Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2023 Jul 4;79(Pt 8):686–689. doi: 10.1107/S2056989023005571

Synthesis, crystal structure and Hirshfeld surface analysis of naphthalene-2,3-diyl bis­(3-benz­yl­oxy)benzoate

H Anil Kumar a, S Selvanandan b, H T Srinivasa c, G Venkateshappa d, B S Palakshamurthy e,*
Editor: W T A Harrisonf
PMCID: PMC10439419  PMID: 37601398

In the title compound, C38H28O6, the dihedral angles between the naphthalene ring system and its pendant benz­yloxy rings A and B are 88.05 (7) and 80.84 (7)°, respectively. The dihedral angles between the A and B rings and their attached phenyl rings are 49.15 (8) and 80.78 (8)°, respectively. In the extended structure, the mol­ecules are linked by weak C—H⋯O and C—H⋯π bonds and π–π stacking inter­actions, which variously generate C(11) chains and Inline graphic (12) loops as part of a three-dimensional network. The Hirshfeld surface [fingerprint contributions = H⋯H (42.3%), C⋯H/H⋯C (40.3%) and O⋯H/H⋯O (15.7%)] and inter­molecular inter­action energies are reported, with dispersion, E dis at −428.6 kJ mol−1 being the major contributor.

Keywords: crystal structure, naphthalene, Hirshfeld surface, benzoate

Abstract

In the title compound, C38H28O6, the dihedral angles between the naphthalene ring system and its pendant benz­yloxy rings A and B are 88.05 (7) and 80.84 (7)°, respectively. The dihedral angles between the A and B rings and their attached phenyl rings are 49.15 (8) and 80.78 (8)°, respectively. In the extended structure, the mol­ecules are linked by weak C—H⋯O and C—H⋯π hydrogen bonds, and π–π stacking inter­actions, which variously generate C(11) chains and R 2 2(12) loops as part of a three-dimensional network. The Hirshfeld surface [fingerprint contributions = H⋯H (42.3%), C⋯H/H⋯C (40.3%) and O⋯H/H⋯O (15.7%)] and inter­molecular inter­action energies are reported, with dispersion (E dis = −428.6 kJ mol−1) being the major contributor.

1. Chemical context

Naphthalene, biphenyl or benzene rings can act as rigid cores in liquid crystal mol­ecules. A variety of banana-shaped, bow-shaped or bent-core ferroelectric liquid crystals were developed by incorporating a benzene ring as a rigid core (Noiri et al., 1996; Srinivasa et al., 2017). These types of compounds form lamellar and/or columnar mesophases (Szydlowska et al., 2003) and they have been subjected to experimental and theoretical studies (Reddy et al., 2006; Vaupotič, 2006). Liquid crystalline materials with a bent-core mol­ecule are attractive because they exhibit good physical properties and possess two-dimensional smectic phases that display qualitatively different physical properties than calamatic ferroelectric liquid crystals. 1.

Our team is studying new bent-core liquid crystals with naphthalene rings as a rigid core (Srinivasa et al., 2018) and, as part of that work, we have performed a simple coupling reaction between 1,2-di­hydroxy­naphthalene and 3-benz­yl­oxybenzoic acid to construct the title mol­ecule. It is a bent-type non-liquid crystal material, possibly due to the absence of alkyl chains/polar moiety at the ends of the mol­ecule.

2. Structural commentary

The title compound crystallizes with one mol­ecule in the asym­metric unit (Fig. 1) in the space group P21/n. The dihedral angles between the C1–C10 naphthalene ring system (r.m.s. deviation = 0.022 Å) and its pendant C26–C31 (A) and C12–C17 (B) benz­yloxy rings are 88.05 (7) and 80.84 (7)°, respectively. The dihedral angles between the A and B rings and their attached C33–C38 and C19–C24 phenyl rings are 49.15 (8) and 80.78 (8)°, respectively. Key torsion angles include C1—O4—C25—C26 [−160.98 (13)°], C28—O2—C32—C33 [−172.04 (14)°], C10—O1—C11—C12 [−168.94 (14)°] and C14—O3—C18—C19 [172.84 (14)°]. Otherwise, the geometrical data for the title compound may be regarded as normal.

Figure 1.

Figure 1

The mol­ecular structure of the title compound, showing displacement ellipsoids drawn at the 50% probability level.

3. Supra­molecular features

In the crystal, the mol­ecules are linked by numerous C—H⋯O and C—H⋯π inter­actions (Table 1). Prominent packing features include a C(11) chain (arising from the C21—H21⋯O2ii hydrogen bond), which runs along [010], and centrosymmetric Inline graphic (12) loops (arising from the C9—H9⋯O5i hydrogen bond) between the mol­ecules as shown in Fig. 2. These, and the C—H⋯π inter­actions, link the mol­ecules into a three-dimensional network (see Figs. S1 and S2 in the supporting information).

Table 1. Hydrogen-bond geometry (Å, °).

Cg1, Cg2, Cg4, Cg5, Cg6 and Cg7 are the centroids of the C1–C3/C8–C10, C3–C8, C19–C24, C26–C31, C33–C38 and C1–C10 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C9—H9⋯O5i 0.93 2.52 3.258 (2) 136
C21—H21⋯O2ii 0.93 2.49 3.378 (2) 160
C4—H4⋯Cg5iii 0.93 2.60 3.4949 (19) 163
C16—H16⋯Cg2i 0.93 2.95 3.6955 (18) 139
C17—H17⋯Cg1i 0.93 2.90 3.7480 (17) 152
C17—H17⋯Cg7i 0.93 2.91 3.6342 (17) 135
C18—H18ACg6ii 0.97 2.66 3.5201 (18) 148
C30—H30⋯Cg1iv 0.93 2.90 3.7078 (17) 146
C31—H31⋯Cg2iv 0.93 2.69 3.5449 (17) 154
C31—H31⋯Cg7iv 0.93 2.95 3.6130 (16) 130
C32—H32ACg4v 0.97 2.82 3.5525 (18) 133
C15—H15⋯Cg6vi 0.93 2.97 3.6860 (18) 135

Symmetry codes: (i) Inline graphic ; (ii) Inline graphic ; (iii) Inline graphic ; (iv) Inline graphic ; (v) Inline graphic ; (vi) Inline graphic .

Figure 2.

Figure 2

Partial packing diagram showing the C—H⋯O inter­actions.

4. Hirshfeld surface analysis

The title mol­ecule was subjected to Hirshfeld surface analysis (Spackman & Jayatilaka, 2009) and the two-dimensional (2D) fingerprint plots (McKinnon et al., 2007) were generated with CrystalExplorer17 (Turner et al., 2017). The Hirshfeld surface mapped on d norm is shown in Fig. 3 and the overall 2D fingerprint plot and those delineated into H⋯H (42.3%), C⋯H/H⋯C (40.3%) and O⋯H/H⋯O (15.7%) contacts, together with their relative contributions to the Hirshfeld surface, are illustrated in Fig. 4. The inter­action energies for the title compound were calculated at the HF/3-21G quantum level of theory in CrystalExplorer. The four energy variables that make up the total inter­molecular inter­action energy (E tot) are electrostatic (E ele), polarization (E pol), dispersion (E disp) and exchange–repulsion (E rep), and the cylinder-shaped energy frameworks represent the relative strengths of the inter­action energies in individual directions, as well as the topologies of pairwise inter­molecular inter­action energies within the crystal (Mackenzie et al., 2017). The energies between mol­ecular pairs are depicted as cylinders connecting the centroids of two mol­ecules, with the radius of the cylinder equal to the amount of inter­action energy between the mol­ecules (Wu et al., 2020). The net inter­action energies for the title compound are E ele = −56.3 kJ mol−1, E pol = −30.4.0 kJ mol−1, E dis = −428.6 kJ mol−1 and E rep = 160.4 kJ mol−1, with a total inter­action energy E tot of −333.3 kJ mol−1. Therefore, E dis is the major inter­action energy in the title compound. The energy framework showing the electrostatic potential force, dispersion force and total energy diagrams are shown in Fig. 5. The cylindrical radii are proportional to the relative strength of the corresponding energies and they were adjusted to the same scale factor of 50 with a cutoff value of 5 kJ mol−1.

Figure 3.

Figure 3

The Hirshfeld surface of the title compound mapped over d norm.

Figure 4.

Figure 4

The 2D fingerprint plots for the title compound, showing C⋯H/H⋯C, H⋯H/H⋯H, O⋯H/H⋯O and O⋯O/O⋯O contacts.

Figure 5.

Figure 5

Energy frameworks calculated for the title compound, viewed along the a-axis direction, showing (a) Coulomb potential force, (b) dispersion force and (c) total energy diagrams. The cylindrical radii are proportional to the relative strength of the corresponding energies and they were adjusted to a cutoff value of 5 kJ mol−1.

5. Database survey

A search of the Cambridge Structural Database (CSD; Version 5.43, update of March 2022: Groom et al., 2016) for the naphthalene-2,3-diyl fragment gave 26 hits, of which six mol­ecules are similar to the title compound, with CSD refcodes WAFRII, WAFROO, WAFRUU, WAFSAB, WAFSEF and WAFSIJ (Rutherford et al., 2020). There exist inter­molecular inter­actions dominated by π–π stacking and C—H⋯π inter­actions involving the arene rings in the benzoate fragments and the arene ring in the tetra­hydro­napthalene moiety. A ‘thermosalient phase transition effect’ was studied in the compounds coded QIBMUM and QIBMUM01–QIBMUM06 (Tamboli et al., 2013), which feature a naphthalene-2,3-diyl bis­(4-fluoro­benzoate) fragment. The presence of π–π stacking and C—H⋯O and C—H⋯F inter­actions appear to play an important role in determining the mol­ecular conformations. The crystal structure analyses of the polymorphic structures coded DOPPAB, DOPPAB01, DOPPAB02, DOPPOP, DOPPOP01 and DOPQAC (Tamboli et al., 2018) revealed weak inter­molecular inter­actions, such as C—H⋯O, C—H⋯π and π–π stacking, as also seen in the title mol­ecule. These inter­actions are actively involved in mol­ecular aggregation, which results in the polymorphic modifications, if they are subjected to thermal transformation. Here, all the mol­ecules crystallize in the space group Pbcn or P2/c. The crystal structure analyses of IJAGIJ01 to IJAGIJ05 (Tamboli et al., 2014) are polymorphs of isomeric napthalene-2,3-diol ditoluates, in which the inter­molecular inter­actions, such as C—H⋯O, C—H⋯π and π–π stacking, are similar to the inter­actions present in the title mol­ecule.

6. Synthesis and crystalization

Under an inert atmosphere, 1,2-di­hydroxy­naphthalene (1.00 mmol), a catalytic amount of 4-di­methyl­amino­pyridine and 3-benzyl­oxybenzoic acid (2.00 mmol) were dissolved in 50 ml of dry di­chloro­methane (DCM). The above mixture was stirred for 2 h at room temperature with a solution of N,N-di­cyclo­hexyl­carbodi­imide (1.2 mmol) in DCM (20 ml). Filtration was used to remove the precipitated N,N-di­cyclo­hexyl­urea and the solvent was evaporated. To obtain the pure product, the solid residue was purified using column chromatography on silica gel with DCM as an eluent, followed by recrystallization from ethyl alcohol solution.

7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2. H atoms were positioned geometrically (C—H = 0.93 Å) and refined as riding with U iso(H) = 1.2U eq(C).

Table 2. Experimental details.

Crystal data
Chemical formula C38H28O6
M r 580.60
Crystal system, space group Monoclinic, P21/n
Temperature (K) 302
a, b, c (Å) 9.5219 (2), 10.1010 (2), 30.7050 (8)
β (°) 96.666 (1)
V3) 2933.26 (11)
Z 4
Radiation type Cu Kα
μ (mm−1) 0.72
Crystal size (mm) 0.32 × 0.28 × 0.21
 
Data collection
Diffractometer Bruker SMART APEXII CCD
No. of measured, independent and observed [I > 2σ(I)] reflections 14741, 4775, 4298
R int 0.032
(sin θ/λ)max−1) 0.585
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.042, 0.142, 1.06
No. of reflections 4775
No. of parameters 397
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.24, −0.23

Computer programs: APEX3 and SAINT (Bruker, 2014), SHELXT (Sheldrick, 2015a ), SHELXL (Sheldrick, 2015b ) and Mercury (Macrae et al., 2020).

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S2056989023005571/hb8069sup1.cif

e-79-00686-sup1.cif (474KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989023005571/hb8069Isup4.hkl

e-79-00686-Isup4.hkl (380.2KB, hkl)

Supplementary Figures showing C--H...pi interactions. DOI: 10.1107/S2056989023005571/hb8069sup3.docx

CCDC reference: 2271880

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

We thank the BSPM laboratory, UCS, Tumkur University, for support in completing this work.

supplementary crystallographic information

Crystal data

C38H28O6 Prism
Mr = 580.60 Dx = 1.315 Mg m3
Monoclinic, P21/n Melting point: 417 K
Hall symbol: -P 2yn Cu Kα radiation, λ = 1.54178 Å
a = 9.5219 (2) Å Cell parameters from 4775 reflections
b = 10.1010 (2) Å θ = 0.3–25°
c = 30.7050 (8) Å µ = 0.72 mm1
β = 96.666 (1)° T = 302 K
V = 2933.26 (11) Å3 Rod, colourless
Z = 4 0.32 × 0.28 × 0.21 mm
F(000) = 1216

Data collection

Bruker SMART APEXII CCD diffractometer 4298 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tube Rint = 0.032
Graphite monochromator θmax = 64.5°, θmin = 4.6°
Detector resolution: 2.06 pixels mm-1 h = −11→10
ω scans k = −11→7
14741 measured reflections l = −32→35
4775 independent reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.142 H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0997P)2 + 0.5664P] where P = (Fo2 + 2Fc2)/3
4775 reflections (Δ/σ)max < 0.001
397 parameters Δρmax = 0.24 e Å3
0 restraints Δρmin = −0.23 e Å3
1 constraint

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.58939 (11) 0.43382 (12) 0.05018 (3) 0.0232 (3)
O2 0.77634 (11) 0.38287 (13) 0.09926 (3) 0.0272 (3)
O3 0.58453 (11) 0.47609 (13) 0.24604 (3) 0.0268 (3)
O4 0.50928 (11) 0.18476 (12) 0.02981 (3) 0.0225 (3)
O5 0.34497 (11) 0.27300 (12) −0.02087 (3) 0.0248 (3)
O6 0.25879 (11) 0.13423 (13) 0.16475 (3) 0.0253 (3)
C1 0.61513 (15) 0.23968 (17) 0.00711 (5) 0.0201 (4)
C2 0.67835 (16) 0.16830 (17) −0.02259 (5) 0.0213 (4)
H2 0.649084 0.082186 −0.029440 0.026*
C3 0.78971 (15) 0.22628 (17) −0.04315 (5) 0.0204 (4)
C4 0.86373 (17) 0.15418 (18) −0.07275 (5) 0.0243 (4)
H4 0.838208 0.067021 −0.079451 0.029*
C5 0.97232 (17) 0.21079 (18) −0.09165 (5) 0.0254 (4)
H5 1.021228 0.161481 −0.110563 0.031*
C6 1.01010 (16) 0.34325 (18) −0.08256 (5) 0.0237 (4)
H6 1.083712 0.381211 −0.095640 0.028*
C7 0.93960 (15) 0.41691 (18) −0.05465 (5) 0.0212 (4)
H7 0.963984 0.505156 −0.049498 0.025*
C8 0.82939 (15) 0.35947 (17) −0.03349 (4) 0.0187 (3)
C9 0.76033 (15) 0.43085 (17) −0.00204 (5) 0.0194 (3)
H9 0.785118 0.518167 0.004687 0.023*
C10 0.65814 (15) 0.37016 (17) 0.01796 (4) 0.0200 (4)
C11 0.65782 (15) 0.42547 (17) 0.09173 (5) 0.0199 (4)
C12 0.56915 (16) 0.47090 (16) 0.12536 (5) 0.0203 (4)
C13 0.62360 (16) 0.45161 (17) 0.16931 (5) 0.0213 (4)
H13 0.712355 0.413805 0.176414 0.026*
C14 0.54323 (16) 0.48970 (17) 0.20201 (5) 0.0216 (4)
C15 0.40898 (17) 0.54473 (18) 0.19114 (5) 0.0266 (4)
H15 0.354379 0.568536 0.213113 0.032*
C16 0.35781 (17) 0.5636 (2) 0.14761 (5) 0.0307 (4)
H16 0.269350 0.601978 0.140482 0.037*
C17 0.43662 (17) 0.52605 (19) 0.11437 (5) 0.0272 (4)
H17 0.400928 0.537764 0.085129 0.033*
C18 0.72408 (17) 0.42395 (19) 0.25874 (5) 0.0265 (4)
H18A 0.793380 0.474299 0.244862 0.032*
H18B 0.728805 0.332338 0.249542 0.032*
C19 0.75487 (16) 0.43351 (18) 0.30777 (5) 0.0234 (4)
C20 0.73388 (16) 0.55202 (18) 0.32920 (5) 0.0250 (4)
H20 0.696094 0.624617 0.313295 0.030*
C21 0.76914 (16) 0.56235 (19) 0.37426 (5) 0.0262 (4)
H21 0.754780 0.641792 0.388404 0.031*
C22 0.82545 (17) 0.45503 (19) 0.39814 (5) 0.0282 (4)
H22 0.849553 0.462230 0.428278 0.034*
C23 0.84571 (19) 0.3374 (2) 0.37712 (5) 0.0316 (4)
H23 0.883045 0.264814 0.393102 0.038*
C24 0.81042 (18) 0.32703 (19) 0.33198 (5) 0.0286 (4)
H24 0.824505 0.247257 0.318000 0.034*
C25 0.37343 (15) 0.22511 (16) 0.01482 (5) 0.0192 (3)
C26 0.27380 (16) 0.20240 (16) 0.04756 (5) 0.0194 (3)
C27 0.32213 (16) 0.17695 (16) 0.09144 (5) 0.0199 (3)
H27 0.418421 0.168975 0.100463 0.024*
C28 0.22447 (16) 0.16371 (17) 0.12146 (5) 0.0204 (4)
C29 0.08046 (16) 0.17887 (18) 0.10773 (5) 0.0235 (4)
H29 0.015499 0.173477 0.128056 0.028*
C30 0.03403 (16) 0.20179 (18) 0.06419 (5) 0.0250 (4)
H30 −0.062326 0.209607 0.055252 0.030*
C31 0.12965 (16) 0.21333 (17) 0.03353 (5) 0.0233 (4)
H31 0.098083 0.228097 0.004124 0.028*
C32 0.40533 (16) 0.1048 (2) 0.17832 (5) 0.0267 (4)
H32A 0.462305 0.183689 0.176271 0.032*
H32B 0.438343 0.037409 0.159440 0.032*
C33 0.41890 (16) 0.05652 (19) 0.22477 (5) 0.0247 (4)
C34 0.39745 (18) −0.0760 (2) 0.23388 (5) 0.0311 (4)
H34 0.369988 −0.134322 0.211041 0.037*
C35 0.41657 (19) −0.1225 (2) 0.27679 (6) 0.0350 (4)
H35 0.401233 −0.211366 0.282630 0.042*
C36 0.45865 (18) −0.0357 (2) 0.31084 (5) 0.0331 (4)
H36 0.473278 −0.066367 0.339563 0.040*
C37 0.47870 (18) 0.0964 (2) 0.30192 (5) 0.0330 (4)
H37 0.506345 0.154630 0.324773 0.040*
C38 0.45797 (17) 0.1431 (2) 0.25914 (5) 0.0281 (4)
H38 0.470290 0.232544 0.253504 0.034*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0207 (5) 0.0346 (7) 0.0141 (5) 0.0060 (5) 0.0012 (4) −0.0030 (4)
O2 0.0200 (6) 0.0404 (8) 0.0207 (6) 0.0065 (5) −0.0001 (4) −0.0027 (5)
O3 0.0203 (6) 0.0440 (8) 0.0159 (5) 0.0045 (5) 0.0003 (4) −0.0018 (5)
O4 0.0168 (5) 0.0302 (7) 0.0212 (5) 0.0025 (4) 0.0048 (4) 0.0067 (5)
O5 0.0230 (6) 0.0345 (7) 0.0167 (6) 0.0007 (5) 0.0013 (4) 0.0025 (5)
O6 0.0190 (6) 0.0417 (8) 0.0151 (5) 0.0018 (5) 0.0023 (4) 0.0017 (5)
C1 0.0150 (7) 0.0286 (10) 0.0167 (7) 0.0005 (6) 0.0015 (5) 0.0053 (6)
C2 0.0201 (8) 0.0218 (9) 0.0217 (8) −0.0004 (6) 0.0013 (6) 0.0019 (6)
C3 0.0181 (7) 0.0276 (10) 0.0151 (7) 0.0010 (6) −0.0002 (6) 0.0012 (6)
C4 0.0255 (8) 0.0243 (10) 0.0233 (8) −0.0003 (7) 0.0036 (6) −0.0029 (7)
C5 0.0225 (8) 0.0342 (11) 0.0203 (8) 0.0023 (7) 0.0050 (6) −0.0025 (7)
C6 0.0182 (7) 0.0352 (11) 0.0176 (7) −0.0031 (7) 0.0021 (6) 0.0023 (7)
C7 0.0198 (8) 0.0247 (9) 0.0179 (7) −0.0027 (6) −0.0025 (6) 0.0027 (6)
C8 0.0165 (7) 0.0250 (9) 0.0135 (7) −0.0003 (6) −0.0025 (5) 0.0008 (6)
C9 0.0184 (7) 0.0223 (9) 0.0163 (7) 0.0014 (6) −0.0023 (6) −0.0015 (6)
C10 0.0172 (7) 0.0293 (10) 0.0127 (7) 0.0045 (6) −0.0011 (5) −0.0018 (6)
C11 0.0191 (8) 0.0226 (9) 0.0174 (7) −0.0012 (6) −0.0003 (6) −0.0003 (6)
C12 0.0196 (8) 0.0224 (9) 0.0187 (7) −0.0014 (6) 0.0014 (6) −0.0019 (6)
C13 0.0170 (7) 0.0244 (9) 0.0222 (8) −0.0001 (6) 0.0005 (6) −0.0021 (6)
C14 0.0221 (8) 0.0272 (9) 0.0154 (7) −0.0031 (7) 0.0010 (6) −0.0021 (6)
C15 0.0213 (8) 0.0364 (11) 0.0226 (8) 0.0026 (7) 0.0041 (6) −0.0051 (7)
C16 0.0202 (8) 0.0458 (12) 0.0256 (8) 0.0096 (7) 0.0008 (6) −0.0015 (7)
C17 0.0243 (8) 0.0377 (11) 0.0185 (7) 0.0042 (7) −0.0015 (6) −0.0001 (7)
C18 0.0207 (8) 0.0391 (11) 0.0197 (8) 0.0048 (7) 0.0015 (6) −0.0025 (7)
C19 0.0159 (7) 0.0341 (10) 0.0200 (8) −0.0002 (7) 0.0018 (6) −0.0012 (7)
C20 0.0219 (8) 0.0292 (10) 0.0236 (8) 0.0039 (7) 0.0013 (6) 0.0014 (7)
C21 0.0205 (8) 0.0339 (11) 0.0244 (8) 0.0000 (7) 0.0035 (6) −0.0071 (7)
C22 0.0235 (8) 0.0430 (12) 0.0180 (8) −0.0026 (7) 0.0015 (6) −0.0003 (7)
C23 0.0358 (10) 0.0349 (11) 0.0235 (8) 0.0033 (8) 0.0011 (7) 0.0057 (7)
C24 0.0312 (9) 0.0290 (10) 0.0258 (8) 0.0025 (7) 0.0046 (7) −0.0029 (7)
C25 0.0188 (7) 0.0207 (9) 0.0178 (7) −0.0004 (6) 0.0013 (6) −0.0023 (6)
C26 0.0193 (8) 0.0200 (9) 0.0190 (8) 0.0004 (6) 0.0027 (6) −0.0011 (6)
C27 0.0160 (7) 0.0235 (9) 0.0199 (8) −0.0003 (6) 0.0010 (6) −0.0016 (6)
C28 0.0222 (8) 0.0231 (9) 0.0157 (7) −0.0009 (6) 0.0017 (6) −0.0018 (6)
C29 0.0187 (8) 0.0291 (10) 0.0234 (8) 0.0019 (6) 0.0054 (6) −0.0003 (7)
C30 0.0156 (7) 0.0333 (10) 0.0258 (8) 0.0033 (7) 0.0017 (6) 0.0023 (7)
C31 0.0217 (8) 0.0277 (10) 0.0198 (7) 0.0013 (7) −0.0004 (6) 0.0019 (6)
C32 0.0186 (8) 0.0416 (11) 0.0195 (8) −0.0022 (7) 0.0006 (6) 0.0021 (7)
C33 0.0176 (7) 0.0379 (11) 0.0188 (8) −0.0019 (7) 0.0025 (6) 0.0009 (7)
C34 0.0296 (9) 0.0386 (12) 0.0250 (9) −0.0057 (8) 0.0032 (7) −0.0028 (7)
C35 0.0330 (9) 0.0406 (12) 0.0319 (9) −0.0028 (8) 0.0064 (7) 0.0098 (8)
C36 0.0279 (9) 0.0519 (13) 0.0195 (8) 0.0004 (8) 0.0030 (6) 0.0083 (8)
C37 0.0308 (9) 0.0491 (13) 0.0189 (8) −0.0036 (8) 0.0021 (7) −0.0025 (8)
C38 0.0247 (8) 0.0362 (11) 0.0235 (8) −0.0024 (7) 0.0034 (6) 0.0006 (7)

Geometric parameters (Å, º)

O1—C11 1.3662 (18) C18—C19 1.503 (2)
O1—C10 1.4040 (18) C18—H18A 0.9700
O2—C11 1.2049 (19) C18—H18B 0.9700
O3—C14 1.3702 (18) C19—C24 1.378 (3)
O3—C18 1.4404 (19) C19—C20 1.392 (2)
O4—C25 1.3831 (18) C20—C21 1.389 (2)
O4—C1 1.4045 (18) C20—H20 0.9300
O5—C25 1.1998 (18) C21—C22 1.382 (3)
O6—C28 1.3642 (18) C21—H21 0.9300
O6—C32 1.4401 (18) C22—C23 1.376 (3)
C1—C2 1.357 (2) C22—H22 0.9300
C1—C10 1.409 (2) C23—C24 1.392 (2)
C2—C3 1.422 (2) C23—H23 0.9300
C2—H2 0.9300 C24—H24 0.9300
C3—C4 1.415 (2) C25—C26 1.478 (2)
C3—C8 1.419 (2) C26—C31 1.394 (2)
C4—C5 1.368 (2) C26—C27 1.396 (2)
C4—H4 0.9300 C27—C28 1.390 (2)
C5—C6 1.405 (3) C27—H27 0.9300
C5—H5 0.9300 C28—C29 1.395 (2)
C6—C7 1.368 (2) C29—C30 1.378 (2)
C6—H6 0.9300 C29—H29 0.9300
C7—C8 1.421 (2) C30—C31 1.388 (2)
C7—H7 0.9300 C30—H30 0.9300
C8—C9 1.425 (2) C31—H31 0.9300
C9—C10 1.356 (2) C32—C33 1.498 (2)
C9—H9 0.9300 C33—C34 1.387 (3)
C11—C12 1.480 (2) C33—C38 1.388 (2)
C12—C17 1.385 (2) C34—C35 1.391 (2)
C12—C13 1.402 (2) C34—H34 0.9300
C13—C14 1.386 (2) C35—C36 1.388 (3)
C13—H13 0.9300 C35—H35 0.9300
C14—C15 1.398 (2) C36—C37 1.379 (3)
C15—C16 1.382 (2) C36—H36 0.9300
C15—H15 0.9300 C37—C38 1.388 (2)
C16—C17 1.388 (2) C37—H37 0.9300
C16—H16 0.9300 C38—H38 0.9300
C17—H17 0.9300
C11—O1—C10 114.77 (11) H18A—C18—H18B 108.4
C14—O3—C18 116.99 (12) C24—C19—C20 118.91 (14)
C25—O4—C1 114.56 (11) C24—C19—C18 120.55 (16)
C28—O6—C32 116.20 (11) C20—C19—C18 120.46 (15)
C2—C1—C10 121.11 (14) C21—C20—C19 120.28 (16)
C2—C1—O4 121.57 (15) C21—C20—H20 119.9
C10—C1—O4 117.25 (13) C19—C20—H20 119.9
C2—C1—O4 121.57 (15) C22—C21—C20 120.24 (17)
C10—C1—O4 117.25 (13) C22—C21—H21 119.9
C1—C2—C3 119.43 (15) C20—C21—H21 119.9
C1—C2—H2 120.3 C21—C22—C23 119.68 (15)
C3—C2—H2 120.3 C21—C22—H22 120.2
C4—C3—C2 121.73 (15) C23—C22—H22 120.2
C4—C3—C8 118.80 (14) C22—C23—C24 120.11 (17)
C2—C3—C8 119.46 (14) C22—C23—H23 119.9
C5—C4—C3 120.97 (16) C24—C23—H23 119.9
C5—C4—H4 119.5 C19—C24—C23 120.77 (17)
C3—C4—H4 119.5 C19—C24—H24 119.6
C4—C5—C6 120.16 (15) C23—C24—H24 119.6
C4—C5—H5 119.9 O5—C25—O4 121.75 (13)
C6—C5—H5 119.9 O5—C25—O4 121.75 (13)
C5—C6—C7 120.62 (15) O5—C25—C26 126.09 (14)
C5—C6—H6 119.7 O4—C25—C26 112.15 (12)
C7—C6—H6 119.7 O4—C25—C26 112.15 (12)
C6—C7—C8 120.43 (16) C31—C26—C27 121.00 (14)
C6—C7—H7 119.8 C31—C26—C25 117.65 (14)
C8—C7—H7 119.8 C27—C26—C25 121.28 (13)
C7—C8—C9 121.77 (15) C28—C27—C26 119.14 (14)
C7—C8—C3 118.97 (14) C28—C27—H27 120.4
C9—C8—C3 119.24 (14) C26—C27—H27 120.4
C10—C9—C8 119.32 (15) O6—C28—C27 124.34 (13)
C10—C9—H9 120.3 O6—C28—C29 115.74 (13)
C8—C9—H9 120.3 C27—C28—C29 119.91 (14)
C9—C10—O1 121.99 (15) C30—C29—C28 120.33 (14)
C9—C10—O1 121.99 (15) C30—C29—H29 119.8
C9—C10—C1 121.34 (14) C28—C29—H29 119.8
O1—C10—C1 116.66 (13) C29—C30—C31 120.67 (14)
O1—C10—C1 116.66 (13) C29—C30—H30 119.7
O2—C11—O1 122.40 (14) C31—C30—H30 119.7
O2—C11—O1 122.40 (14) C26—C31—C30 118.91 (14)
O2—C11—C12 125.04 (13) C26—C31—H31 120.5
O1—C11—C12 112.55 (12) C30—C31—H31 120.5
O1—C11—C12 112.55 (12) O6—C32—C33 108.43 (12)
C17—C12—C13 121.00 (14) O6—C32—H32A 110.0
C17—C12—C11 122.14 (13) C33—C32—H32A 110.0
C13—C12—C11 116.82 (13) O6—C32—H32B 110.0
C14—C13—C12 119.04 (14) C33—C32—H32B 110.0
C14—C13—H13 120.5 H32A—C32—H32B 108.4
C12—C13—H13 120.5 C34—C33—C38 119.16 (15)
O3—C14—C13 124.59 (14) C34—C33—C32 120.50 (16)
O3—C14—C15 115.16 (13) C38—C33—C32 120.30 (17)
C13—C14—C15 120.25 (14) C33—C34—C35 120.74 (17)
C16—C15—C14 119.72 (15) C33—C34—H34 119.6
C16—C15—H15 120.1 C35—C34—H34 119.6
C14—C15—H15 120.1 C36—C35—C34 119.64 (19)
C15—C16—C17 120.90 (15) C36—C35—H35 120.2
C15—C16—H16 119.5 C34—C35—H35 120.2
C17—C16—H16 119.5 C35—C36—C37 119.75 (16)
C12—C17—C16 119.08 (14) C35—C36—H36 120.1
C12—C17—H17 120.5 C37—C36—H36 120.1
C16—C17—H17 120.5 C38—C37—C36 120.58 (17)
O3—C18—C19 108.31 (12) C38—C37—H37 119.7
O3—C18—H18A 110.0 C36—C37—H37 119.7
C19—C18—H18A 110.0 C37—C38—C33 120.11 (19)
O3—C18—H18B 110.0 C37—C38—H38 119.9
C19—C18—H18B 110.0 C33—C38—H38 119.9
C25—O4—C1—C2 −103.88 (16) C13—C14—C15—C16 −1.3 (3)
C25—O4—C1—C10 79.14 (16) C14—C15—C16—C17 1.4 (3)
O4—C1—C2—C3 −176.96 (12) C13—C12—C17—C16 0.6 (3)
O4—C1—C2—C3 −176.96 (12) C11—C12—C17—C16 178.47 (16)
C1—C2—C3—C4 176.92 (14) C15—C16—C17—C12 −1.0 (3)
C1—C2—C3—C8 −2.3 (2) C14—O3—C18—C19 172.84 (14)
C2—C3—C4—C5 −178.84 (14) O3—C18—C19—C24 132.87 (16)
C3—C4—C5—C6 −1.4 (2) O3—C18—C19—C20 −50.1 (2)
C5—C6—C7—C8 1.7 (2) C24—C19—C20—C21 0.3 (2)
C6—C7—C8—C9 175.77 (13) C18—C19—C20—C21 −176.77 (14)
C6—C7—C8—C3 −2.6 (2) C19—C20—C21—C22 0.1 (2)
C4—C3—C8—C7 1.5 (2) C20—C21—C22—C23 −0.4 (2)
C2—C3—C8—C7 −179.20 (13) C21—C22—C23—C24 0.4 (3)
C4—C3—C8—C9 −176.86 (13) C20—C19—C24—C23 −0.3 (2)
C2—C3—C8—C9 2.4 (2) C18—C19—C24—C23 176.77 (15)
C7—C8—C9—C10 −178.40 (13) C22—C23—C24—C19 −0.1 (3)
C8—C9—C10—O1 177.98 (12) C1—O4—C25—O5 18.8 (2)
C8—C9—C10—O1 177.98 (12) C1—O4—C25—O4 0 (22)
C8—C9—C10—C1 −2.4 (2) C1—O4—C25—C26 −160.98 (13)
C11—O1—C10—C9 −85.49 (17) O5—C25—C26—C31 13.0 (3)
C11—O1—C10—C1 94.88 (15) O4—C25—C26—C31 −167.24 (14)
C2—C1—C10—C9 2.5 (2) O4—C25—C26—C31 −167.24 (14)
O4—C1—C10—C9 179.53 (13) O5—C25—C26—C27 −164.05 (16)
O4—C1—C10—C9 179.53 (13) O4—C25—C26—C27 15.7 (2)
C2—C1—C10—O1 −177.83 (13) O4—C25—C26—C27 15.7 (2)
O4—C1—C10—O1 −0.83 (18) C31—C26—C27—C28 −0.6 (2)
O4—C1—C10—O1 −0.83 (18) C25—C26—C27—C28 176.37 (15)
C2—C1—C10—O1 −177.83 (13) C32—O6—C28—C27 −5.3 (2)
O4—C1—C10—O1 −0.83 (18) C32—O6—C28—C29 173.76 (15)
O4—C1—C10—O1 −0.83 (18) C26—C27—C28—O6 177.57 (15)
C10—O1—C11—O2 9.7 (2) C26—C27—C28—C29 −1.5 (3)
C10—O1—C11—C12 −168.94 (14) O6—C28—C29—C30 −176.56 (15)
O2—C11—C12—C17 176.16 (17) C27—C28—C29—C30 2.6 (3)
O1—C11—C12—C17 −5.3 (2) C28—C29—C30—C31 −1.6 (3)
O1—C11—C12—C17 −5.3 (2) C27—C26—C31—C30 1.6 (3)
O2—C11—C12—C13 −5.9 (3) C25—C26—C31—C30 −175.49 (15)
O1—C11—C12—C13 172.69 (14) C29—C30—C31—C26 −0.5 (3)
O1—C11—C12—C13 172.69 (14) C28—O6—C32—C33 −172.04 (14)
C17—C12—C13—C14 −0.6 (3) O6—C32—C33—C34 85.55 (19)
C11—C12—C13—C14 −178.55 (15) O6—C32—C33—C38 −96.72 (18)
C18—O3—C14—C13 2.9 (2) C32—C33—C34—C35 176.88 (15)
C18—O3—C14—C15 −177.96 (15) C34—C35—C36—C37 1.1 (3)
C12—C13—C14—O3 179.99 (15) C36—C37—C38—C33 −1.0 (3)
C12—C13—C14—C15 0.9 (2) C34—C33—C38—C37 1.6 (2)
O3—C14—C15—C16 179.51 (16) C32—C33—C38—C37 −176.12 (15)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C9—H9···O5i 0.93 2.52 3.258 (2) 136
C21—H21···O2ii 0.93 2.49 3.378 (2) 160
C4—H4···Cg5iii 0.93 2.60 3.4949 (19) 163
C16—H16···Cg2i 0.93 2.95 3.6955 (18) 139
C17—H17···Cg1i 0.93 2.90 3.7480 (17) 152
C17—H17···Cg7i 0.93 2.91 3.6342 (17) 135
C18—H18A···Cg6ii 0.97 2.66 3.5201 (18) 148
C30—H30···Cg1iv 0.93 2.90 3.7078 (17) 146
C31—H31···Cg2iv 0.93 2.69 3.5449 (17) 154
C31—H31···Cg7iv 0.93 2.95 3.6130 (16) 130
C32—H32A···Cg4v 0.97 2.82 3.5525 (18) 133
C15—H15···Cg6vi 0.93 2.97 3.6860 (18) 135

Symmetry codes: (i) −x+1, −y+1, −z; (ii) −x+3/2, y+1/2, −z+1/2; (iii) −x+1, −y, −z; (iv) x−1, y, z; (v) −x+3/2, y−1/2, −z+1/2; (vi) −x+1/2, y+1/2, −z+1/2.

Funding Statement

Funding for this research was provided by: Vision Group on Science and Technology (grant No. VGST/CISEE/GRD319 to Palakshamurthy B.S).

References

  1. Bruker (2014). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
  3. Mackenzie, C. F., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). IUCrJ, 4, 575–587. [DOI] [PMC free article] [PubMed]
  4. Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235. [DOI] [PMC free article] [PubMed]
  5. McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816. [DOI] [PubMed]
  6. Noiri, T., Sekine, T., Watanabe, J., Furukawa, T. & Takezoe, H. (1996). J. Mater. Chem. 67, 1231–1233
  7. Reddy, A. R. & Tschierske, C. (2006). J. Mater. Chem. 16, 907–961.
  8. Rutherford, R. N., Ura, S., Chan, T.-H., Fukumoto, K., Nishioka, T. & Renzetti, A. (2020). Acta Cryst. C76, 1085–1095. [DOI] [PubMed]
  9. Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.
  10. Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.
  11. Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.
  12. Srinivasa, H. T. (2017). Liq. Cryst. 44, 1384–1393.
  13. Srinivasa, H. T., Palakshamurthy, B. S., Devarajegowda, H. C. & Hariprasad, S. (2018). J. Mol. Struct. 1173, 620–626.
  14. Szydlowska, J., Mieczkowski, J., Matraszek, J., Bruce, D. W., Gorecka, E., Pociecha, D. & Guillon, D. (2003). Phys. Rev. E, 67, 031702. [DOI] [PubMed]
  15. Tamboli, M. I., Bahadur, V., Gonnade, R. G. & Shashidhar, M. S. (2014). Acta Cryst. C70, 1040–1045. [DOI] [PubMed]
  16. Tamboli, M. I., Karothu, D. P., Shashidhar, M. S., Gonnade, R. G. & Naumov, P. (2018). Chem. Eur. J. 24, 4133–4139. [DOI] [PubMed]
  17. Tamboli, M. I., Krishnaswamy, S., Gonnade, R. G. & Shashidhar, M. S. (2013). Chem. Eur. J. 19, 12867–12874. [DOI] [PubMed]
  18. Turner, M. J., Mckinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). Crystal­Explorer. Version 17. The University of Western Australia.
  19. Vaupotič, N. (2006). Ferroelectrics, 344, 151–159.
  20. Wu, Q., Xiao, J. C., Zhou, C., Sun, J. R., Huang, M. F., Xu, X., Li, T. & Tian, H. (2020). Crystals, 10, 334–348.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S2056989023005571/hb8069sup1.cif

e-79-00686-sup1.cif (474KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989023005571/hb8069Isup4.hkl

e-79-00686-Isup4.hkl (380.2KB, hkl)

Supplementary Figures showing C--H...pi interactions. DOI: 10.1107/S2056989023005571/hb8069sup3.docx

CCDC reference: 2271880

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES