Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2023 Jul 21;79(Pt 8):747–751. doi: 10.1107/S2056989023006254

Crystal structure and Hirshfeld surface analysis of 4-cyano-N-[(4-cyano­phen­yl)sulfon­yl]-N-[2-(5-methyl­furan-2-yl)phen­yl]benzene­sulfonamide

Gunay Z Mammadova a, Elizaveta D Yakovleva b, Gleb M Burkin b, Victor N Khrustalev b,c, Mehmet Akkurt d,*, Sevim Türktekin Çelikesir d, Ajaya Bhattarai e,*
Editor: B Therrienf
PMCID: PMC10439414  PMID: 37601397

The crystal structure features C—H⋯O and C—H⋯N hydrogen bonds, which link the mol­ecules into layers parallel to the (100) plane. IC—H⋯π inter­actions and weak van der Waals inter­actions occur between the layers.

Keywords: crystal structure, sulfonamides, hydrogen bonds, C—H⋯π inter­actions, π–π inter­actions, Hirshfeld surface analysis

Abstract

In the title compound, C25H17N3O5S2, intra­molecular π–π inter­actions [centroid-to-centroid distance = 3.5640 (9) Å] are observed between the furan and benzene rings of the 4-cyano­phenyl group. In the crystal, mol­ecules are connected via C—H⋯O and C—H⋯N hydrogen bonds, forming layers parallel to the (100) plane. These layers are inter­connected by C—H⋯π inter­actions and weak van der Waals inter­actions. Hirshfeld surface analysis indicates that H⋯H (30.2%), N⋯H/H⋯N (22.3%), C⋯H/H⋯C (17.9%) and O⋯H/H⋯O (15.4%) inter­actions make the most significant contributions to the crystal packing.

1. Chemical context

The famous Hinsberg reaction, first described by Oscar Hinsberg in 1890 (Hinsberg, 1890; Hinsberg & Kessler, 1905), is a laboratory test used for the detection of primary, secondary and tertiary amines. In this reaction, the corres­ponding amine is shaken with benzyl or p-tolyl­sulfonyl chloride in the presence of an aqueous base. Reactions with ammonia, and primary and secondary amines are the most widespread. A primary amine will form a soluble sulfonamide salt in the presence of aqueous alkali (either KOH or NaOH). A secondary amine in the same reaction forms an insoluble sulfonamide. The most widely used sulfonyl­amide is sulfanil­amide, an anti­bacterial drug that was first obtained in 1908 by the Austrian chemist Paul Josef Jakob Gelmo while he was trying to synthesize a dye for textile materials (Gelmo, 1908). Moreover, sulfonyl­amides are active against seizures (Thiry et al., 2008), and inhibit various enzymes such as human leukocyte elastase, cathespin G and HIV-1 protease (Supuran et al., 2003). Sulfonamides are also used in fungicidal (Chohan et al., 2006, 2010) and insecticidal mixtures (Beesley & Peters, 1971). The number of donor and acceptor groups is a fundamental mol­ecular descriptor to predict the oral bioavailability as well as biocatalytic activity of small drug candidates (Gurbanov et al., 2020a ,b , 2022; Mahmoudi et al., 2017a ,b ). Continuing our research in the improved multiple displacement amplification (IMDA) reaction field (Mammadova et al., 2023; Krishna et al., 2022; Yarovaya et al., 2021), in this work we have studied the inter­action of 2-(α-fur­yl)aniline with sulfochloride containing an electron-withdrawing 4-cyano­phenyl group. Unexpectedly, under mild reaction conditions, the product of a double sulfaryl­ation was isolated in good yield from the reaction mixture (Fig. 1). The formation of such double sulfonamide was previously observed in the presence of strong bases (Bartsch et al., 1977; Li et al., 2022). 1.

Figure 1.

Figure 1

Reaction scheme showing the one-pot synthesis of the title compound.

2. Structural commentary

In the title compound (Fig. 2), the angle between the planes of the phenyl rings (C12–C17 and C19–C24) of the (4-cyano­phen­yl)sulfonyl groups is 47.90 (7)°. The furan ring (O1/C7–C10) is inclined at angles of 39.05 (8) and 17.38 (8)° with respect to the C12–C17 and C19–C24 phenyl rings of the (4-cyano­phen­yl)sulfonyl groups, while it makes a dihedral angle of 20.21 (8)° with the plane of the phenyl ring (C1–C6) attached to the furan ring. The latter phenyl ring makes dihedral angles of 26.28 (7) and 36.40 (7)°, respectively, with the phenyl rings of the (4-cyano­phen­yl)sulfonyl groups. All geometric parameters are normal and consistent with those of related compounds listed in the Database survey (Section 4).

Figure 2.

Figure 2

Mol­ecular structure of the title compound showing the atomic labelling. Displacement ellipsoids are drawn at the 50% probability level.

Intra­molecular π–π stacking inter­actions [Cg1⋯Cg4 = 3.5640 (9) Å; Cg1 and Cg4 are the centroids of the furan (O1/C7–C10) and benzene rings (C19–C24), respectively, of one of the two 4-cyano­phen­yl)sulfonyl groups, respectively; slippage = 0.793 Å], ensures the stability of the mol­ecular configuration.

3. Supra­molecular features and Hirshfeld surface analysis

In the crystal, mol­ecules are linked via C—H⋯O and C—H⋯N hydrogen bonds, forming layers parallel to the (100) plane (Table 1; Fig. 3). These layers are inter­connected by C—H⋯π inter­actions and weak van der Waals inter­actions, thus ensuring crystal cohesion.

Table 1. Hydrogen-bond geometry (Å, °).

Cg2 is the centroid of the ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C4—H4⋯O2i 0.95 2.56 3.3639 (17) 142
C6—H6⋯O5ii 0.95 2.56 3.3744 (17) 143
C11—H11B⋯N3iii 0.98 2.67 3.616 (2) 163
C16—H16⋯O4iv 0.95 2.55 3.2115 (18) 127
C21—H21⋯N3iii 0.95 2.54 3.433 (2) 156
C14—H14⋯Cg2v 0.95 2.85 3.4945 (16) 126

Symmetry codes: (i) Inline graphic ; (ii) Inline graphic ; (iii) Inline graphic ; (iv) Inline graphic ; (v) Inline graphic .

Figure 3.

Figure 3

Crystal packing of the title compound along the b axis showing the C—H⋯O and C—H⋯N hydrogen bonds and C—H⋯π and π–π inter­actions.

Hirshfeld surfaces were generated for the mol­ecule of the title compound using Crystal Explorer 17.5 (Spackman et al., 2021). The d norm mappings was performed in the range −0.3260 to +1.4294 a.u. The C—H⋯O and C—H⋯N inter­actions are indicated by red areas on the Hirshfeld surfaces (Fig. 4). Fingerprint plots (Fig. 5) reveal that while H⋯H inter­actions (30.2%) make the largest contributions to surface contacts (Tables 1 and 2), N⋯H/H⋯N (22.3%), C⋯H/H⋯C (17.9%) and O⋯H/H⋯O (15.4%) contacts are also important. Other, less notable inter­actions are O⋯C/C⋯O (6.0%), C⋯C (5.0%), N⋯N (1.2%), O⋯O (1.1%), N⋯C/C⋯N (0.5%), S⋯H/H⋯S (0.1%) and S⋯O/O⋯S (0.1%).

Figure 4.

Figure 4

Front (a) and back (b) views of the three-dimensional Hirshfeld surface for the title compound. Some inter­molecular C—H⋯O and C—H⋯N inter­actions are shown.

Figure 5.

Figure 5

The two-dimensional fingerprint plots for the title compound showing (a) all inter­actions, and delineated into (b) H⋯H, (c) N⋯H/H⋯N, (d) C⋯H/H⋯C and (e) O⋯H/H⋯O inter­actions. The d i and d e values are the closest inter­nal and external distances (in Å) from given points on the Hirshfeld surface.

Table 2. Summary of short inter­atomic contacts (Å) in the title compound.

Contact Distance Symmetry operation
C25⋯H11C 2.91 −1 + x, y, z
H20⋯H4 2.37 x, −1 + y, z
H11E⋯N2 2.76 2 − x, −y, 1 − z
H20⋯H16 2.44 1 − x, −y, 1 − z
H6⋯O5 2.56 1 − x, 1 − y, 1 − z
H21⋯N3 2.54 1 − x, −y, −z
H8⋯N3 2.73 1 − x, 1 − y, −z
H13⋯H13 2.40 2 − x, 1 − y, 1 − z
H11D⋯H11D 2.02 2 − x, −y, −z

4. Database survey

Ten related compounds were found as a result of the search for ‘N-(methane­sulfon­yl)-N-methyl­methane­sulfonamide’ in the Cambridge Structural Database (CSD, Version 5.42, update of September 2021; Groom et al., 2016), viz. PIMGUR (Mammadova et al., 2023), JOBTIF (Kim, 2014), CEGMIM (Mughal et al., 2012a ), CEGSUE (Mughal et al., 2012b ), YAXKAL (Taher & Smith, 2012a ), EFASUB (Taher & Smith, 2012b ), OCABUR (Abbassi et al., 2011), AYUPUG (Arshad et al., 2011), PONZIC (Rizzoli et al., 2009) and ROGJON (Li & Song, 2008).

In PIMGUR (space group P21/n), C—H⋯O hydrogen bonds link adjacent mol­ecules in a three-dimensional network, while π–π stacking inter­actions [centroid–centroid distance = 3.8745 (9) Å] between the furan and a phenyl ring of one of the two (3-nitro­phen­yl)sulfonyl groups result in chains parallel to the a axis. In JOBTIF (space group P21/n), mol­ecules are linked by pairs of C—H⋯O hydrogen bonds, forming inversion dimers. In CEGMIM (space group Pbca), mol­ecules are connected by C—H⋯O inter­actions into sheets in the ab plane. In the crystal of CEGSUE (space group P Inline graphic ), the only directional inter­actions are very weak C—H⋯π inter­actions and very weak π–π stacking between parallel methyl­phenyl rings. In YAXKAL (space group P Inline graphic ), mol­ecules associate via pairs of N—H⋯N hydrogen bonds, forming a centrosymmetric eight-membered {⋯HNCN}2 synthon. In EFASUB (space group C2/c), mol­ecules associate via N—H⋯N and N—H⋯O hydrogen bonds, forming extended hydrogen-bonded sheets that lie parallel to the bc plane. The N—H⋯N hydrogen bonds propagate along the b-axis direction, while the N—H⋯O hydrogen bonds propagate along the c-axis direction. The crystal structure of OCABUR (space group P21/c) features C—H⋯O hydrogen bonds. In the crystal structure of AYUPUG (space group P21/c), weak C—H⋯O inter­actions connect the mol­ecules in a zigzag manner along the a-axis direction. In the crystal of PONZIC (space group P Inline graphic ), mol­ecules are linked into chains parallel to the a axis by inter­molecular C—H⋯O hydrogen bonds and π–π stacking inter­actions. In ROGJON (space group Pbca), the crystal structure features weak inter­molecular N—H⋯O, C—H⋯O and C—H⋯N hydrogen bonds and π–π inter­actions.

5. Synthesis and crystallization

p-Cyano­benzene­sulphonyl chloride (2.33 g, 0.0115 mol) was added gradually to a solution of 2-(5-methyl-2-fur­yl)aniline (1.00 g, 0.00577 mol) in pyridine (7 mL) under stirring and cooling in an ice–water bath. The mixture was stirred for 7 h at r.t. and after completion of the reaction [thin-layer chromatography (TLC) monitoring; sorbfil, hexa­ne/ethyl acetate 4:1], the mixture was poured into hydro­chloric acid (6 M, 90 mL). The separated oil was washed with water until its crystallization. The obtained crystals were filtered off, dried, and recrystallized from an ethanol/di­methyl­formamide (DMF) mixture to give the target disulfonamide as a colourless solid. Single crystals were obtained by slow crystallization from an EtOH/DMF mixture (yield 64%, 1.86 g; m.p. 507–508 K). IR (KBr), ν (cm−1): 1156 (νs SO2), 1329 (νas SO2), 2237 (CN). 1H NMR (600.2 MHz, DMSO-d 6) (J, Hz): δ 8.08 (d, J = 8.6 Hz, 4H), 7.90 (d, J = 8.6 Hz, 4H), 7.72 (dd, J = 8.1, 1.5 Hz, 1H), 7.56 (dt, J = 8.6, 1.5 Hz, 1H), 7.36 (dt, J = 8.1, 1.5 Hz, 1H), 7.04 (dd, J = 8.1, 1.5 Hz, 1H), 6.61 (d, J = 3.5 Hz, 1H), 5.93 (br.d, J = 3.5 Hz, 1H), 1.96 (s, 3H); 13C{1H} NMR (150.9 MHz, DMSO-d 6): δ 153.2, 147.9 (2C), 142.9, 134.0 (4C), 133.7, 132.2, 132.0, 129.6 (4C), 128.8, 128.7, 128.6, 117.9 (2C), 117.4 (2C), 112.0, 108.6, 13.4; MS (ESI) m/z: [M + H]+ 504. Elemental analysis calculated (%) for C25H17N3O5S2 %: C 59.63, H 3.40, N 8.34, S 12.74; found: C 60.00, H 3.27, N 8.56, S 13.03.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3. All C-bound H atoms were positioned geometrically (C—H = 0.95 and 0.98 Å) and included as riding contributions with isotropic displacement parameters fixed at 1.2U eq(C) (1.5 for methyl groups). The hydrogen atoms of the methyl group containing the C11 atom were disordered over two positions with equal occupancies.

Table 3. Experimental details.

Crystal data
Chemical formula C25H17N3O5S2
M r 503.53
Crystal system, space group Triclinic, P Inline graphic
Temperature (K) 100
a, b, c (Å) 7.4542 (1), 9.5111 (2), 16.4378 (3)
α, β, γ (°) 88.838 (4), 81.644 (1), 81.414 (1)
V3) 1140.11 (4)
Z 2
Radiation type Cu Kα
μ (mm−1) 2.50
Crystal size (mm) 0.29 × 0.22 × 0.15
 
Data collection
Diffractometer XtaLAB Synergy, Dualflex, HyPix
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2021)
T min, T max 0.481, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 29936, 4841, 4675
R int 0.051
(sin θ/λ)max−1) 0.634
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.036, 0.095, 1.08
No. of reflections 4841
No. of parameters 316
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.76, −0.60

Computer programs: CrysAlis PRO (Rigaku OD, 2021), SHELXT2016/6 (Sheldrick, 2015a ), SHELXL2016/6 (Sheldrick, 2015b ), ORTEP-3 for Windows (Farrugia, 2012) and PLATON (Spek, 2020).

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989023006254/tx2071sup1.cif

e-79-00747-sup1.cif (879.2KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989023006254/tx2071Isup2.hkl

e-79-00747-Isup2.hkl (385.3KB, hkl)

Supporting information file. DOI: 10.1107/S2056989023006254/tx2071Isup3.cml

CCDC reference: 2282070

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors’ contributions are as follows. Conceptualization, MA and AB; synthesis, EDY and GMB; X-ray analysis, GZM, VNK, MA, and STÇ; writing (review and editing of the manuscript) MA and AB; funding acquisition, GZM; supervision, MA and AB.

supplementary crystallographic information

Crystal data

C25H17N3O5S2 Z = 2
Mr = 503.53 F(000) = 520
Triclinic, P1 Dx = 1.467 Mg m3
a = 7.4542 (1) Å Cu Kα radiation, λ = 1.54184 Å
b = 9.5111 (2) Å Cell parameters from 21520 reflections
c = 16.4378 (3) Å θ = 2.7–77.6°
α = 88.838 (4)° µ = 2.50 mm1
β = 81.644 (1)° T = 100 K
γ = 81.414 (1)° Prism, colourless
V = 1140.11 (4) Å3 0.29 × 0.22 × 0.15 mm

Data collection

XtaLAB Synergy, Dualflex, HyPix diffractometer 4841 independent reflections
Radiation source: micro-focus sealed X-ray tube 4675 reflections with I > 2σ(I)
Detector resolution: 0 pixels mm-1 Rint = 0.051
φ and ω scans θmax = 77.9°, θmin = 2.7°
Absorption correction: multi-scan (CrysAlisPro; Rigaku OD, 2021) h = −8→9
Tmin = 0.481, Tmax = 1.000 k = −12→12
29936 measured reflections l = −20→20

Refinement

Refinement on F2 0 restraints
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.036 H-atom parameters constrained
wR(F2) = 0.095 w = 1/[σ2(Fo2) + (0.0547P)2 + 0.4479P] where P = (Fo2 + 2Fc2)/3
S = 1.08 (Δ/σ)max < 0.001
4841 reflections Δρmax = 0.76 e Å3
316 parameters Δρmin = −0.60 e Å3

Special details

Experimental. CrysAlisPro 1.171.41.117a (Rigaku OD, 2021) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
S1 0.87131 (4) 0.20718 (3) 0.37143 (2) 0.01631 (10)
S2 0.47488 (4) 0.28580 (3) 0.36436 (2) 0.01531 (10)
O1 0.86050 (14) 0.27336 (10) 0.19206 (6) 0.0209 (2)
O2 0.85236 (14) 0.07100 (10) 0.34200 (6) 0.0224 (2)
O3 1.02688 (13) 0.27486 (11) 0.34195 (6) 0.0214 (2)
O4 0.47897 (13) 0.15314 (11) 0.40679 (6) 0.0207 (2)
O5 0.35697 (13) 0.40880 (11) 0.39862 (6) 0.0208 (2)
N1 0.68945 (15) 0.32549 (12) 0.35205 (7) 0.0154 (2)
N2 0.7640 (2) 0.22944 (17) 0.80753 (9) 0.0376 (3)
N3 0.3238 (2) 0.18901 (15) −0.04558 (8) 0.0301 (3)
C1 0.71285 (17) 0.47104 (14) 0.33138 (8) 0.0166 (3)
C2 0.76977 (18) 0.51151 (15) 0.25007 (9) 0.0190 (3)
C3 0.7802 (2) 0.65682 (16) 0.23618 (10) 0.0244 (3)
H3 0.819030 0.687961 0.182071 0.029*
C4 0.7355 (2) 0.75524 (15) 0.29928 (10) 0.0261 (3)
H4 0.742788 0.852707 0.287872 0.031*
C5 0.67996 (19) 0.71301 (16) 0.37940 (10) 0.0238 (3)
H5 0.649904 0.780898 0.422687 0.029*
C6 0.66904 (18) 0.57071 (15) 0.39520 (9) 0.0196 (3)
H6 0.631585 0.540682 0.449686 0.024*
C7 0.81504 (19) 0.41619 (15) 0.17921 (9) 0.0201 (3)
C8 0.8215 (2) 0.44092 (18) 0.09722 (10) 0.0294 (3)
H8 0.796625 0.530602 0.071431 0.035*
C9 0.8728 (2) 0.30600 (19) 0.05734 (9) 0.0308 (3)
H9 0.888002 0.288669 −0.000144 0.037*
C10 0.8957 (2) 0.20782 (17) 0.11670 (9) 0.0242 (3)
C11 0.9513 (2) 0.05141 (18) 0.11806 (10) 0.0320 (4)
H11A 0.951112 0.019245 0.175088 0.048* 0.5
H11B 0.864718 0.004742 0.092582 0.048* 0.5
H11C 1.074697 0.026944 0.087412 0.048* 0.5
H11D 0.975906 0.014709 0.061633 0.048* 0.5
H11E 1.062300 0.029212 0.144140 0.048* 0.5
H11F 0.852321 0.007010 0.149309 0.048* 0.5
C12 0.85015 (18) 0.20354 (14) 0.47982 (8) 0.0176 (3)
C13 0.91148 (19) 0.31300 (14) 0.51825 (9) 0.0197 (3)
H13 0.967389 0.383552 0.486494 0.024*
C14 0.88981 (19) 0.31752 (15) 0.60333 (9) 0.0208 (3)
H14 0.928202 0.392513 0.630580 0.025*
C15 0.81124 (19) 0.21113 (15) 0.64858 (9) 0.0206 (3)
C16 0.75614 (19) 0.09909 (15) 0.60938 (9) 0.0225 (3)
H16 0.706667 0.025466 0.640954 0.027*
C17 0.77392 (19) 0.09578 (15) 0.52430 (9) 0.0204 (3)
H17 0.734758 0.021287 0.496928 0.025*
C18 0.7855 (2) 0.21874 (17) 0.73718 (10) 0.0265 (3)
C19 0.43219 (17) 0.26331 (14) 0.26310 (8) 0.0161 (3)
C20 0.47823 (19) 0.12911 (15) 0.22776 (9) 0.0201 (3)
H20 0.531585 0.051367 0.257755 0.024*
C21 0.4455 (2) 0.10992 (15) 0.14829 (9) 0.0223 (3)
H21 0.473180 0.018398 0.123514 0.027*
C22 0.37117 (19) 0.22685 (16) 0.10504 (8) 0.0203 (3)
C23 0.3246 (2) 0.36132 (16) 0.14114 (9) 0.0234 (3)
H23 0.272363 0.439559 0.111171 0.028*
C24 0.3553 (2) 0.37968 (15) 0.22120 (9) 0.0212 (3)
H24 0.324252 0.470377 0.246872 0.025*
C25 0.3437 (2) 0.20666 (16) 0.02113 (9) 0.0242 (3)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S1 0.01287 (16) 0.01633 (16) 0.01966 (17) −0.00131 (11) −0.00276 (12) −0.00148 (12)
S2 0.01201 (16) 0.01925 (17) 0.01516 (16) −0.00367 (11) −0.00191 (11) −0.00204 (12)
O1 0.0234 (5) 0.0214 (5) 0.0178 (5) −0.0057 (4) 0.0000 (4) −0.0028 (4)
O2 0.0235 (5) 0.0175 (5) 0.0260 (5) −0.0012 (4) −0.0044 (4) −0.0049 (4)
O3 0.0134 (5) 0.0265 (5) 0.0241 (5) −0.0030 (4) −0.0020 (4) 0.0003 (4)
O4 0.0192 (5) 0.0256 (5) 0.0193 (5) −0.0086 (4) −0.0045 (4) 0.0028 (4)
O5 0.0143 (4) 0.0260 (5) 0.0215 (5) −0.0012 (4) −0.0015 (4) −0.0081 (4)
N1 0.0119 (5) 0.0163 (5) 0.0184 (5) −0.0034 (4) −0.0024 (4) −0.0002 (4)
N2 0.0433 (9) 0.0437 (8) 0.0247 (7) −0.0043 (7) −0.0037 (6) 0.0032 (6)
N3 0.0361 (7) 0.0327 (7) 0.0207 (6) 0.0003 (6) −0.0065 (5) −0.0033 (5)
C1 0.0133 (6) 0.0157 (6) 0.0214 (6) −0.0023 (4) −0.0044 (5) −0.0007 (5)
C2 0.0155 (6) 0.0206 (6) 0.0220 (7) −0.0040 (5) −0.0055 (5) 0.0013 (5)
C3 0.0247 (7) 0.0229 (7) 0.0279 (7) −0.0066 (5) −0.0095 (6) 0.0056 (6)
C4 0.0239 (7) 0.0174 (6) 0.0393 (9) −0.0028 (5) −0.0129 (6) 0.0026 (6)
C5 0.0187 (7) 0.0204 (7) 0.0333 (8) −0.0010 (5) −0.0080 (6) −0.0072 (6)
C6 0.0148 (6) 0.0214 (7) 0.0231 (7) −0.0017 (5) −0.0049 (5) −0.0037 (5)
C7 0.0170 (6) 0.0225 (7) 0.0211 (7) −0.0046 (5) −0.0021 (5) 0.0018 (5)
C8 0.0334 (8) 0.0322 (8) 0.0208 (7) −0.0011 (6) −0.0024 (6) 0.0030 (6)
C9 0.0332 (8) 0.0394 (9) 0.0178 (7) −0.0019 (7) −0.0002 (6) −0.0035 (6)
C10 0.0222 (7) 0.0302 (8) 0.0195 (7) −0.0065 (6) 0.0029 (5) −0.0076 (6)
C11 0.0368 (9) 0.0291 (8) 0.0276 (8) −0.0056 (6) 0.0054 (7) −0.0087 (6)
C12 0.0139 (6) 0.0173 (6) 0.0218 (6) −0.0001 (5) −0.0056 (5) 0.0002 (5)
C13 0.0186 (6) 0.0180 (6) 0.0236 (7) −0.0041 (5) −0.0055 (5) 0.0016 (5)
C14 0.0190 (7) 0.0196 (6) 0.0244 (7) −0.0010 (5) −0.0071 (5) −0.0005 (5)
C15 0.0159 (6) 0.0225 (7) 0.0227 (7) 0.0009 (5) −0.0047 (5) 0.0025 (5)
C16 0.0184 (7) 0.0223 (7) 0.0276 (7) −0.0042 (5) −0.0055 (5) 0.0056 (5)
C17 0.0177 (6) 0.0180 (6) 0.0269 (7) −0.0034 (5) −0.0072 (5) 0.0012 (5)
C18 0.0242 (7) 0.0271 (7) 0.0279 (8) −0.0023 (6) −0.0050 (6) 0.0039 (6)
C19 0.0116 (6) 0.0210 (6) 0.0164 (6) −0.0038 (5) −0.0022 (5) −0.0020 (5)
C20 0.0202 (7) 0.0196 (6) 0.0195 (6) 0.0001 (5) −0.0027 (5) −0.0007 (5)
C21 0.0243 (7) 0.0214 (7) 0.0205 (7) −0.0006 (5) −0.0028 (5) −0.0055 (5)
C22 0.0167 (6) 0.0277 (7) 0.0169 (6) −0.0042 (5) −0.0026 (5) −0.0022 (5)
C23 0.0257 (7) 0.0223 (7) 0.0224 (7) −0.0004 (5) −0.0078 (5) 0.0012 (5)
C24 0.0224 (7) 0.0197 (6) 0.0217 (7) −0.0014 (5) −0.0058 (5) −0.0029 (5)
C25 0.0239 (7) 0.0272 (7) 0.0206 (7) −0.0008 (6) −0.0027 (5) −0.0022 (6)

Geometric parameters (Å, º)

S1—O2 1.4253 (10) C10—C11 1.484 (2)
S1—O3 1.4287 (10) C11—H11A 0.9800
S1—N1 1.6914 (11) C11—H11B 0.9800
S1—C12 1.7657 (14) C11—H11C 0.9800
S2—O5 1.4262 (10) C11—H11D 0.9800
S2—O4 1.4277 (10) C11—H11E 0.9800
S2—N1 1.6807 (11) C11—H11F 0.9800
S2—C19 1.7625 (13) C12—C17 1.3895 (19)
O1—C7 1.3699 (17) C12—C13 1.3946 (19)
O1—C10 1.3711 (17) C13—C14 1.385 (2)
N1—C1 1.4484 (16) C13—H13 0.9500
N2—C18 1.148 (2) C14—C15 1.393 (2)
N3—C25 1.147 (2) C14—H14 0.9500
C1—C6 1.3979 (19) C15—C16 1.398 (2)
C1—C2 1.4062 (19) C15—C18 1.443 (2)
C2—C3 1.408 (2) C16—C17 1.386 (2)
C2—C7 1.459 (2) C16—H16 0.9500
C3—C4 1.382 (2) C17—H17 0.9500
C3—H3 0.9500 C19—C24 1.3863 (19)
C4—C5 1.392 (2) C19—C20 1.3877 (19)
C4—H4 0.9500 C20—C21 1.384 (2)
C5—C6 1.385 (2) C20—H20 0.9500
C5—H5 0.9500 C21—C22 1.396 (2)
C6—H6 0.9500 C21—H21 0.9500
C7—C8 1.359 (2) C22—C23 1.395 (2)
C8—C9 1.427 (2) C22—C25 1.4442 (19)
C8—H8 0.9500 C23—C24 1.387 (2)
C9—C10 1.348 (2) C23—H23 0.9500
C9—H9 0.9500 C24—H24 0.9500
O2—S1—O3 121.57 (6) C10—C11—H11B 109.5
O2—S1—N1 108.74 (6) H11A—C11—H11B 109.5
O3—S1—N1 104.43 (6) C10—C11—H11C 109.5
O2—S1—C12 109.39 (6) H11A—C11—H11C 109.5
O3—S1—C12 107.41 (6) H11B—C11—H11C 109.5
N1—S1—C12 103.85 (6) H11D—C11—H11E 109.5
O5—S2—O4 120.18 (6) H11D—C11—H11F 109.5
O5—S2—N1 106.78 (6) H11E—C11—H11F 109.5
O4—S2—N1 106.87 (6) C17—C12—C13 121.92 (13)
O5—S2—C19 108.34 (6) C17—C12—S1 120.72 (11)
O4—S2—C19 109.55 (6) C13—C12—S1 117.36 (11)
N1—S2—C19 103.90 (6) C14—C13—C12 119.13 (13)
C7—O1—C10 107.60 (11) C14—C13—H13 120.4
C1—N1—S2 117.35 (9) C12—C13—H13 120.4
C1—N1—S1 119.89 (9) C13—C14—C15 119.42 (13)
S2—N1—S1 122.51 (7) C13—C14—H14 120.3
C6—C1—C2 121.38 (13) C15—C14—H14 120.3
C6—C1—N1 117.08 (12) C14—C15—C16 120.97 (14)
C2—C1—N1 121.49 (12) C14—C15—C18 118.91 (14)
C1—C2—C3 116.84 (13) C16—C15—C18 120.11 (13)
C1—C2—C7 125.48 (12) C17—C16—C15 119.79 (13)
C3—C2—C7 117.67 (13) C17—C16—H16 120.1
C4—C3—C2 121.64 (14) C15—C16—H16 120.1
C4—C3—H3 119.2 C16—C17—C12 118.71 (13)
C2—C3—H3 119.2 C16—C17—H17 120.6
C3—C4—C5 120.66 (14) C12—C17—H17 120.6
C3—C4—H4 119.7 N2—C18—C15 177.81 (17)
C5—C4—H4 119.7 C24—C19—C20 122.18 (13)
C6—C5—C4 119.13 (14) C24—C19—S2 119.24 (10)
C6—C5—H5 120.4 C20—C19—S2 118.57 (10)
C4—C5—H5 120.4 C21—C20—C19 119.19 (13)
C5—C6—C1 120.35 (14) C21—C20—H20 120.4
C5—C6—H6 119.8 C19—C20—H20 120.4
C1—C6—H6 119.8 C20—C21—C22 119.10 (13)
C8—C7—O1 109.22 (13) C20—C21—H21 120.5
C8—C7—C2 131.86 (14) C22—C21—H21 120.5
O1—C7—C2 118.92 (12) C23—C22—C21 121.32 (13)
C7—C8—C9 106.68 (14) C23—C22—C25 120.03 (13)
C7—C8—H8 126.7 C21—C22—C25 118.65 (13)
C9—C8—H8 126.7 C24—C23—C22 119.37 (13)
C10—C9—C8 107.01 (13) C24—C23—H23 120.3
C10—C9—H9 126.5 C22—C23—H23 120.3
C8—C9—H9 126.5 C19—C24—C23 118.81 (13)
C9—C10—O1 109.49 (13) C19—C24—H24 120.6
C9—C10—C11 135.03 (14) C23—C24—H24 120.6
O1—C10—C11 115.47 (13) N3—C25—C22 179.03 (16)
C10—C11—H11A 109.5
O5—S2—N1—C1 −33.62 (11) C8—C9—C10—O1 0.37 (18)
O4—S2—N1—C1 −163.42 (10) C8—C9—C10—C11 −178.47 (17)
C19—S2—N1—C1 80.78 (11) C7—O1—C10—C9 −0.20 (16)
O5—S2—N1—S1 140.59 (8) C7—O1—C10—C11 178.89 (13)
O4—S2—N1—S1 10.79 (9) O2—S1—C12—C17 −16.82 (13)
C19—S2—N1—S1 −105.01 (8) O3—S1—C12—C17 −150.62 (11)
O2—S1—N1—C1 −145.42 (10) N1—S1—C12—C17 99.12 (12)
O3—S1—N1—C1 −14.26 (11) O2—S1—C12—C13 163.63 (10)
C12—S1—N1—C1 98.17 (11) O3—S1—C12—C13 29.83 (12)
O2—S1—N1—S2 40.51 (9) N1—S1—C12—C13 −80.43 (11)
O3—S1—N1—S2 171.67 (7) C17—C12—C13—C14 −2.4 (2)
C12—S1—N1—S2 −75.89 (9) S1—C12—C13—C14 177.14 (10)
S2—N1—C1—C6 77.49 (14) C12—C13—C14—C15 1.5 (2)
S1—N1—C1—C6 −96.87 (13) C13—C14—C15—C16 0.8 (2)
S2—N1—C1—C2 −99.91 (13) C13—C14—C15—C18 −178.59 (13)
S1—N1—C1—C2 85.72 (14) C14—C15—C16—C17 −2.2 (2)
C6—C1—C2—C3 −0.1 (2) C18—C15—C16—C17 177.20 (13)
N1—C1—C2—C3 177.24 (12) C15—C16—C17—C12 1.3 (2)
C6—C1—C2—C7 −178.78 (13) C13—C12—C17—C16 1.0 (2)
N1—C1—C2—C7 −1.5 (2) S1—C12—C17—C16 −178.51 (10)
C1—C2—C3—C4 −0.4 (2) O5—S2—C19—C24 23.09 (13)
C7—C2—C3—C4 178.39 (13) O4—S2—C19—C24 155.90 (11)
C2—C3—C4—C5 0.6 (2) N1—S2—C19—C24 −90.20 (12)
C3—C4—C5—C6 −0.3 (2) O5—S2—C19—C20 −157.37 (11)
C4—C5—C6—C1 −0.2 (2) O4—S2—C19—C20 −24.55 (13)
C2—C1—C6—C5 0.4 (2) N1—S2—C19—C20 89.35 (11)
N1—C1—C6—C5 −177.05 (12) C24—C19—C20—C21 −0.5 (2)
C10—O1—C7—C8 −0.07 (16) S2—C19—C20—C21 180.00 (11)
C10—O1—C7—C2 179.71 (12) C19—C20—C21—C22 1.6 (2)
C1—C2—C7—C8 158.84 (16) C20—C21—C22—C23 −1.9 (2)
C3—C2—C7—C8 −19.9 (2) C20—C21—C22—C25 177.80 (13)
C1—C2—C7—O1 −20.9 (2) C21—C22—C23—C24 1.0 (2)
C3—C2—C7—O1 160.40 (12) C25—C22—C23—C24 −178.67 (13)
O1—C7—C8—C9 0.29 (17) C20—C19—C24—C23 −0.4 (2)
C2—C7—C8—C9 −179.45 (15) S2—C19—C24—C23 179.11 (11)
C7—C8—C9—C10 −0.40 (19) C22—C23—C24—C19 0.2 (2)

Hydrogen-bond geometry (Å, º)

Cg2 is the centroid of the ring.

D—H···A D—H H···A D···A D—H···A
C4—H4···O2i 0.95 2.56 3.3639 (17) 142
C6—H6···O5ii 0.95 2.56 3.3744 (17) 143
C11—H11B···N3iii 0.98 2.67 3.616 (2) 163
C13—H13···O3 0.95 2.56 2.9146 (18) 102
C16—H16···O4iv 0.95 2.55 3.2115 (18) 127
C21—H21···N3iii 0.95 2.54 3.433 (2) 156
C24—H24···O5 0.95 2.59 2.9371 (18) 102
C14—H14···Cg2v 0.95 2.85 3.4945 (16) 126

Symmetry codes: (i) x, y+1, z; (ii) −x+1, −y+1, −z+1; (iii) −x+1, −y, −z; (iv) −x+1, −y, −z+1; (v) −x+2, −y+1, −z+1.

Funding Statement

GMZ thanks Baku State University for financial support.

References

  1. Abbassi, N., Rakib, E. M., Hannioui, A. & Zouihri, H. (2011). Acta Cryst. E67, o3304. [DOI] [PMC free article] [PubMed]
  2. Arshad, M. N., Khan, I. U., Holman, K. T., Asiri, A. M. & Rafique, H. M. (2011). Acta Cryst. E67, o2356. [DOI] [PMC free article] [PubMed]
  3. Bartsch, R. A., Allaway, J. R., Yandell, R. B., Lee, J. G. & McCann, D. W. (1977). J. Chem. Eng. Data, 22, 453.
  4. Beesley, V. N. & Peters, W. (1971). J. Econ. Entomol. 64, 897–899. [DOI] [PubMed]
  5. Chohan, Z. H., Shaikh, U., Rauf, A. & Supuran, C. T. (2006). J. Enzyme Inhib. Med. Chem. 21, 741–748. [DOI] [PubMed]
  6. Chohan, Z. H., Youssoufi, M. H., Jarrahpour, A. & Ben Hadda, T. (2010). Eur. J. Med. Chem. 45, 1189–1199. [DOI] [PubMed]
  7. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  8. Gelmo, P. (1908). J. Prakt. Chem. 77, 369–382.
  9. Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
  10. Gurbanov, A. V., Kuznetsov, M. L., Demukhamedova, S. D., Alieva, I. N., Godjaev, N. M., Zubkov, F. I., Mahmudov, K. T. & Pombeiro, A. J. L. (2020a). CrystEngComm, 22, 628–633.
  11. Gurbanov, A. V., Kuznetsov, M. L., Karmakar, A., Aliyeva, V. A., Mahmudov, K. T. & Pombeiro, A. J. L. (2022). Dalton Trans. 51, 1019–1031. [DOI] [PubMed]
  12. Gurbanov, A. V., Kuznetsov, M. L., Mahmudov, K. T., Pombeiro, A. J. L. & Resnati, G. (2020b). Chem. Eur. J. 26, 14833–14837. [DOI] [PubMed]
  13. Hinsberg, O. (1890). Ber. Dtsch. Chem. Ges. 23, 2962–2965.
  14. Hinsberg, O. & Kessler, J. (1905). Ber. Dtsch. Chem. Ges. 38, 906–911.
  15. Kim, S.-G. (2014). Acta Cryst. E70, o660.
  16. Krishna, G., Grudinin, D. G., Nikitina, E. V. & Zubkov, F. I. (2022). Synthesis, 54, 797–863.
  17. Li, D., Bao, X., Pang, J., Hu, X., Wang, L., Wang, J., Yang, Z., Xu, L., Wang, S., Weng, Q., Cui, S. & Hou, T. (2022). J. Med. Chem. 65, 15710–15724. [DOI] [PubMed]
  18. Li, X.-Y. & Song, Z.-W. (2008). Acta Cryst. E64, o1906. [DOI] [PMC free article] [PubMed]
  19. Mahmoudi, G., Dey, L., Chowdhury, H., Bauzá, A., Ghosh, B. K., Kirillov, A. M., Seth, S. K., Gurbanov, A. V. & Frontera, A. (2017a). Inorg. Chim. Acta, 461, 192–205.
  20. Mahmoudi, G., Zaręba, J. K., Gurbanov, A. V., Bauzá, A., Zubkov, F. I., Kubicki, M., Stilinović, V., Kinzhybalo, V. & Frontera, A. (2017b). Eur. J. Inorg. Chem. pp. 4763–4772.
  21. Mammadova, G. Z., Annadurdyyeva, S., Burkin, G. M., Khrustalev, V. N., Akkurt, M., Yıldırım, S. Ö. & Bhattarai, A. (2023). Acta Cryst. E79, 499–503. [DOI] [PMC free article] [PubMed]
  22. Mughal, S. Y., Khan, I. U., Harrison, W. T. A., Khan, M. H. & Tahir, M. N. (2012a). Acta Cryst. E68, o2973. [DOI] [PMC free article] [PubMed]
  23. Mughal, S. Y., Khan, I. U., Harrison, W. T. A., Khan, M. H. & Tahir, M. N. (2012b). Acta Cryst. E68, o3013. [DOI] [PMC free article] [PubMed]
  24. Rigaku OD (2021). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.
  25. Rizzoli, C., Vicini, P. & Incerti, M. (2009). Acta Cryst. E65, o416–o417. [DOI] [PMC free article] [PubMed]
  26. Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.
  27. Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.
  28. Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006–1011. [DOI] [PMC free article] [PubMed]
  29. Spek, A. L. (2020). Acta Cryst. E76, 1–11. [DOI] [PMC free article] [PubMed]
  30. Supuran, C. T., Casini, A. & Scozzafava, A. (2003). Med. Res. Rev. 23, 535–558. [DOI] [PubMed]
  31. Taher, A. & Smith, V. J. (2012a). Acta Cryst. E68, o1136. [DOI] [PMC free article] [PubMed]
  32. Taher, A. & Smith, V. J. (2012b). Acta Cryst. E68, o3362. [DOI] [PMC free article] [PubMed]
  33. Thiry, A., Dogné, J.-M., Supuran, C. T. & Masereel, B. (2008). Curr. Pharm. Des. 14, 661–671. [DOI] [PubMed]
  34. Yarovaya, O. I., Kovaleva, K. S., Zaykovskaya, A. A., Yashina, L. N., Scherbakova, N. S., Scherbakov, D. N., Borisevich, S. S., Zubkov, F. I., Antonova, A. S., Peshkov, R. Y., Eltsov, I. V., Pyankov, O. V., Maksyutov, R. A. & Salakhutdinov, N. F. (2021). Bioorg. Med. Chem. Lett. 40, 127926. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989023006254/tx2071sup1.cif

e-79-00747-sup1.cif (879.2KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989023006254/tx2071Isup2.hkl

e-79-00747-Isup2.hkl (385.3KB, hkl)

Supporting information file. DOI: 10.1107/S2056989023006254/tx2071Isup3.cml

CCDC reference: 2282070

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES