

References

  1. Abdelhamid, A. O. (2009). J. Heterocycl. Chem. 46, 680–686.
  2. Abdel-Rahman, A. E., Bakhite, A. E. & Al-Taifi, E. A. (2003). Pharmazie, 58, 372–377. [DOI] [PubMed]
  3. Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  4. Ansary, A. K. & Omar, H. A. (2001). Bull. Faculty Pharm. 39, 17.
  5. Bassindale, A. (1984). The Third Dimension in Organic Chemistry, ch. 1, p. 11. New York: John Wiley and Sons.
  6. Bedworth, P. V., Cai, Y., Jen, A. & Marder, S. R. (1996). J. Org. Chem. 61, 2242–2246.
  7. Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
  8. Bonini, C., Chiummiento, L., Bonis, M. D., Funicello, M., Lupattelli, P., Suanno, G., Berti, F. & Campaner, P. (2005). Tetrahedron, 61, 6580–6589.
  9. Brault, L., Migianu, E., Néguesque, A., Battaglia, E., Bagrel, D. & Kirsch, G. (2005). Eur. J. Med. Chem. 40, 757–763. [DOI] [PubMed]
  10. Bruker (2016). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
  11. Chen, H. J., Wang, W., l Wang, G. F., Shi, L. P., Gu, M., Ren, Y. D. & Hou, L. F. (2008). Med. Chem. 3, 1316–1321. [DOI] [PubMed]
  12. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  13. Ferreira, C. F. R., Queiroz, M. R. P., Vilas-Boas, M., Estevinho, L. M., Begouin, A. & Kirsch, G. (2006). Bioorg. Med. Chem. Lett. 16, 1384–1387. [DOI] [PubMed]
  14. Gadad, A. K., Kumar, H., Shishoo, C. J., Mkhazi, I. & Mahajanshetti, C. S. (1994). Ind. J. Chem. Soc. 33, 298–301.
  15. Gather, M. C., Heeney, M., Zhang, W., Whitehead, K. S., Bradley, D. D. C., McCulloch, I. & Campbell, A. J. (2008). Chem. Commun. pp. 1079–1081. [DOI] [PubMed]
  16. Gewald, K., Schinke, E. & Botcher, H. (1966). Chem. Ber. 99, 99–100.
  17. Gillespie, E., Dungan, K. M., Gomoll, A. W. & Seidehamel, R. J. (1985). Int. J. Immunopharmacol. 7, 655–660. [DOI] [PubMed]
  18. Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
  19. Grunewald, G. L., Seim, M. R., Bhat, S. R., Wilson, M. E. & Criscione, K. R. (2008). Bioorg. Med. Chem. 16, 542–559. [DOI] [PMC free article] [PubMed]
  20. He, M., Li, J., Sorensen, M. L., Zhang, F., Hancock, R. R., Fong, H. H., Pozdin, V. A., Smilgies, D. & Malliaras, G. G. (2009). J. Am. Chem. Soc. 131, 11930–11938. [DOI] [PubMed]
  21. Jarak, I., Kralj, M. S., Šuman, L., Pavlović, G., Dogan, J., Piantanida, I. Z., Žinić, M., Pavelić, K. & Karminski-Zamola, G. (2005). J. Med. Chem. 48, 2346–2360. [DOI] [PubMed]
  22. Jayatilaka, D., Grimwood, D. J., Lee, A., Lemay, A., Russel, A. J., Taylor, C., Wolff, S. K., Cassam-Chenai, P. & Whitton, A. (2005). TONTO – A System for Computational Chemistry. Available at: http://hirshfeldsurface.net/
  23. Jordan, V. C. (2003). J. Med. Chem. 46, 1081–1111. [DOI] [PubMed]
  24. Justin Thomas, K. R., Hsu, Y. C., Lin, J. T., Lee, K. M., Ho, K. C., Lai, C. H., Cheng, Y. M. & Chou, P. T. (2008). Chem. Mater. 20, 1830–1840.
  25. Laddi, U. V., Talwar, M. B., Desai, S. R., Somannavar, Y. S., Bennur, R. S. & Bennur, S. C. (1998). Indian Drugs, 35, 509–513.
  26. Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235. [DOI] [PMC free article] [PubMed]
  27. Madhan, S., NizamMohideen, M., Pavunkumar, V. & MohanaKrishnan, A. K. (2022). Acta Cryst. E78, 1198–1203.
  28. Madhan, S., NizamMohideen, M., Pavunkumar, V. & Mohana­Krishnan, A. K. (2023). Acta Cryst. E79, 521–525. [DOI] [PMC free article] [PubMed]
  29. Mazzeo, M., Vitale, V., Della Sala, F., Pisignano, D., Anni, M., Barbarella, G., Favaretto, L., Zanelli, A., Cingolani, R. & Gigli, G. (2003). Adv. Mater. 15, 2060–2063.
  30. McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816. [DOI] [PubMed]
  31. Mishra, R., Tomer, I. & Kumar, S. (2012). Der Pharmacia Sinica, 3, 332–336.
  32. Monge Vega, A., Aldana, I., Rabbani, M. M. & Fernandez-Alvarez, E. (1980). Heterocycl. Chem. 17, 77–80.
  33. Nathan Tumey, L., Boschelli, D. H., Lee, J. & Chaudhary, D. (2008). Bioorg. Med. Chem. Lett. 18, 4420–4423. [DOI] [PubMed]
  34. Raposo, M. M. M., Fonseca, A. M. C., Castro, M. C. R., Belsley, M., Cardoso, M. F. S., Carvalho, L. M. & Coelho, P. J. (2011). Dyes Pigments, 91, 62–73.
  35. Russell, R. K. & Press, J. B. (1996). Comprehensive Heterocyclic Chemistry II, Vol. 2, edited by A. R. Katritzky, C. W. Rees & E. F. V. Scriven. pp. 679–729. Oxford: Pergamon Press.
  36. Sabins, R. W. (1944). Sulfur Rep. 16, 1.
  37. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  38. Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8.
  39. Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.
  40. Spackman, M. A., McKinnon, J. J. & Jayatilaka, D. (2008). CrystEngComm, 10, 377–388.
  41. Spek, A. L. (2020). Acta Cryst. E76, 1–11. [DOI] [PMC free article] [PubMed]
  42. Tan, S. L., Jotani, M. M. & Tiekink, E. R. T. (2019). Acta Cryst. E75, 308–318. [DOI] [PMC free article] [PubMed]
  43. Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. University of Western Australia. http://hirshfeldsurface.net
  44. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.
  45. Zhan, X., Tan, Z.-A., Domercq, B., An, Z., Zhang, X., Barlow, S., Li, Y.-F., Zhu, D.-B., Kippelen, B. & Marder, S. R. (2007). J. Am. Chem. Soc. 129, 7246–7247. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I, II. DOI: 10.1107/S2056989023006096/zn2029sup1.cif

e-79-00741-sup1.cif (2.4MB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989023006096/zn2029Isup2.hkl

e-79-00741-Isup2.hkl (197.4KB, hkl)

Structure factors: contains datablock(s) II. DOI: 10.1107/S2056989023006096/zn2029IIsup3.hkl

e-79-00741-IIsup3.hkl (234.3KB, hkl)

Supporting information file. DOI: 10.1107/S2056989023006096/zn2029Isup4.cml

Supporting information file. DOI: 10.1107/S2056989023006096/zn2029IIsup5.cml

CCDC references: 2280606, 2280605

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES