Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2023 Jul 14;79(Pt 8):722–725. doi: 10.1107/S2056989023006059

Crystal structure and luminescence spectrum of a one-dimensional nickel(II) coordination polymer incorporating 1,4-bis­[(2-methyl­imidazol-1-yl)meth­yl]benzene and adamantane-1,3-di­carboxyl­ate co-ligands

Yong Zhang a,*, Hongni Qin a, Bing Wu b
Editor: W T A Harrisonc
PMCID: PMC10439420  PMID: 37601395

The title one-dimensional coordination polymer features alternating 26- and 16-membered rings.

Keywords: crystal structure, nickel, coordination polymer

Abstract

An NiII coordination polymer, namely, poly[(μ2-adamantane-1,3-di­carboxyl­ato-κ4 O 1,O 1′:O 3,O 3′)[μ2-1,4-bis­(2-methyl-imidazol-1-ylmeth­yl)benzene-κ2 N 3:N 3′]nickel(II)], [Ni(C12H14O4)(C16H18N4)] n or [Ni(adc)(bmib)] n , (I) [adc = adamantane-1,3-di­carboxyl­ate, C12H14O4 2– and bmib = 1,4-bis­(2-methyl-imidazol-1-ylmeth­yl)benzene, C16H18N4] was synthesized and characterized. It exhibits a one-dimensional extended structure built up from alternating [Ni2(bmib)2] 26-membered rings and [Ni2(adc)2] 16-membered rings. The nickel atom lies on a crystallographic twofold axis and both ligands are completed by mirror symmetry. The solid-state luminescence spectra of (I) and the bmib ligand show strong emissions at 442 and 410 nm, respectively.

1. Chemical context

Coordination polymers have been widely studied because of their diverse and inter­esting structures (Bao et al., 2019; Zhang & Lin 2014; Wang et al., 2020; Parmar et al., 2021) and potential applications in sorption (Fan et al., 2021), luminescent materials (Zhou et al., 2021), magnetism (Yang et al., 2021a ), catalytic splitting of water (Li et al., 2019), catalytic degrading of pollutants (Jiang et al., 2018) and battery mat­erials (Yang et al., 2021b ; Bao et al., 2019). In the construction of coordination polymers, N-donor (imidazole or triazole ligands) and O-donor (polycarboxyl­ate ligands) co-ligand systems lead to various inter­esting networks (Yang et al., 2014; Sun et al., 2013; Zhang et al., 2021a ,b ). 1,4-Bis(2-methyl-imidazol-1-ylmeth­yl)benzene (C16H18N4; bmib) is a semi-flexible bidentate N-donor ligand and is widely used in the construction of different coordination polymers (Yang et al., 2014; Sun et al., 2013). Four Ni-bmib coordination polymers are documented: [Ni(bcpb)(bmib)0.5] n (H2bcpb = 3,5-bis­(4-carb­oxy­phen­yl)pyridine) has a (3,4)-connected three-dimensional amd network, with the point symbol of (62.8)(63.8.102) (Fan et al., 2014a ). {[Ni(tptc)0.5(bmib)]·0.25H2O} n (H4tptc = terphenyl-2,5,2′,5′-tetra­carb­oxy­lic acid) shows a (4,4)-coord­inated three-dimensional network with a point symbol of (4.64.82)2(42.84) (Fan et al., 2014b ). [Ni(bmib)(bpda)] (H2bpda = biphenyl-3,4′-di­carb­oxy­lic acid) exhibits a threefold inter­penetrated (65.8) network (Sun et al., 2013). {[Ni2(glu)2(bmib)2(H2O)2]·H2O}n (glu = glutarate) exhibits a 4-connected three-dimensional framework with point symbol 66, but is not a typical dia network (Zhao et al., 2020). The adamantane-1,3-di­carboxyl­ate dianion (C12H14O4 2–; adc) is a good O-donor bridging ligand for constructing coordination polymers (Zhao et al., 2017). In this work, the title NiII coordination polymer [Ni(adc)(bmib)] n , (I), was synthesized and its crystal structure was determined. 1.

2. Structural commentary

The structural motif of the title coordination polymer (I) is a one-dimensional chain. The NiII atom in (I) lies on a crystallographic twofold axis and adopts a distorted cis-NiN2O4 octa­hedral coordination geometry arising from four oxygen atoms from two carboxyl­ate groups in two adc ligands [Ni1—O1 = 2.179 (3) Å; Ni1—O2 = 2.096 (3) Å] and two nitro­gen atoms of two bmib ligands [Ni1—N2 = 2.050 (3) Å] (Table 1, Fig. 1). Atoms O1 and O1i lie opposite to each other with the bond angle O1—Ni1—O1i [symmetry code: (i) 1 – x, y, –z] = 142.26 (15)°. These Ni—O and Ni—N bond lengths are typical and show no deviations from those in other distorted octa­hedral NiII coordination polymers (Fan et al., 2014a ,b ). The other bond angles are in the range 61.20 (11)–156.75 (13)° (Fan et al., 2014a ,b ). The dihedral angle between the imidazole and benzene rings of the bmib mol­ecule is 78.8 (2)° and that between the imidazole rings is 67.1 (2)°. The bmib ligand exhibits a gauche conformation and the torsion angle N1—C4—C1—C3 is −117.9 (5)°. In the extended structure, two bmib ligands bridge two NiII atoms and construct a [Ni2(bmib)2] 26-membered ring with an Ni⋯Ni distance of 12.100 (2) Å. Two carboxyl­ate groups of one adc ligand exhibit an O,O-chelating mode such that two adc ligands link two NiII atoms and construct an [Ni2(adc)2] 16-membered ring with Ni⋯Ni = 8.0978 (16) Å. The NiII atoms are alternately connected by the bridging bmib and adc moieties, resulting in a chain containing alternative [Ni2(bmib)2] and [Ni2(adc)2] loops propagating along the b-axis direction (Fig. 2).

Table 1. Selected geometric parameters (Å, °).

Ni1—O1 2.179 (3) Ni1—N2 2.050 (3)
Ni1—O2 2.096 (3)    
       
O1—Ni1—O1i 142.26 (15) N2—Ni1—O1 95.55 (12)
O2—Ni1—O1 61.20 (11) N2—Ni1—O2i 91.42 (13)
O2—Ni1—O1i 91.22 (12) N2—Ni1—O2 156.75 (13)
O2—Ni1—O2i 89.19 (18) N2—Ni1—N2i 97.01 (19)
N2—Ni1—O1i 109.38 (12)    

Symmetry code: (i) Inline graphic .

Figure 1.

Figure 1

A view of the title compound with displacement ellipsoids drawn at the 50% probability level. Symmetry codes: (i) −x + 1, y, −z; (ii) x, −y + 1, z; (iii) x, −y, z.

Figure 2.

Figure 2

The one-dimensional supra­molecular structure of (I).

3. Supra­molecular features

Each [Ni(bmib)(adc)]n chain is surrounded by six further chains (Fig. 3). There are no C—H⋯O hydrogen bond inter­actions or aromatic π–π stacking inter­actions between the rings, thus the three-dimensional supra­molecular architecture of (I) must therefore be established by van der Waals inter­actions.

Figure 3.

Figure 3

The stacking of [010] chains in the crystal structure of (I). The bonds of one chain are shown in blue and the bonds of six adjacent chains are shown in purple.

4. Luminescence properties

The solid-state luminescence spectra of (I) and the bmib ligand were measured at room temperature (Fig. 4). Compound (I) and bmib exhibit strong emissions at 442 nm and 410 nm, respectively, upon excitation at 340 nm. The emissions can be attributed to an intra­ligand charge-transfer transition (Yang et al., 2014).

Figure 4.

Figure 4

Solid-state luminescence spectra of (I) and the bmib ligand at room temperature.

5. Database survey

The bmib ligand is widely used in coordination chemistry but for Ni–bmib compounds, a search of the Cambridge Structural Database (CSD, version 5.42, update of September 2021; Groom et al., 2016) revealed only the four coordination polymers noted in the Chemical context section.

6. Synthesis and crystallization

A mixture of bmib (0.22 mmol), Ni(NO3)2 .6H2O (0.28 mmol), H2adc (0.22 mmol), NaOH (0.38 mmol) and H2O (14.0 ml) was added to a 20.0 ml Teflon-lined stainless steel autoclave, which was then sealed and heated to 393 K for 5 d. Green crystals of (I) were obtained when the mixture was cooled to room temperature.

7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2. The hydrogen atoms (CH, CH2, CH3 groups) were placed geometrically (C—H = 0.93–0.98 Å) and refined using a riding model with U iso(H) = 1.2U eq(C) for CH and CH2 or 1.5U eq(C) for CH3 groups.

Table 2. Experimental details.

Crystal data
Chemical formula [Ni(C12H14O4)(C16H18N4)]
M r 547.28
Crystal system, space group Monoclinic, C2/m
Temperature (K) 293
a, b, c (Å) 14.489 (3), 20.198 (4), 10.741 (2)
β (°) 127.46 (3)
V3) 2495.2 (12)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.82
Crystal size (mm) 0.60 × 0.20 × 0.10
 
Data collection
Diffractometer Rigaku Mercury CCD
Absorption correction Multi-scan (Jacobson, 1998)
T min, T max 0.639, 0.922
No. of measured, independent and observed [I > 2σ(I)] reflections 12149, 2343, 1975
R int 0.060
(sin θ/λ)max−1) 0.602
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.065, 0.148, 1.15
No. of reflections 2343
No. of parameters 174
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.39, −0.42

Computer programs: CrysAlis PRO (Rigaku OD, 2021), OLEX2.solve (Bourhis et al., 2015), SHELXL (Sheldrick, 2015) and OLEX2 (Dolomanov et al., 2009).

Supplementary Material

Crystal structure: contains datablock(s) . DOI: 10.1107/S2056989023006059/hb8041sup1.cif

e-79-00722-sup1.cif (1.9KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989023006059/hb8041Isup3.hkl

e-79-00722-Isup3.hkl (188.2KB, hkl)

CCDC reference: 2280450

Additional supporting information: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Crystal data

[Ni(C12H14O4)(C16H18N4)] F(000) = 1152
Mr = 547.28 Dx = 1.457 Mg m3
Monoclinic, C2/m Mo Kα radiation, λ = 0.71073 Å
a = 14.489 (3) Å Cell parameters from 4170 reflections
b = 20.198 (4) Å θ = 3.1–25.3°
c = 10.741 (2) Å µ = 0.82 mm1
β = 127.46 (3)° T = 293 K
V = 2495.2 (12) Å3 Block, green
Z = 4 0.60 × 0.20 × 0.10 mm

Data collection

Rigaku Mercury CCD diffractometer 2343 independent reflections
Graphite monochromator 1975 reflections with I > 2σ(I)
Detector resolution: 7.31 pixels mm-1 Rint = 0.060
ω scans θmax = 25.4°, θmin = 3.1°
Absorption correction: multi-scan (Jacobson, 1998) h = −17→17
Tmin = 0.639, Tmax = 0.922 k = −20→24
12149 measured reflections l = −12→12

Refinement

Refinement on F2 Primary atom site location: iterative
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.065 H-atom parameters constrained
wR(F2) = 0.148 w = 1/[σ2(Fo2) + (0.058P)2 + 5.3646P] where P = (Fo2 + 2Fc2)/3
S = 1.15 (Δ/σ)max < 0.001
2343 reflections Δρmax = 0.39 e Å3
174 parameters Δρmin = −0.42 e Å3
0 restraints

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
Ni1 0.500000 0.20046 (3) 0.000000 0.0398 (3)
O1 0.3442 (2) 0.16556 (13) −0.0328 (3) 0.0482 (7)
O2 0.5165 (3) 0.12656 (14) 0.1494 (4) 0.0516 (8)
N1 0.3458 (3) 0.32448 (17) −0.3947 (4) 0.0485 (9)
N2 0.4156 (3) 0.26772 (16) −0.1800 (4) 0.0443 (8)
C1 0.3348 (4) 0.4311 (2) −0.5188 (5) 0.0451 (10)
C2 0.4275 (5) 0.4655 (3) −0.4023 (7) 0.107 (3)
H2 0.492752 0.442846 −0.320417 0.129*
C3 0.2413 (4) 0.4653 (2) −0.6326 (6) 0.0684 (15)
H3 0.175274 0.442626 −0.712964 0.082*
C4 0.3337 (5) 0.3562 (2) −0.5266 (5) 0.0570 (12)
H4A 0.261252 0.341958 −0.623726 0.068*
H4B 0.396716 0.341706 −0.528253 0.068*
C5 0.4370 (4) 0.28896 (19) −0.2772 (5) 0.0435 (10)
C6 0.3077 (4) 0.2912 (2) −0.2387 (6) 0.0532 (12)
H6 0.270297 0.284149 −0.193745 0.064*
C7 0.2632 (4) 0.3262 (2) −0.3714 (6) 0.0593 (13)
H7 0.191169 0.347080 −0.433802 0.071*
C8 0.5450 (4) 0.2746 (3) −0.2605 (6) 0.0625 (13)
H8A 0.540177 0.295302 −0.344794 0.094*
H8B 0.611035 0.291763 −0.162159 0.094*
H8C 0.553297 0.227662 −0.263841 0.094*
C9 0.3562 (3) 0.06300 (18) 0.0957 (4) 0.0350 (9)
C10 0.2234 (3) 0.06224 (19) −0.0132 (5) 0.0437 (10)
H10A 0.194962 0.063122 −0.121488 0.052*
H10B 0.194416 0.101283 0.005507 0.052*
C11 0.4003 (4) 0.06176 (19) 0.2666 (5) 0.0449 (10)
H11A 0.374414 0.101241 0.288638 0.054*
H11B 0.484678 0.061300 0.336412 0.054*
C12 0.4004 (5) 0.000000 0.0664 (6) 0.0355 (12)
H12A 0.484704 0.000000 0.135236 0.043*
H12B 0.374053 0.000001 −0.041030 0.043*
C13 0.1788 (5) 0.000000 0.0159 (7) 0.0460 (15)
H13 0.093556 −0.000001 −0.054721 0.055*
C14 0.2219 (6) 0.000000 0.1860 (8) 0.0551 (17)
H14A 0.193036 0.038915 0.205261 0.066* 0.5
H14B 0.193036 −0.038915 0.205261 0.066* 0.5
C15 0.3539 (6) 0.000000 0.2952 (7) 0.0476 (15)
H15 0.381400 0.000000 0.404170 0.057*
C16 0.4075 (4) 0.12241 (18) 0.0692 (5) 0.0409 (9)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Ni1 0.0486 (5) 0.0269 (4) 0.0458 (5) 0.000 0.0297 (4) 0.000
O1 0.0517 (17) 0.0344 (15) 0.0601 (19) 0.0081 (13) 0.0348 (16) 0.0121 (14)
O2 0.0451 (18) 0.0369 (16) 0.0623 (19) −0.0034 (13) 0.0273 (15) 0.0097 (14)
N1 0.067 (2) 0.0355 (19) 0.044 (2) 0.0131 (17) 0.035 (2) 0.0066 (16)
N2 0.056 (2) 0.0316 (18) 0.052 (2) 0.0027 (16) 0.0361 (19) 0.0022 (16)
C1 0.057 (3) 0.037 (2) 0.037 (2) 0.0043 (19) 0.026 (2) 0.0010 (18)
C2 0.075 (4) 0.056 (3) 0.075 (4) 0.015 (3) −0.014 (3) 0.006 (3)
C3 0.051 (3) 0.039 (2) 0.063 (3) −0.004 (2) 0.008 (2) −0.004 (2)
C4 0.089 (4) 0.039 (2) 0.044 (3) 0.008 (2) 0.040 (3) 0.003 (2)
C5 0.059 (3) 0.030 (2) 0.048 (2) 0.0016 (19) 0.036 (2) 0.0002 (18)
C6 0.064 (3) 0.045 (3) 0.067 (3) 0.013 (2) 0.049 (3) 0.008 (2)
C7 0.062 (3) 0.050 (3) 0.069 (3) 0.020 (2) 0.041 (3) 0.011 (2)
C8 0.066 (3) 0.061 (3) 0.073 (3) 0.010 (2) 0.049 (3) 0.018 (3)
C9 0.040 (2) 0.0280 (19) 0.038 (2) 0.0037 (16) 0.0242 (18) 0.0045 (16)
C10 0.044 (2) 0.035 (2) 0.047 (2) 0.0057 (18) 0.026 (2) 0.0032 (18)
C11 0.057 (3) 0.034 (2) 0.046 (2) 0.0007 (19) 0.033 (2) −0.0039 (18)
C12 0.043 (3) 0.027 (3) 0.037 (3) 0.000 0.025 (3) 0.000
C13 0.032 (3) 0.046 (3) 0.056 (4) 0.000 0.024 (3) 0.000
C14 0.073 (5) 0.044 (3) 0.078 (5) 0.000 0.061 (4) 0.000
C15 0.063 (4) 0.048 (3) 0.040 (3) 0.000 0.036 (3) 0.000
C16 0.050 (3) 0.028 (2) 0.050 (2) 0.0044 (18) 0.033 (2) 0.0029 (19)

Geometric parameters (Å, º)

Ni1—O1 2.179 (3) C6—C7 1.352 (6)
Ni1—O1i 2.179 (3) C7—H7 0.9300
Ni1—O2i 2.096 (3) C8—H8A 0.9600
Ni1—O2 2.096 (3) C8—H8B 0.9600
Ni1—N2i 2.050 (3) C8—H8C 0.9600
Ni1—N2 2.050 (3) C9—C10 1.528 (5)
O1—C16 1.257 (5) C9—C11 1.534 (5)
O2—C16 1.260 (5) C9—C12 1.540 (5)
N1—C4 1.465 (5) C9—C16 1.526 (5)
N1—C5 1.351 (5) C10—H10A 0.9700
N1—C7 1.364 (6) C10—H10B 0.9700
N2—C5 1.328 (5) C10—C13 1.530 (5)
N2—C6 1.367 (5) C11—H11A 0.9700
C1—C2 1.345 (7) C11—H11B 0.9700
C1—C3 1.339 (6) C11—C15 1.535 (5)
C1—C4 1.513 (6) C12—H12A 0.9700
C2—C2ii 1.395 (11) C12—H12B 0.9700
C2—H2 0.9300 C13—H13 0.9800
C3—C3ii 1.403 (9) C13—C14 1.529 (9)
C3—H3 0.9300 C14—H14A 0.9700
C4—H4A 0.9700 C14—H14B 0.9700
C4—H4B 0.9700 C14—C15 1.518 (9)
C5—C8 1.491 (6) C15—H15 0.9800
C6—H6 0.9300
O1—Ni1—O1i 142.26 (15) H8B—C8—H8C 109.5
O2—Ni1—O1 61.20 (11) C10—C9—C11 109.2 (3)
O2—Ni1—O1i 91.22 (12) C10—C9—C12 108.8 (3)
O2i—Ni1—O1 91.22 (12) C11—C9—C12 108.0 (3)
O2i—Ni1—O1i 61.20 (11) C16—C9—C10 113.3 (3)
O2—Ni1—O2i 89.19 (18) C16—C9—C11 109.9 (3)
N2—Ni1—O1i 109.38 (12) C16—C9—C12 107.6 (3)
N2—Ni1—O1 95.55 (12) C9—C10—H10A 109.6
N2i—Ni1—O1 109.38 (12) C9—C10—H10B 109.6
N2i—Ni1—O1i 95.55 (12) C9—C10—C13 110.1 (4)
N2—Ni1—O2i 91.42 (13) H10A—C10—H10B 108.1
N2—Ni1—O2 156.75 (13) C13—C10—H10A 109.6
N2i—Ni1—O2i 156.75 (13) C13—C10—H10B 109.6
N2i—Ni1—O2 91.42 (13) C9—C11—H11A 109.7
N2—Ni1—N2i 97.01 (19) C9—C11—H11B 109.7
C5—N1—C4 127.6 (4) C9—C11—C15 109.8 (4)
C5—N1—C7 108.1 (4) H11A—C11—H11B 108.2
C7—N1—C4 124.3 (4) C15—C11—H11A 109.7
C5—N2—Ni1 131.7 (3) C15—C11—H11B 109.7
C5—N2—C6 105.9 (4) C9—C12—C9iii 111.4 (4)
C6—N2—Ni1 121.6 (3) C9iii—C12—H12A 109.3
C2—C1—C4 122.6 (4) C9—C12—H12A 109.3
C3—C1—C2 117.8 (4) C9iii—C12—H12B 109.3
C3—C1—C4 119.6 (4) C9—C12—H12B 109.3
C1—C2—C2ii 121.1 (3) H12A—C12—H12B 108.0
C1—C2—H2 119.4 C10—C13—C10iii 110.5 (5)
C2ii—C2—H2 119.4 C10—C13—H13 109.4
C1—C3—C3ii 121.1 (3) C10iii—C13—H13 109.4
C1—C3—H3 119.5 C14—C13—C10 109.1 (3)
C3ii—C3—H3 119.5 C14—C13—C10iii 109.1 (3)
N1—C4—C1 113.1 (4) C14—C13—H13 109.4
N1—C4—H4A 109.0 C13—C14—H14A 109.8
N1—C4—H4B 109.0 C13—C14—H14B 109.8
C1—C4—H4A 109.0 H14A—C14—H14B 108.3
C1—C4—H4B 109.0 C15—C14—C13 109.3 (5)
H4A—C4—H4B 107.8 C15—C14—H14A 109.8
N1—C5—C8 125.0 (4) C15—C14—H14B 109.8
N2—C5—N1 110.1 (4) C11—C15—C11iii 108.7 (5)
N2—C5—C8 124.9 (4) C11iii—C15—H15 109.2
N2—C6—H6 124.9 C11—C15—H15 109.2
C7—C6—N2 110.2 (4) C14—C15—C11 110.2 (3)
C7—C6—H6 124.9 C14—C15—C11iii 110.2 (3)
N1—C7—H7 127.1 C14—C15—H15 109.2
C6—C7—N1 105.7 (4) O1—C16—Ni1 62.3 (2)
C6—C7—H7 127.1 O1—C16—O2 119.8 (4)
C5—C8—H8A 109.5 O1—C16—C9 121.8 (4)
C5—C8—H8B 109.5 O2—C16—Ni1 58.5 (2)
C5—C8—H8C 109.5 O2—C16—C9 118.4 (3)
H8A—C8—H8B 109.5 C9—C16—Ni1 167.7 (3)
H8A—C8—H8C 109.5
Ni1—O1—C16—O2 11.1 (4) C9—C10—C13—C14 60.6 (5)
Ni1—O1—C16—C9 −166.6 (3) C9—C11—C15—C11iii 61.8 (6)
Ni1—O2—C16—O1 −11.6 (4) C9—C11—C15—C14 −59.1 (5)
Ni1—O2—C16—C9 166.2 (3) C10—C9—C11—C15 58.2 (4)
Ni1—N2—C5—N1 168.9 (3) C10—C9—C12—C9iii −58.9 (5)
Ni1—N2—C5—C8 −10.1 (6) C10—C9—C16—Ni1 −105.9 (14)
Ni1—N2—C6—C7 −170.2 (3) C10—C9—C16—O1 0.1 (5)
N2—C6—C7—N1 −0.3 (5) C10—C9—C16—O2 −177.6 (4)
C2—C1—C3—C3ii 1.7 (7) C10—C13—C14—C15 −60.4 (3)
C2—C1—C4—N1 63.2 (7) C10iii—C13—C14—C15 60.4 (3)
C3—C1—C2—C2ii −1.8 (7) C11—C9—C10—C13 −59.4 (4)
C3—C1—C4—N1 −117.9 (5) C11—C9—C12—C9iii 59.6 (5)
C4—N1—C5—N2 −179.6 (4) C11—C9—C16—Ni1 131.7 (13)
C4—N1—C5—C8 −0.6 (7) C11—C9—C16—O1 −122.4 (4)
C4—N1—C7—C6 179.8 (4) C11—C9—C16—O2 59.9 (5)
C4—C1—C2—C2ii 177.1 (3) C12—C9—C10—C13 58.2 (5)
C4—C1—C3—C3ii −177.2 (3) C12—C9—C11—C15 −60.0 (5)
C5—N1—C4—C1 −111.5 (5) C12—C9—C16—Ni1 14.4 (15)
C5—N1—C7—C6 0.0 (5) C12—C9—C16—O1 120.3 (4)
C5—N2—C6—C7 0.4 (5) C12—C9—C16—O2 −57.4 (5)
C6—N2—C5—N1 −0.4 (5) C13—C14—C15—C11 60.0 (3)
C6—N2—C5—C8 −179.4 (4) C13—C14—C15—C11iii −60.0 (3)
C7—N1—C4—C1 68.7 (6) C16—C9—C10—C13 177.8 (4)
C7—N1—C5—N2 0.2 (5) C16—C9—C11—C15 −177.0 (4)
C7—N1—C5—C8 179.2 (4) C16—C9—C12—C9iii 178.1 (3)
C9—C10—C13—C10iii −59.4 (6)

Symmetry codes: (i) −x+1, y, −z; (ii) x, −y+1, z; (iii) x, −y, z.

Funding Statement

The authors thank Suzhou Industrial Park Institute of Services Outsourcing for financial support.

References

  1. Bao, S. S., Shimizu, G. K. H. & Zheng, L. M. (2019). Coord. Chem. Rev. 378, 577–594.
  2. Bourhis, L. J., Dolomanov, O. V., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2015). Acta Cryst. A71, 59–75. [DOI] [PMC free article] [PubMed]
  3. Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
  4. Fan, L. M., Zhang, X. T., Zhang, W., Ding, Y. H., Fan, W. L., Sun, L. M., Pang, Y. & Zhao, X. (2014b). Dalton Trans. 43, 6701–6710. [DOI] [PubMed]
  5. Fan, L. M., Zhang, X. T., Zhang, W., Ding, Y. S., Fan, W. L., Sun, L. M. & Zhao, X. (2014a). CrystEngComm, 16, 2144–2157.
  6. Fan, L. M., Zhao, D. S., Zhang, H. H., Wang, F., Li, B., Yang, L. L., Deng, Y. X. & Zhang, X. T. (2021). Microporous Mesoporous Mater. 326, 111396.
  7. Jacobson, R. (1998). Private communication to Rigaku Corporation, Tokyo, Japan.
  8. Jiang, D., Xu, P., Wang, H., Zeng, G., Huang, D., Chen, M., Lai, C., Zhang, C., Wan, J. & Xue, W. (2018). Coord. Chem. Rev. 376, 449–466.
  9. Li, G., Huang, J., Xue, C., Chen, J., Deng, Z., Huang, Q., Liu, Z., Gong, C., Guo, W. & Cao, R. (2019). Cryst. Growth Des. 19, 3584–3591.
  10. Parmar, B., Bisht, K. K., Rajput, G. & Suresh, E. (2021). Dalton Trans. 50, 3083–3108. [DOI] [PubMed]
  11. Rigaku OD (2021). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.
  12. Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8.
  13. Sun, Z., Ding, Y. S., Tian, L. J. & Zhang, X. T. (2013). J. Coord. Chem. 66, 763–771.
  14. Wang, H. P., Wang, H. L. & Li, B. L. (2020). Chin. J. Struct. Chem. 39, 1835–1840.
  15. Yang, G. P., Luo, X. X., Liu, Y. F., Li, K. & Wu, X. L. (2021b). Appl. Mater. Interfaces, 13, 46902–46908. [DOI] [PubMed]
  16. Yang, T. H., Wang, S. F., Lin, C. L., Wang, X., Zhu, B. & Wu, D. (2021a). Dalton Trans. 50, 1293–1299. [DOI] [PubMed]
  17. Yang, Z., Zhao, S., Han, S. S., Zheng, L. Y., Li, B. L. & Wu, B. (2014). Inorg. Chem. Commun. 46, 24–28.
  18. Zhang, T. & Lin, W. (2014). Chem. Soc. Rev. 43, 5982–5993. [DOI] [PubMed]
  19. Zhang, Y., Qian, H. N., Li, B. L. & Wu, B. (2021a). Chin. J. Struct. Chem. 40, 595–602.
  20. Zhang, Y., Wang, Z. X., Qin, H. N., Zha, M., Li, B. L. & Li, H. Y. (2021b). J. Coord. Chem. 74, 2617–2630.
  21. Zhao, F.-H., Li, Z.-L., Zhang, S.-F., Han, J.-H., Zhang, M., Han, J., Lin, Y.-W. & You, J.-M. (2020). Acta Cryst. C76, 148–158. [DOI] [PubMed]
  22. Zhao, S., Zheng, T. R., Zhang, Y. Q., Lv, X. X., Li, B. L. & Zhang, Y. (2017). Polyhedron, 121, 148–158.
  23. Zhou, T., Liu, S., Guo, X., Wang, Q., Fu, L., Mi, S., Gao, P., Su, Q. & Guo, H. (2021). Cryst. Growth Des. 21, 5108–5115.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) . DOI: 10.1107/S2056989023006059/hb8041sup1.cif

e-79-00722-sup1.cif (1.9KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989023006059/hb8041Isup3.hkl

e-79-00722-Isup3.hkl (188.2KB, hkl)

CCDC reference: 2280450

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES