Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2023 Jul 14;79(Pt 8):736–740. doi: 10.1107/S2056989023006084

Crystal structure and Hirshfeld surface analysis of (E)-1-(2,4-di­methyl­furan-3-yl)-3-phenyl­prop-2-en-1-one

Ali N Khalilov a,b, Victor N Khrustalev c,d, Aida I Samigullina d, Mehmet Akkurt e, Rovnag M Rzayev a, Ajaya Bhattarai f,*, İbrahim G Mamedov b
Editor: L Van Meerveltg
PMCID: PMC10439413  PMID: 37601402

In the crystal, pairs of mol­ecules are linked by C—H⋯O hydrogen bonds, forming dimers with Inline graphic (14) ring motifs. Mol­ecules are connected via C—H⋯π inter­actions forming a three-dimensional network.

Keywords: crystal structure; 2,4-di­methyl­furan; chalcones; hydrogen bond; C—H⋯π inter­actions; Hirshfeld surface analysis

Abstract

The title compound, C15H14O2, adopts an E configuration about the C=C double bond. The furan ring is inclined to the phenyl ring by 12.03 (9)°. In the crystal, pairs of mol­ecules are linked by C—H⋯O hydrogen bonds, forming dimers with R 2 2(14) ring motifs. The mol­ecules are connected via C—H⋯π inter­actions, forming a three dimensional network. No π–π inter­actions are observed.

1. Chemical context

Various C—C, C—N, C—S and C—O bond-formation reactions are keystones in organic synthesis. The application of such reactions has been expanded considerably, extending these approaches in different branches of chemistry, including green, medicinal, pharmaceutical and natural products chemistry, material science, supra­molecular chemistry (Asadov et al., 2003; Çelik et al., 2023; Chalkha et al., 2023; Gurbanov et al., 2020; Zubkov et al., 2018). α,β-Unsaturated ketones containing ar­yl–aryl or ar­yl–alkyl groups at both ends are known as chalcones or enones. There have been several important examples of enone derivatives used as target products and also as synthetic inter­mediates. Many natural compounds containing enone moieties, such as cyanthiwigin U, (+)-cepharamine, phorbol and grandisine G, have been the object of a total synthesis (Cuthbertson & Taylor, 2013; Kawamura et al., 2016). These compounds have been obtained by many solvent-assisted or solvent-free methods. The enone moiety is a widespread structural motif of various synthetic biologically active compounds, possessing enzyme inhibitory, anti­cancer and anti­microbial activity (Poustforoosh et al., 2022; Tapera et al., 2022; Sarkı et al., 2023).

In a continuation of our investigations in heterocyclic systems exhibiting biological activity and in the framework of ongoing structural studies (Maharramov et al., 2021, 2022), we report herein the crystal structure and Hirshfeld surface analysis of the title compound, (E)-1-(2,4-di­methyl­furan-3-yl)-3-phenyl­prop-2-en-1-one. 1.

2. Structural commentary

As seen as Fig. 1, the title compound adopts an E configuration about the C=C double bond. The whole mol­ecule is nearly planar. The furan ring (O1/C2–C5) is inclined to the phenyl ring (C9–C14) by 12.03 (9)°. The torsion angles are C2—C3—C6—O2 = 14.5 (2), C2—C3—C6—C7 = −164.79 (15), C3—C6—C7—C8 = −173.80 (15), C6—C7—C8—C9 = 179.30 (15) and C7—C8—C9—C10 = 172.52 (16)°. The geometrical parameter values of the the title compound are in agreement with those reported for similar compounds in the Database survey section.

Figure 1.

Figure 1

The mol­ecular structure of the title compound, showing the atom labelling and displacement ellipsoids drawn at the 50% probability level.

3. Supra­molecular features and Hirshfeld surface analysis

In the crystal, pairs of mol­ecules are linked by C—H⋯O hydrogen bonds, forming dimers with Inline graphic (14) ring motifs (Bernstein et al., 1995; Table 1; Figs. 2 and 3). The mol­ecules are connected via C—H⋯π inter­actions, forming a three-dimensional network (Table 1; Fig. 4). No π–π inter­actions are observed.

Table 1. Hydrogen-bond geometry (Å, °).

Cg1 and Cg2 are the centroids of the furan (O1/C2–C5) and phenyl (C9–C14) rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C10—H10⋯O2i 0.95 2.52 3.413 (2) 157
C12—H12⋯Cg1ii 0.95 2.91 3.7339 (19) 146
C15—H15BCg2iii 0.98 2.85 3.6366 (19) 137

Symmetry codes: (i) Inline graphic ; (ii) Inline graphic ; (iii) Inline graphic .

Figure 2.

Figure 2

View of the C—H⋯O hydrogen bonds and C—H⋯π inter­actions of the title compound down the a axis. Only the H atoms involved in these inter­actions have been included.

Figure 3.

Figure 3

View of the C—H⋯O hydrogen bonds and C—H⋯π inter­actions of the title compound down the b axis. Only the H atoms involved in these inter­actions have been included.

Figure 4.

Figure 4

View of the C—H⋯O hydrogen bonds and C—H⋯π inter­actions of the title compound down the c axis. Only the H atoms involved in these inter­actions have been included.

CrystalExplorer17.5 (Spackman et al., 2021) was used to compute Hirshfeld surfaces of the title mol­ecule and two-dimensional fingerprints. The d norm mappings for the title compound were performed in the range −0.1518 (red) to +1.1567 (blue) a.u. On the d norm surfaces, bright-red spots indicate the locations of the C—H⋯O inter­actions and O⋯C/C⋯O contacts (Tables 1 and 2; Fig. 5 a,b).

Table 2. Summary of short inter­atomic contacts (Å) in the title compound.

H1B⋯H8 2.57 −1 + x, y, z
H1C⋯H13 2.52 Inline graphic  − x, 1 − y, Inline graphic  + z
H1B⋯H8 2.47 Inline graphic  + x, Inline graphic  − y, 1 − z
H1A⋯H10 2.39 Inline graphic  + x, Inline graphic  − y, 1 − z
C12⋯H5 2.94 1 − x, Inline graphic  + y, Inline graphic  − z
H13⋯H1A 2.49 Inline graphic  − x, 1 − y, − Inline graphic  + z
C15⋯H11 3.05 2 − x, − Inline graphic  + y, Inline graphic  − z

Figure 5.

Figure 5

(a) Front and (b) back sides of the three-dimensional Hirshfeld surface of the title compound mapped over d norm, with a fixed colour scale of −0.1518 to +1.1567 a.u.

The most important inter­atomic contact is H⋯H (51.1%; Fig. 6 b) as it makes the highest contribution to the crystal packing. The C⋯H/H⋯C (Fig. 6 c; 25.3%), O⋯H/H⋯O (Fig. 6 d; 15.9%), C⋯C (5.1%) and O⋯C/C⋯O (2.5%) contacts have little directional influence on the mol­ecular packing.

Figure 6.

Figure 6

The two-dimensional fingerprint plots of the title compound, showing (a) all inter­actions, and delineated into (b) H⋯H, (c) C⋯H/H⋯C and (d) O⋯H/H⋯O inter­actions. [d e and d i represent the distances from a point on the Hirshfeld surface to the nearest atoms outside (external) and inside (inter­nal) the surface, respectively].

4. Database survey

A search of the Cambridge Structural Database (CSD, Version 5.43, last update November 2022; Groom et al., 2016) for the ‘1-(furan-3-yl)-3-phenyl­prop-2-en-1-one’ skeleton of the title compound yielded one hit, 1-(3-fur­yl)-3-[3-(tri­fluoro­meth­yl)phen­yl]prop-2-en-1-one (CSD refcode KUDNAA; Bąkowicz et al., 2015). When the positions of the furan and phenyl rings are switched, 1-(3-chloro­phen­yl)-3-(3-fur­yl)prop-2-en-1-one (NUQFOW; Zingales et al. 2015), (E)-3-(2-fur­yl)-1-phenyl­prop-2-en-1-one (NOTCUW01; Vázquez-Vuelvas et al. 2015) are the most similar structures.

In KUDNAA, mol­ecules are linked by inter­molecular C—H⋯O inter­actions, forming zigzag chains with C(5) motifs along the b-axis direction. In addition, mol­ecules are connected by face-to-face π–π stacking inter­actions [centroid–centroid distances = 3.926 (3) and 3.925 (2) Å] between the opposing benzene and furan rings of the mol­ecules along the c-axis direction. In NUQFOW, the mol­ecule exhibits a non-planar geometry, the furan ring being inclined to the benzene ring by 50.52 (16)°. In the crystal of NUQFOW, mol­ecules stack along the a-axis; however, there are no significant inter­molecular inter­actions present. In NOTCUW01, the mol­ecule also adopts an E configuration about the C=C double bond and the furan and phenyl rings are inclined to one another by 24.07 (7)°. In the crystal of NOTCUW01, mol­ecules are connected by weak C—H⋯O hydrogen bonds and C—H⋯π inter­actions, forming ribbons extending along the c-axis direction.

5. Synthesis and crystallization

To a solution of 1-(2,4-di­methyl­furan-3-yl)ethan-1-one (2 g, 14.5 mmol) in ethanol (10 mL), were added 10 mL of aqueous solution of sodium hydroxide (0.65 g, 16.3 mmol) and the mixture was stirred at room temperature for 2 h. Then benzaldehyde (1.73 g, 16.3 mmol) was added to the vigorously stirred reaction mixture and it was left overnight. The precipitated crystals were separated by filtration and recrystallized from an ethanol/water (1:1) solution (yield 90%; m.p. 349–350 K).

1H NMR (300 MHz, DMSO-d 6, ppm): 2.1 (s, 3H, CH3); 2.5 (s, 3H, CH3); 7.2 (d, 1H, =CH, 3 J H–H = 15.8 Hz); 7.3 (s, 1H, fur.), 7.4 (m, 3H, arom.), 7.5 (d, 1H, =CH, 3 J H–H = 15.8 Hz); 7.8 (m, 2H, arom.). 13C NMR (75 MHz, DMSO-d 6, ppm): 10.3 (CH3), 15.0 (CH3), 120.4 (Cquat.), 122.9 (Cquat.), 126.3 (=CH), 128.9 (CH, arom.), 129.4 (CH, arom.), 130.9 (CH, arom.), 134.8 (Cquat.), 139.0 (CH, furan), 142.8 (=CH), 158.2 (Cquat.), 187.7 (CO).

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3. All C-bound H atoms were placed at calculated positions and refined using a riding model, with C—H = 0.95 and 0.98 Å, and with U iso(H) = 1.2 or 1.5U eq(C).

Table 3. Experimental details.

Crystal data
Chemical formula C15H14O2
M r 226.26
Crystal system, space group Orthorhombic, P212121
Temperature (K) 100
a, b, c (Å) 5.84787 (5), 12.18109 (9), 16.24568 (15)
V3) 1157.24 (2)
Z 4
Radiation type Cu Kα
μ (mm−1) 0.68
Crystal size (mm) 0.24 × 0.20 × 0.18
 
Data collection
Diffractometer XtaLAB Synergy, Dualflex, HyPix
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2021)
T min, T max 0.579, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 12000, 2410, 2382
R int 0.031
(sin θ/λ)max−1) 0.634
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.030, 0.081, 1.06
No. of reflections 2410
No. of parameters 157
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.18, −0.24
Absolute structure Flack x determined using 940 quotients [(I +)−(I )]/[(I +)+(I )] (Parsons et al., 2013)
Absolute structure parameter 0.16 (7)

Computer programs: CrysAlis PRO (Rigaku OD, 2021), SHELXT2014/5 (Sheldrick, 2015a ), SHELXL2018/3 (Sheldrick, 2015b ), ORTEP-3 for Windows (Farrugia, 2012) and PLATON (Spek, 2020).

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989023006084/vm2287sup1.cif

e-79-00736-sup1.cif (364.9KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989023006084/vm2287Isup2.hkl

e-79-00736-Isup2.hkl (193.2KB, hkl)

Supporting information file. DOI: 10.1107/S2056989023006084/vm2287Isup3.cml

CCDC reference: 2280559

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

Authors’ contributions are as follows. Conceptualization, ANK and IGM; methodology, ANK, FNN and IGM; investigation, ANK, MA and AİS; writing (original draft), MA and ANK; writing (review and editing of the manuscript), MA and ANK; visualization, MA, ANK and IGM; funding acquisition, VNK, AB and ANK; resources, AB, VNK and RMR; supervision, ANK and MA.

supplementary crystallographic information

Crystal data

C15H14O2 Dx = 1.299 Mg m3
Mr = 226.26 Cu Kα radiation, λ = 1.54184 Å
Orthorhombic, P212121 Cell parameters from 10780 reflections
a = 5.84787 (5) Å θ = 4.5–77.7°
b = 12.18109 (9) Å µ = 0.68 mm1
c = 16.24568 (15) Å T = 100 K
V = 1157.24 (2) Å3 Prism, colourless
Z = 4 0.24 × 0.20 × 0.18 mm
F(000) = 480

Data collection

XtaLAB Synergy, Dualflex, HyPix diffractometer 2382 reflections with I > 2σ(I)
Radiation source: micro-focus sealed X-ray tube Rint = 0.031
φ and ω scans θmax = 77.8°, θmin = 4.5°
Absorption correction: multi-scan (CrysAlisPro; Rigaku OD, 2021) h = −7→6
Tmin = 0.579, Tmax = 1.000 k = −15→15
12000 measured reflections l = −20→20
2410 independent reflections

Refinement

Refinement on F2 Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: full H-atom parameters constrained
R[F2 > 2σ(F2)] = 0.030 w = 1/[σ2(Fo2) + (0.0426P)2 + 0.3199P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.081 (Δ/σ)max < 0.001
S = 1.06 Δρmax = 0.18 e Å3
2410 reflections Δρmin = −0.24 e Å3
157 parameters Extinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraints Extinction coefficient: 0.0046 (4)
Primary atom site location: difference Fourier map Absolute structure: Flack x determined using 940 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
Secondary atom site location: difference Fourier map Absolute structure parameter: 0.16 (7)

Special details

Experimental. CrysAlisPro 1.171.41.117a (Rigaku OD, 2021) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 −0.1250 (2) 0.42159 (10) 0.52334 (8) 0.0225 (3)
O2 0.4218 (2) 0.63977 (10) 0.51486 (7) 0.0208 (3)
C1 −0.0327 (3) 0.59606 (14) 0.58548 (11) 0.0211 (4)
H1A −0.1936 0.5903 0.6018 0.032*
H1B −0.0064 0.6672 0.5590 0.032*
H1C 0.0647 0.5898 0.6343 0.032*
C2 0.0234 (3) 0.50662 (13) 0.52698 (10) 0.0174 (3)
C3 0.1991 (3) 0.49066 (13) 0.47138 (10) 0.0162 (3)
C4 0.1518 (3) 0.38801 (13) 0.43028 (10) 0.0183 (4)
C5 −0.0431 (3) 0.34981 (13) 0.46379 (11) 0.0197 (3)
H5 −0.1150 0.2828 0.4488 0.024*
C6 0.3897 (3) 0.56901 (13) 0.46209 (10) 0.0165 (3)
C7 0.5382 (3) 0.56193 (14) 0.38864 (10) 0.0184 (3)
H7 0.5012 0.5122 0.3456 0.022*
C8 0.7247 (3) 0.62533 (13) 0.38247 (10) 0.0169 (3)
H8 0.7528 0.6742 0.4269 0.020*
C9 0.8896 (3) 0.62758 (13) 0.31489 (10) 0.0162 (3)
C10 1.0585 (3) 0.70888 (13) 0.31532 (11) 0.0193 (3)
H10 1.0611 0.7615 0.3584 0.023*
C11 1.2225 (3) 0.71374 (14) 0.25365 (11) 0.0217 (4)
H11 1.3360 0.7695 0.2547 0.026*
C12 1.2207 (3) 0.63690 (14) 0.19019 (11) 0.0206 (4)
H12 1.3331 0.6400 0.1480 0.025*
C13 1.0538 (3) 0.55571 (14) 0.18888 (11) 0.0214 (4)
H13 1.0518 0.5033 0.1456 0.026*
C14 0.8901 (3) 0.55079 (14) 0.25044 (11) 0.0207 (3)
H14 0.7771 0.4948 0.2490 0.025*
C15 0.2820 (3) 0.32838 (14) 0.36480 (11) 0.0222 (4)
H15A 0.2637 0.3667 0.3122 0.033*
H15B 0.2231 0.2534 0.3598 0.033*
H15C 0.4444 0.3260 0.3796 0.033*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0189 (6) 0.0244 (6) 0.0242 (6) −0.0017 (5) 0.0021 (5) 0.0025 (5)
O2 0.0195 (6) 0.0223 (6) 0.0207 (6) −0.0032 (5) 0.0029 (5) −0.0048 (5)
C1 0.0186 (7) 0.0235 (8) 0.0211 (8) 0.0027 (7) 0.0039 (7) 0.0001 (6)
C2 0.0161 (7) 0.0175 (7) 0.0187 (8) 0.0009 (6) −0.0019 (6) 0.0034 (6)
C3 0.0155 (7) 0.0171 (7) 0.0161 (7) 0.0005 (6) −0.0013 (6) 0.0017 (6)
C4 0.0190 (8) 0.0175 (8) 0.0184 (7) 0.0015 (6) −0.0016 (6) 0.0009 (6)
C5 0.0190 (7) 0.0160 (7) 0.0241 (8) −0.0030 (6) −0.0008 (7) −0.0005 (6)
C6 0.0155 (7) 0.0167 (7) 0.0172 (7) 0.0020 (6) −0.0014 (6) 0.0011 (6)
C7 0.0189 (7) 0.0185 (7) 0.0177 (7) −0.0006 (6) 0.0009 (6) −0.0025 (6)
C8 0.0181 (7) 0.0154 (7) 0.0172 (7) 0.0021 (6) −0.0007 (6) −0.0011 (6)
C9 0.0155 (7) 0.0170 (7) 0.0160 (7) 0.0009 (6) 0.0002 (6) 0.0010 (6)
C10 0.0192 (8) 0.0182 (7) 0.0204 (8) −0.0017 (7) 0.0003 (7) −0.0035 (6)
C11 0.0192 (8) 0.0208 (8) 0.0250 (8) −0.0056 (7) 0.0037 (7) −0.0011 (7)
C12 0.0193 (8) 0.0224 (8) 0.0200 (8) 0.0008 (7) 0.0044 (7) 0.0006 (7)
C13 0.0225 (8) 0.0218 (8) 0.0199 (8) −0.0018 (7) 0.0024 (7) −0.0047 (7)
C14 0.0193 (7) 0.0201 (8) 0.0226 (8) −0.0055 (7) 0.0023 (7) −0.0042 (6)
C15 0.0222 (8) 0.0187 (8) 0.0258 (9) −0.0009 (7) 0.0014 (7) −0.0060 (7)

Geometric parameters (Å, º)

O1—C2 1.352 (2) C8—C9 1.461 (2)
O1—C5 1.389 (2) C8—H8 0.9500
O2—C6 1.230 (2) C9—C10 1.399 (2)
C1—C2 1.482 (2) C9—C14 1.404 (2)
C1—H1A 0.9800 C10—C11 1.388 (2)
C1—H1B 0.9800 C10—H10 0.9500
C1—H1C 0.9800 C11—C12 1.392 (2)
C2—C3 1.382 (2) C11—H11 0.9500
C3—C4 1.444 (2) C12—C13 1.390 (2)
C3—C6 1.475 (2) C12—H12 0.9500
C4—C5 1.346 (2) C13—C14 1.385 (2)
C4—C15 1.496 (2) C13—H13 0.9500
C5—H5 0.9500 C14—H14 0.9500
C6—C7 1.478 (2) C15—H15A 0.9800
C7—C8 1.340 (2) C15—H15B 0.9800
C7—H7 0.9500 C15—H15C 0.9800
C2—O1—C5 106.96 (13) C7—C8—H8 116.4
C2—C1—H1A 109.5 C9—C8—H8 116.4
C2—C1—H1B 109.5 C10—C9—C14 118.27 (15)
H1A—C1—H1B 109.5 C10—C9—C8 118.39 (14)
C2—C1—H1C 109.5 C14—C9—C8 123.32 (15)
H1A—C1—H1C 109.5 C11—C10—C9 120.97 (15)
H1B—C1—H1C 109.5 C11—C10—H10 119.5
O1—C2—C3 109.92 (14) C9—C10—H10 119.5
O1—C2—C1 116.68 (14) C10—C11—C12 120.04 (16)
C3—C2—C1 133.39 (16) C10—C11—H11 120.0
C2—C3—C4 106.33 (14) C12—C11—H11 120.0
C2—C3—C6 122.53 (15) C13—C12—C11 119.66 (16)
C4—C3—C6 131.14 (15) C13—C12—H12 120.2
C5—C4—C3 105.95 (15) C11—C12—H12 120.2
C5—C4—C15 123.41 (16) C14—C13—C12 120.33 (15)
C3—C4—C15 130.63 (15) C14—C13—H13 119.8
C4—C5—O1 110.84 (14) C12—C13—H13 119.8
C4—C5—H5 124.6 C13—C14—C9 120.75 (16)
O1—C5—H5 124.6 C13—C14—H14 119.6
O2—C6—C3 119.83 (15) C9—C14—H14 119.6
O2—C6—C7 120.92 (15) C4—C15—H15A 109.5
C3—C6—C7 119.25 (14) C4—C15—H15B 109.5
C8—C7—C6 120.31 (15) H15A—C15—H15B 109.5
C8—C7—H7 119.8 C4—C15—H15C 109.5
C6—C7—H7 119.8 H15A—C15—H15C 109.5
C7—C8—C9 127.15 (15) H15B—C15—H15C 109.5
C5—O1—C2—C3 −0.31 (17) C2—C3—C6—C7 −164.79 (15)
C5—O1—C2—C1 178.43 (14) C4—C3—C6—C7 15.8 (3)
O1—C2—C3—C4 0.56 (18) O2—C6—C7—C8 6.9 (2)
C1—C2—C3—C4 −177.90 (17) C3—C6—C7—C8 −173.80 (15)
O1—C2—C3—C6 −179.00 (14) C6—C7—C8—C9 179.30 (15)
C1—C2—C3—C6 2.5 (3) C7—C8—C9—C10 172.52 (16)
C2—C3—C4—C5 −0.59 (18) C7—C8—C9—C14 −8.9 (3)
C6—C3—C4—C5 178.92 (17) C14—C9—C10—C11 0.1 (3)
C2—C3—C4—C15 −179.55 (17) C8—C9—C10—C11 178.70 (16)
C6—C3—C4—C15 0.0 (3) C9—C10—C11—C12 −0.1 (3)
C3—C4—C5—O1 0.42 (18) C10—C11—C12—C13 0.2 (3)
C15—C4—C5—O1 179.47 (15) C11—C12—C13—C14 −0.2 (3)
C2—O1—C5—C4 −0.08 (18) C12—C13—C14—C9 0.2 (3)
C2—C3—C6—O2 14.5 (2) C10—C9—C14—C13 −0.1 (3)
C4—C3—C6—O2 −164.92 (16) C8—C9—C14—C13 −178.66 (16)

Hydrogen-bond geometry (Å, º)

Cg1 and Cg2 are the centroids of the furan (O1/C2–C5) and phenyl (C9–C14) rings, respectively.

D—H···A D—H H···A D···A D—H···A
C8—H8···O2 0.95 2.44 2.792 (2) 102
C10—H10···O2i 0.95 2.52 3.413 (2) 157
C12—H12···Cg1ii 0.95 2.91 3.7339 (19) 146
C15—H15B···Cg2iii 0.98 2.85 3.6366 (19) 137

Symmetry codes: (i) x+1/2, −y+3/2, −z+1; (ii) −x+3/2, −y+1, z−1/2; (iii) −x+1, y−1/2, −z+1/2.

Funding Statement

This paper was supported by Baku State University and the RUDN University Strategic Academic Leadership Program.

References

  1. Asadov, K. A., Gurevich, P. A., Egorova, E. A., Burangulova, R. N. & Guseinov, F. N. (2003). Chem. Heterocycl. Compd. 39, 1521–1522.
  2. Bąkowicz, J., Galica, T. & Turowska-Tyrk, I. (2015). Z. Kristallogr. 230, 131–137.
  3. Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
  4. Çelik, M. S., Çetinus, A., Yenidünya, A. F., Çetinkaya, S. & Tüzün, B. (2023). J. Mol. Struct. 1272, 134158.
  5. Chalkha, M., Ameziane el Hassani, A., Nakkabi, A., Tüzün, B., Bakhouch, M., Benjelloun, A. T., Sfaira, M., Saadi, M., Ammari, L. E. & Yazidi, M. E. (2023). J. Mol. Struct. 1273, 134255.
  6. Cuthbertson, J. D. & Taylor, R. J. K. (2013). Angew. Chem. Int. Ed. 52, 1490–1493. [DOI] [PubMed]
  7. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  8. Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
  9. Gurbanov, A. V., Kuznetsov, M. L., Mahmudov, K. T., Pombeiro, A. J. L. & Resnati, G. (2020). Chem. Eur. J. 26, 14833–14837. [DOI] [PubMed]
  10. Kawamura, S., Chu, H., Felding, J. & Baran, P. S. (2016). Nature, 532, 90–93. [DOI] [PMC free article] [PubMed]
  11. Maharramov, A. M., Shikhaliyev, N. G., Zeynalli, N. R., Niyazova, A. A., Garazade, Kh. A. & Shikhaliyeva, I. M. (2021). UNEC J. Eng. Appl. Sci. 1, 5–11.
  12. Maharramov, A. M., Suleymanova, G. T., Qajar, A. M., Niyazova, A. A., Ahmadova, N. E., Shikhaliyeva, I. M., Garazade, Kh. A., Nenajdenko, V. G. & Shikaliyev, N. G. (2022). UNEC J. Eng. Appl. Sci. 2, 64–73.
  13. Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259. [DOI] [PMC free article] [PubMed]
  14. Poustforoosh, A., Hashemipour, H., Tüzün, B., Azadpour, M., Faramarz, S., Pardakhty, A., Mehrabani, M. & Nematollahi, M. H. (2022). Curr. Microbiol. 79, 241. [DOI] [PMC free article] [PubMed]
  15. Rigaku OD (2021). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.
  16. Sarkı, G., Tüzün, B., Ünlüer, D. & Kantekin, H. (2023). Inorg. Chim. Acta, 545, 121113.
  17. Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.
  18. Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.
  19. Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006–1011. [DOI] [PMC free article] [PubMed]
  20. Spek, A. L. (2020). Acta Cryst. E76, 1–11. [DOI] [PMC free article] [PubMed]
  21. Tapera, M., Kekeçmuhammed, H., Tüzün, B., Sarıpınar, E., Koçyiğit, M., Yıldırım, E., Doğan, M. & Zorlu, Y. (2022). J. Mol. Struct. 1269, 133816.
  22. Vázquez-Vuelvas, O. F., Enríquez-Figueroa, R. A., García-Ortega, H., Flores-Alamo, M. & Pineda-Contreras, A. (2015). Acta Cryst. E71, 161–164. [DOI] [PMC free article] [PubMed]
  23. Zingales, S. K., Wallace, M. Z. & Padgett, C. W. (2015). Acta Cryst. E71, o707. [DOI] [PMC free article] [PubMed]
  24. Zubkov, F. I., Mertsalov, D. F., Zaytsev, V. P., Varlamov, A. V., Gurbanov, A. V., Dorovatovskii, P. V., Timofeeva, T. V., Khrustalev, V. N. & Mahmudov, K. T. (2018). J. Mol. Liq. 249, 949–952.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989023006084/vm2287sup1.cif

e-79-00736-sup1.cif (364.9KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989023006084/vm2287Isup2.hkl

e-79-00736-Isup2.hkl (193.2KB, hkl)

Supporting information file. DOI: 10.1107/S2056989023006084/vm2287Isup3.cml

CCDC reference: 2280559

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES