Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2023 Jun 30;79(Pt 7):664–668. doi: 10.1107/S2056989023005455

Synthesis, crystal structure and Hirshfeld surface analysis of tert-butyl 4-[4-(di­fluoro­meth­oxy)phen­yl]-2,7,7-trimethyl-5-oxo-1,4,5,6,7,8-hexa­hydro­quinoline-3-carboxyl­ate

Ezgi Pehlivanlar a,b, Sema Öztürk Yıldırım c,d, Rahime Şimşek a, Mehmet Akkurt d, Ray J Butcher e, Ajaya Bhattarai f,*
Editor: A Bricenog
PMCID: PMC10439425  PMID: 37601569

In the crystal, mol­ecules are connected via N—H⋯O and C—H⋯O hydrogen bonds and C—H⋯π inter­actions, forming layers parallel to the (100) plane. van der Waals forces and C—H⋯F inter­actions connect these layers, consolidating the crystal structure.

Keywords: crystal structure, hydrogen bonds, van der Waals forces, C—H⋯F inter­actions, Hirshfeld surface analysis

Abstract

The 1,4-di­hydro­pyridine ring of the title compound, C24H29F2NO4, adopts a distorted boat conformation, while the cyclo­hexene ring is in an almost twist-boat conformation. In the crystal, N—H⋯O and C—H⋯O hydrogen bonds as well as C—H⋯π inter­actions connect mol­ecules, forming layers parallel to the (100) plane. These layers are linked by van der Waals forces and C—H⋯F inter­actions, which consolidate the crystal structure. Hirshfeld surface analysis shows the major contributions to the crystal packing are from H⋯H (54.1%), F⋯H/H⋯F (16.9%), O⋯H/H⋯O (15.4%) and C⋯H/H⋯C (12.6%) contacts.

1. Chemical context

Inflammation is the natural and basic response of an organism to signals from tissue damage or pathogenic infections. In this way, the integrity of the organism is preserved. Chronic diseases that cause death and economic losses in the world are constantly increasing. It has been found that chronic diseases occur through inflammation-mediated mechanisms. In recent years, it has been proven that cardiovascular diseases, cancer, diabetes mellitus, chronic kidney disease, non-alcoholic fatty liver disease, autoimmune and neurodegenerative diseases are caused by inflammation. In this context, managing inflammatory mediators and inflammatory processes can be a treatment method for many chronic diseases (Furman et al., 2019; Tu et al., 2022).

Chronic or local inflammation first occurs with the activation of immune system cells such as cytokines, proteases, chemokines, oxygen-independent radicals, which generate signals from damaged cells or pathogens that are dangerous to the tissue. The immune system cells released in the circulatory system increase the pro-inflammatory response and reach the infected tissue area, but if this response is insufficient or excessive, the balance of the immune system is disturbed. This imbalance causes an excessive amount of distress signals and local or systemic tissue damage. This defect in the immune response causes the inflammation to change from acute to chronic, and the disease progresses and results in death. A better understanding of inflammation and its processes enables the discovery of new and effective therapeutic ways to target and regulate inflammation. Drug therapy is widely used for the treatment of inflammation. Therefore, there is a need for new mol­ecules that are more active and have minimal side effects (Tu et al., 2022). The 1,4-DHP ring, which is a partially saturated derivative of the pyridine ring, is involved in the structure of many bioactive compounds. Nifedipine, which has a 1,4-DHP structure, was introduced as an anti­hypertensive treatment about 50 years ago (Fig. 1). The therapeutic success of nifedipine has led to the preparation of analogue derivatives. In this ongoing process, various compounds such as amlodipine and benidipine, which have a 1,4-DHP structure, are used as antihypertensives. Studies have shown that the 1,4-DHP ring has various activities such as neuroprotective, anti­platelet, anti-ischemic, anti-Alzheimer’s, anti­tuberculer, anti­ulcer and anti­cancer (Khot et al., 2021; Abdelwahab et al., 2022).

Figure 1.

Figure 1

Structure of nifedipine.

The hexa­hydro­quinoline ring system is obtained by condensing 1,4-DHP with cyclo­hexane. This ring system also has a variety of pharmacological activities such as calcium channel antagonist, anti­cancer, anti­microbial, anti-Alzheim­er’s. In current studies, 1,4-DHP derivatives and condensed analogues were found to be effective inflammation mediators of chronic inflammation in addition to their various biological activities. 1.

In this study, the title compound, tert-butyl 4-[4-(di­fluoro­meth­oxy)phen­yl]-2,7,7-trimethyl-5-oxo-1,4,5,6,7,8-hexa­hydro­quinoline-3-carboxyl­ate was obtained by using modified Hantzsch one-pot synthesis (Ghosh et al., 2013). The reaction of 4-di­fluoro­meth­oxy­benzaldehyde with 5,5-di­methyl­cyclo­hexane-1,3-dione and tert-butyl aceto­acetate gives the target compound in methanol in the presence of ammonium acetate as nitro­gen source (Çetin et al., 2022). The structure of the compound was elucidated by IR, 1H-NMR, 13C-NMR and HRMS analysis. X-ray analysis was undertaken to determine the crystal structure. Biological activity tests will be conducted in independent studies to determine the inhibition potential of inflammation mediators.

2. Structural commentary

As seen in Fig. 2, the 1,4-di­hydro­pyridine ring (N1/C1/C6–C9) of the title compound adopts a distorted boat conformation [puckering parameters (Cremer & Pople, 1975) are Q T = 0.2940 (18) Å, θ = 72.1 (4)° and φ = 182.9 (4)°], while the cyclo­hexene ring (C1–C6) has an almost twist-boat conformation [puckering parameters are Q T = 0.4617 (19) Å, θ = 124.5 (2)° and φ = 313.8 (3)°]. The 4-[4-(di­fluoro­meth­oxy]phenyl ring (C18–C23) makes a dihedral angle of 89.88 (7)° with the mean plane of the quinoline ring system [N1/C1–C9; maximum deviation = 0.358 (2) Å for C4]. The geometrical parameters of the title compound are in agreement with those reported for similar compounds in the Database survey section.

Figure 2.

Figure 2

View of the title mol­ecule. Displacement ellipsoids are drawn at the 30% probability level.

3. Supra­molecular features and Hirshfeld surface analysis

The mol­ecules in the crystal are connected by N—H⋯O and C—H⋯O hydrogen bonds, as well as C—H⋯π inter­actions, resulting in the formation of layers parallel to the (100) plane (see Table 1; Figs. 3 and 4). These layers are linked by van der Waals forces and C—H⋯F inter­actions, which consolidate the crystal structure (Fig. 5).

Table 1. Hydrogen-bond geometry (Å, °).

Cg3 is the centroid of the C18–C23 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O1i 0.91 (2) 1.96 (2) 2.866 (2) 176.6 (18)
C12—H12A⋯O2 0.98 2.25 2.800 (2) 114
C16—H16A⋯O2 0.98 2.36 2.938 (2) 117
C17—H17C⋯O2 0.98 2.37 2.958 (3) 118
C20—H20A⋯F1 0.95 2.46 2.989 (2) 115
C24—H24A⋯O1ii 1.00 2.35 3.230 (2) 147
C2—H2ACg3iii 0.99 2.74 3.6959 (19) 162

Symmetry codes: (i) Inline graphic ; (ii) Inline graphic ; (iii) Inline graphic .

Figure 3.

Figure 3

A view of the mol­ecular packing of the title compound along the a axis by the N—H⋯O, C—H⋯O hydrogen bonds and C—H⋯π inter­actions (dashed lines).

Figure 4.

Figure 4

View of the mol­ecular packing along [010]. Hydrogen bonds are shown as dashed lines.

Figure 5.

Figure 5

View of the mol­ecular packing along [001]. Hydrogen bonds are shown as dashed lines.

The Hirshfeld surfaces and their corresponding two-dimensional fingerprint plots were calculated using the Crystal Explorer 17.5 (Spackman et al., 2021) software package. The d norm surfaces are mapped over a fixed colour scale from −0.5814 (red) to +1.6362 (blue) a.u. Red spots on the surface correspond to N⋯H/H⋯N and O⋯H/H⋯O inter­actions (Tables 1 and 2; Fig. 6 a,b).

Table 2. Summary of short inter­atomic contacts (Å) in the title compound.

H11C⋯H10A 2.49 2 − x, − Inline graphic  + y, Inline graphic  − z
F2⋯H19A 2.51 x, Inline graphic  − y, Inline graphic  + z
O1⋯H24A 2.35 x, 1 + y, z
O1⋯H1N 1.96 x, Inline graphic  − y, − Inline graphic  + z
H12A⋯O2 2.61 1 − x, 1 − y, −z
H15A⋯H12A 2.40 1 − x, Inline graphic  + y, Inline graphic  − z
H22A⋯H16B 2.38 1 − x, 1 − y, 1 − z

Figure 6.

Figure 6

(a) Front and (b) back views of the three-dimensional Hirshfeld surface for the title compound.

Fingerprint plots of the most important non-covalent inter­actions for the title compound are shown in Fig. 7. The major contributions to the crystal packing are from H⋯H (54.1%), F⋯H/H⋯F (16.9%), O⋯H/H⋯O (15.4%) and C⋯H/H⋯C (12.6) contacts. N⋯H/H⋯N (0.5%), F⋯N/N⋯F (0.3%) and F⋯F (0.2%) contacts, which contribute less than 1%, are not shown in Fig. 7.

Figure 7.

Figure 7

The two-dimensional fingerprint plots for the title compound showing (a) all inter­actions, and delineated into (b) H⋯H, (c) F⋯H/H⋯F, (d) O⋯H/H⋯O and (e) C⋯H/H⋯C inter­actions. The d i and d e values are the closest inter­nal and external distances (in Å) from given points on the Hirshfeld surface.

4. Database survey

A search of the Cambridge Structural Database (CSD, Version 5.42, update of September 2021; Groom et al., 2016) for similar structures with the 1,4,5,6,7,8-hexa­hydro­quinoline group showed that the nine most closely related to the title compound are WEZJUK (Yıldırım et al., 2023), ECUCUE (Yıldırım et al., 2022), LOQCAX (Steiger et al., 2014), NEQMON (Öztürk Yıldırım et al., 2013), PECPUK (Gündüz et al., 2012), IMEJOA (Linden et al., 2011), PUGCIE (Mookiah et al., 2009), UCOLOO (Linden et al., 2006) and DAYJET (Linden et al., 2005). In all these compounds, mol­ecules are linked by N—H⋯O hydrogen bonds. Furthermore, C—H⋯O hydrogen bonds in WEZJUK, ECUCUE, NEQMON, IMEJOA and PUGCIE and C—H⋯π inter­actions in WEZJUK and ECUCUE were also observed.

5. Synthesis and crystallization

The target compound was synthesized by refluxing 5,5-di­methyl­cyclo­hexane-1,3-dione (1 mmol), 4-di­fluoro­meth­oxy­benzaldehyde (1 mmol), tert-butyl­aceto­acetate (1 mmol) and ammonium acetate (5 mmol) for 8 h in absolute methanol (10 ml). The reaction mixture was monitored by TLC, and after completion of the reaction was cooled to room temperature. The obtained precipitate was filtered and recrystallized from methanol for further purification. The synthetic route is shown in Fig. 8.

Figure 8.

Figure 8

Synthetic scheme.

Yellow solid, m.p. 487–488 K; yield: 65.32%. IR (ν, cm−1) 3211 (N—H, stretching), 3080 (C—H stretching, aromatic), 2968 (C—H stretching, aliphatic) 1697 (C=O stretching, ester), 1641 (C=O stretching, ketone). 1H NMR (DMSO-d 6) δ: 0.84 (3H; s; 7-CH3), 1.00 (3H; s; 7-CH3), 1.31 [9H, s, C(CH3)3], 1.95–1.99 (2H; d; J = 16 Hz; quinoline H8), 2.13–2.16 (H; d; J = 16.1; quinoline H8), 2.25 (3H; s; 2-CH3), 2.26–2.30 (H; d; J = 16.95 quinoline H6), 2.37–2.41 (H; d; J =1 6.95 quinoline H6), 4.78 (1H; s; quinoline H4), 6.99–7.01 (2H, d, J = 8.5 Hz Ar—H3), 7.14 (1H; t; J = 74.4 Hz; OCHF2), 7.17–7.18 (2H, d, J = 10 Ar—H2), 8.99 (1H,s; NH). 13C NMR (DMSO-d 6) δ: 18.7 (2-CH3), 27.0 (7-CH3), 28.3 [COOC(CH3)3], 29.4 (C-7), 32.0 (C-8), 36.2 (C-4), 50.6 (C-6), 79.2 [COOC(CH3)3], 105.4 (C-3), 110.0 (C-4a), 114.8 (C3’), 116.9, 118.4, 118.9 (OCHF2), 129.4 (C2’), 144.5 (C1’), 145.3 (C-2), 149.3 (C-8a), 150.0 (C4’), 166.7 [COOC(CH3)3], 194.6 (C-5). HRMS (ESI/Q-TOF) m/z: [M + H]+ Calculated for C24H29F2NO4 433.2065; found 434.2328 (M + H).

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3. The N-bound H atom was located in a difference Fourier map and refined freely [N1—H1N = 0.91 (2) Å]. All C-bound H atoms were positioned geometrically [C—H = 0.95–1.00 Å] and refined using a riding model with U iso(H) = 1.2 or 1.5 U eq(C).

Table 3. Experimental details.

Crystal data
Chemical formula C24H29F2NO4
M r 433.48
Crystal system, space group Monoclinic, P21/c
Temperature (K) 100
a, b, c (Å) 17.6062 (11), 9.7588 (7), 13.1509 (9)
β (°) 95.905 (2)
V3) 2247.5 (3)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.10
Crystal size (mm) 0.26 × 0.20 × 0.14
 
Data collection
Diffractometer Bruker D8 Quest with Photon 2 detector
Absorption correction Multi-scan (SADABS; Bruker, 2018)
T min, T max 0.657, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 31708, 4599, 3208
R int 0.111
(sin θ/λ)max−1) 0.625
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.046, 0.110, 1.02
No. of reflections 4599
No. of parameters 290
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.21, −0.26

Computer programs: APEX2 and SAINT (Bruker, 2018), SHELXT (Sheldrick, 2015a ), SHELXL (Sheldrick, 2015b ), ORTEP-3 for Windows (Farrugia, 2012) and PLATON (Spek, 2020).

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989023005455/zn2030sup1.cif

e-79-00664-sup1.cif (954.6KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989023005455/zn2030Isup2.hkl

e-79-00664-Isup2.hkl (252.2KB, hkl)

Supporting information file. DOI: 10.1107/S2056989023005455/zn2030Isup3.cml

CCDC reference: 2271384

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

Authors’ contributions are as follows. Conceptualization, RS and SÖY; methodology, RS and EP; investigation, RS and SÖY; writing (original draft), EP and MA; writing (review and editing of the manuscript), RS and SÖY; crystal data production and validation, RJB and SÖY; visualization, MA; funding acquisition, RJB; resources, AB, RJB and RS.

supplementary crystallographic information

Crystal data

C24H29F2NO4 F(000) = 920
Mr = 433.48 Dx = 1.281 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
a = 17.6062 (11) Å Cell parameters from 4059 reflections
b = 9.7588 (7) Å θ = 2.3–30.3°
c = 13.1509 (9) Å µ = 0.10 mm1
β = 95.905 (2)° T = 100 K
V = 2247.5 (3) Å3 Prism, colorless
Z = 4 0.26 × 0.20 × 0.14 mm

Data collection

Bruker D8 Quest with Photon 2 detector diffractometer 3208 reflections with I > 2σ(I)
φ and ω scans Rint = 0.111
Absorption correction: multi-scan (SADABS; Bruker, 2018) θmax = 26.4°, θmin = 2.4°
Tmin = 0.657, Tmax = 0.746 h = −22→22
31708 measured reflections k = −12→12
4599 independent reflections l = −16→16

Refinement

Refinement on F2 Primary atom site location: dual
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046 Hydrogen site location: mixed
wR(F2) = 0.110 H atoms treated by a mixture of independent and constrained refinement
S = 1.02 w = 1/[σ2(Fo2) + (0.0445P)2 + 0.5785P] where P = (Fo2 + 2Fc2)/3
4599 reflections (Δ/σ)max = 0.001
290 parameters Δρmax = 0.21 e Å3
0 restraints Δρmin = −0.26 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
F1 0.92250 (6) 0.20646 (12) 0.49817 (9) 0.0351 (3)
F2 0.86051 (6) 0.08089 (11) 0.59614 (9) 0.0311 (3)
O1 0.78594 (7) 0.91033 (13) 0.37607 (9) 0.0202 (3)
O2 0.51155 (7) 0.57880 (16) 0.12973 (10) 0.0338 (4)
O3 0.54282 (7) 0.65743 (13) 0.28906 (9) 0.0189 (3)
O4 0.80976 (7) 0.27398 (13) 0.54548 (9) 0.0242 (3)
N1 0.74130 (8) 0.64973 (15) 0.07479 (12) 0.0155 (3)
H1N 0.7556 (11) 0.634 (2) 0.0116 (16) 0.027 (6)*
C1 0.78375 (9) 0.73899 (17) 0.13677 (13) 0.0141 (4)
C2 0.85366 (9) 0.79398 (18) 0.09469 (13) 0.0160 (4)
H2A 0.838042 0.864711 0.042740 0.019*
H2B 0.878600 0.718755 0.060078 0.019*
C3 0.91163 (10) 0.85665 (18) 0.17650 (13) 0.0164 (4)
C4 0.86773 (10) 0.94844 (18) 0.24516 (14) 0.0184 (4)
H4A 0.903915 0.984065 0.301593 0.022*
H4B 0.846852 1.027890 0.204631 0.022*
C5 0.80277 (10) 0.87635 (17) 0.29047 (13) 0.0155 (4)
C6 0.76121 (9) 0.77274 (17) 0.22958 (13) 0.0140 (4)
C7 0.69507 (9) 0.69774 (18) 0.27054 (13) 0.0146 (4)
H7A 0.666791 0.764154 0.310637 0.018*
C8 0.64044 (10) 0.64486 (17) 0.18117 (13) 0.0148 (4)
C9 0.66713 (9) 0.61265 (18) 0.09115 (13) 0.0153 (4)
C10 0.96912 (11) 0.9421 (2) 0.12400 (15) 0.0245 (4)
H10A 1.008339 0.977719 0.175509 0.037*
H10B 0.942644 1.018719 0.087535 0.037*
H10C 0.993191 0.884569 0.075323 0.037*
C11 0.95397 (11) 0.7439 (2) 0.24056 (15) 0.0257 (5)
H11A 0.990465 0.785721 0.292795 0.039*
H11B 0.981403 0.685259 0.196126 0.039*
H11C 0.917130 0.688629 0.273739 0.039*
C12 0.62714 (10) 0.5386 (2) 0.00161 (14) 0.0209 (4)
H12A 0.588198 0.477760 0.025035 0.031*
H12B 0.664249 0.484180 −0.031788 0.031*
H12C 0.602762 0.605142 −0.047102 0.031*
C13 0.55921 (10) 0.62201 (18) 0.19487 (14) 0.0174 (4)
C14 0.46412 (10) 0.64012 (19) 0.31875 (15) 0.0212 (4)
C15 0.47276 (12) 0.6890 (2) 0.42836 (16) 0.0338 (5)
H15A 0.487156 0.786090 0.430522 0.051*
H15B 0.512507 0.635304 0.467906 0.051*
H15C 0.424214 0.677487 0.457741 0.051*
C16 0.44228 (11) 0.4893 (2) 0.31253 (16) 0.0272 (5)
H16A 0.438276 0.459295 0.241063 0.041*
H16B 0.393032 0.476330 0.339800 0.041*
H16C 0.481471 0.435070 0.352732 0.041*
C17 0.40767 (11) 0.7291 (2) 0.25328 (19) 0.0358 (6)
H17A 0.424720 0.824723 0.257522 0.054*
H17B 0.357177 0.721817 0.278004 0.054*
H17C 0.404679 0.698213 0.182077 0.054*
C18 0.72353 (10) 0.57950 (18) 0.34146 (13) 0.0151 (4)
C19 0.77883 (10) 0.48904 (19) 0.31318 (14) 0.0207 (4)
H19A 0.796943 0.499218 0.248000 0.025*
C20 0.80838 (11) 0.38451 (19) 0.37706 (14) 0.0218 (4)
H20A 0.846835 0.325229 0.356664 0.026*
C21 0.78073 (10) 0.36846 (18) 0.47084 (14) 0.0185 (4)
C22 0.72373 (10) 0.45291 (19) 0.49978 (14) 0.0192 (4)
H22A 0.703948 0.439405 0.563564 0.023*
C23 0.69559 (10) 0.55749 (19) 0.43512 (13) 0.0179 (4)
H23A 0.656394 0.615290 0.455307 0.021*
C24 0.85104 (11) 0.16566 (19) 0.51508 (15) 0.0223 (4)
H24A 0.824329 0.118997 0.453797 0.027*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
F1 0.0253 (6) 0.0380 (7) 0.0430 (8) −0.0014 (5) 0.0079 (5) 0.0154 (6)
F2 0.0389 (7) 0.0244 (6) 0.0305 (7) 0.0009 (5) 0.0062 (5) 0.0127 (5)
O1 0.0250 (7) 0.0224 (7) 0.0140 (7) −0.0035 (6) 0.0055 (5) −0.0038 (5)
O2 0.0210 (7) 0.0590 (10) 0.0214 (8) −0.0140 (7) 0.0026 (6) −0.0078 (7)
O3 0.0145 (6) 0.0228 (7) 0.0204 (7) −0.0024 (5) 0.0062 (5) −0.0030 (6)
O4 0.0342 (8) 0.0217 (7) 0.0169 (7) 0.0053 (6) 0.0039 (6) 0.0042 (6)
N1 0.0168 (8) 0.0190 (8) 0.0113 (8) −0.0013 (6) 0.0045 (6) −0.0025 (6)
C1 0.0139 (9) 0.0133 (9) 0.0149 (9) 0.0020 (7) 0.0001 (7) 0.0013 (7)
C2 0.0175 (9) 0.0158 (9) 0.0156 (9) 0.0005 (7) 0.0051 (7) 0.0010 (7)
C3 0.0165 (9) 0.0166 (9) 0.0166 (9) −0.0011 (7) 0.0035 (7) −0.0002 (8)
C4 0.0200 (10) 0.0175 (9) 0.0179 (10) −0.0043 (8) 0.0036 (8) −0.0018 (8)
C5 0.0173 (9) 0.0146 (9) 0.0147 (9) 0.0031 (7) 0.0014 (7) 0.0022 (7)
C6 0.0129 (9) 0.0156 (9) 0.0136 (9) 0.0011 (7) 0.0017 (7) 0.0017 (7)
C7 0.0150 (9) 0.0158 (9) 0.0135 (9) −0.0009 (7) 0.0040 (7) −0.0001 (7)
C8 0.0164 (9) 0.0138 (9) 0.0141 (9) −0.0002 (7) 0.0008 (7) 0.0015 (7)
C9 0.0150 (9) 0.0150 (9) 0.0158 (9) −0.0006 (7) 0.0010 (7) 0.0025 (7)
C10 0.0211 (10) 0.0255 (11) 0.0287 (11) −0.0057 (8) 0.0107 (8) −0.0022 (9)
C11 0.0203 (10) 0.0299 (11) 0.0265 (11) 0.0033 (9) −0.0001 (8) 0.0027 (9)
C12 0.0220 (10) 0.0240 (10) 0.0167 (10) −0.0049 (8) 0.0018 (8) −0.0031 (8)
C13 0.0185 (10) 0.0183 (10) 0.0156 (9) −0.0012 (7) 0.0024 (8) 0.0009 (8)
C14 0.0141 (9) 0.0236 (10) 0.0280 (11) −0.0036 (8) 0.0119 (8) −0.0044 (8)
C15 0.0263 (11) 0.0417 (13) 0.0362 (13) −0.0094 (10) 0.0172 (10) −0.0157 (11)
C16 0.0265 (11) 0.0233 (11) 0.0347 (12) −0.0060 (9) 0.0169 (9) −0.0047 (9)
C17 0.0184 (10) 0.0345 (12) 0.0560 (16) 0.0035 (9) 0.0117 (10) 0.0062 (11)
C18 0.0152 (9) 0.0173 (9) 0.0128 (9) −0.0051 (7) 0.0016 (7) −0.0010 (7)
C19 0.0262 (10) 0.0224 (10) 0.0146 (10) 0.0007 (8) 0.0072 (8) 0.0007 (8)
C20 0.0259 (10) 0.0212 (10) 0.0191 (10) 0.0033 (8) 0.0062 (8) −0.0008 (8)
C21 0.0223 (10) 0.0163 (10) 0.0165 (9) −0.0032 (8) −0.0003 (8) 0.0010 (8)
C22 0.0204 (10) 0.0252 (10) 0.0126 (9) −0.0049 (8) 0.0051 (7) 0.0015 (8)
C23 0.0149 (9) 0.0230 (10) 0.0161 (9) −0.0027 (7) 0.0035 (7) −0.0019 (8)
C24 0.0257 (11) 0.0186 (10) 0.0228 (10) −0.0026 (8) 0.0032 (8) 0.0046 (8)

Geometric parameters (Å, º)

F1—C24 1.360 (2) C10—H10B 0.9800
F2—C24 1.346 (2) C10—H10C 0.9800
O1—C5 1.238 (2) C11—H11A 0.9800
O2—C13 1.212 (2) C11—H11B 0.9800
O3—C13 1.346 (2) C11—H11C 0.9800
O3—C14 1.487 (2) C12—H12A 0.9800
O4—C24 1.366 (2) C12—H12B 0.9800
O4—C21 1.404 (2) C12—H12C 0.9800
N1—C1 1.363 (2) C14—C15 1.511 (3)
N1—C9 1.393 (2) C14—C17 1.519 (3)
N1—H1N 0.91 (2) C14—C16 1.521 (3)
C1—C6 1.362 (2) C15—H15A 0.9800
C1—C2 1.500 (2) C15—H15B 0.9800
C2—C3 1.532 (2) C15—H15C 0.9800
C2—H2A 0.9900 C16—H16A 0.9800
C2—H2B 0.9900 C16—H16B 0.9800
C3—C10 1.530 (2) C16—H16C 0.9800
C3—C11 1.532 (2) C17—H17A 0.9800
C3—C4 1.536 (2) C17—H17B 0.9800
C4—C5 1.516 (2) C17—H17C 0.9800
C4—H4A 0.9900 C18—C23 1.389 (2)
C4—H4B 0.9900 C18—C19 1.393 (2)
C5—C6 1.442 (2) C19—C20 1.388 (3)
C6—C7 1.520 (2) C19—H19A 0.9500
C7—C8 1.530 (2) C20—C21 1.381 (3)
C7—C18 1.535 (2) C20—H20A 0.9500
C7—H7A 1.0000 C21—C22 1.382 (3)
C8—C9 1.355 (2) C22—C23 1.387 (3)
C8—C13 1.477 (2) C22—H22A 0.9500
C9—C12 1.495 (2) C23—H23A 0.9500
C10—H10A 0.9800 C24—H24A 1.0000
C13—O3—C14 120.42 (13) C9—C12—H12B 109.5
C24—O4—C21 118.04 (14) H12A—C12—H12B 109.5
C1—N1—C9 122.61 (15) C9—C12—H12C 109.5
C1—N1—H1N 117.9 (13) H12A—C12—H12C 109.5
C9—N1—H1N 116.9 (12) H12B—C12—H12C 109.5
C6—C1—N1 119.88 (16) O2—C13—O3 122.80 (16)
C6—C1—C2 124.75 (16) O2—C13—C8 125.12 (17)
N1—C1—C2 115.38 (15) O3—C13—C8 112.06 (15)
C1—C2—C3 113.36 (14) O3—C14—C15 102.09 (14)
C1—C2—H2A 108.9 O3—C14—C17 111.05 (15)
C3—C2—H2A 108.9 C15—C14—C17 110.84 (17)
C1—C2—H2B 108.9 O3—C14—C16 109.44 (14)
C3—C2—H2B 108.9 C15—C14—C16 110.92 (17)
H2A—C2—H2B 107.7 C17—C14—C16 112.07 (16)
C10—C3—C11 109.42 (15) C14—C15—H15A 109.5
C10—C3—C2 108.94 (14) C14—C15—H15B 109.5
C11—C3—C2 110.54 (15) H15A—C15—H15B 109.5
C10—C3—C4 110.11 (15) C14—C15—H15C 109.5
C11—C3—C4 109.96 (15) H15A—C15—H15C 109.5
C2—C3—C4 107.85 (14) H15B—C15—H15C 109.5
C5—C4—C3 113.96 (14) C14—C16—H16A 109.5
C5—C4—H4A 108.8 C14—C16—H16B 109.5
C3—C4—H4A 108.8 H16A—C16—H16B 109.5
C5—C4—H4B 108.8 C14—C16—H16C 109.5
C3—C4—H4B 108.8 H16A—C16—H16C 109.5
H4A—C4—H4B 107.7 H16B—C16—H16C 109.5
O1—C5—C6 122.52 (16) C14—C17—H17A 109.5
O1—C5—C4 119.59 (15) C14—C17—H17B 109.5
C6—C5—C4 117.87 (15) H17A—C17—H17B 109.5
C1—C6—C5 119.29 (15) C14—C17—H17C 109.5
C1—C6—C7 120.37 (15) H17A—C17—H17C 109.5
C5—C6—C7 120.29 (15) H17B—C17—H17C 109.5
C6—C7—C8 109.52 (14) C23—C18—C19 117.37 (16)
C6—C7—C18 111.30 (13) C23—C18—C7 122.12 (16)
C8—C7—C18 110.69 (14) C19—C18—C7 120.51 (16)
C6—C7—H7A 108.4 C20—C19—C18 122.20 (17)
C8—C7—H7A 108.4 C20—C19—H19A 118.9
C18—C7—H7A 108.4 C18—C19—H19A 118.9
C9—C8—C13 119.93 (16) C21—C20—C19 118.65 (17)
C9—C8—C7 120.16 (15) C21—C20—H20A 120.7
C13—C8—C7 119.83 (15) C19—C20—H20A 120.7
C8—C9—N1 119.31 (16) C20—C21—C22 120.74 (17)
C8—C9—C12 128.53 (16) C20—C21—O4 124.23 (16)
N1—C9—C12 112.15 (15) C22—C21—O4 114.93 (16)
C3—C10—H10A 109.5 C21—C22—C23 119.59 (17)
C3—C10—H10B 109.5 C21—C22—H22A 120.2
H10A—C10—H10B 109.5 C23—C22—H22A 120.2
C3—C10—H10C 109.5 C22—C23—C18 121.37 (17)
H10A—C10—H10C 109.5 C22—C23—H23A 119.3
H10B—C10—H10C 109.5 C18—C23—H23A 119.3
C3—C11—H11A 109.5 F2—C24—F1 105.56 (14)
C3—C11—H11B 109.5 F2—C24—O4 105.67 (15)
H11A—C11—H11B 109.5 F1—C24—O4 110.52 (15)
C3—C11—H11C 109.5 F2—C24—H24A 111.6
H11A—C11—H11C 109.5 F1—C24—H24A 111.6
H11B—C11—H11C 109.5 O4—C24—H24A 111.6
C9—C12—H12A 109.5
C9—N1—C1—C6 14.1 (2) C7—C8—C9—C12 168.75 (17)
C9—N1—C1—C2 −165.54 (15) C1—N1—C9—C8 −12.6 (3)
C6—C1—C2—C3 18.1 (2) C1—N1—C9—C12 167.69 (16)
N1—C1—C2—C3 −162.30 (14) C14—O3—C13—O2 2.1 (3)
C1—C2—C3—C10 −165.09 (15) C14—O3—C13—C8 −179.04 (14)
C1—C2—C3—C11 74.64 (19) C9—C8—C13—O2 −2.2 (3)
C1—C2—C3—C4 −45.59 (19) C7—C8—C13—O2 −178.97 (18)
C10—C3—C4—C5 172.96 (15) C9—C8—C13—O3 179.00 (16)
C11—C3—C4—C5 −66.40 (19) C7—C8—C13—O3 2.2 (2)
C2—C3—C4—C5 54.20 (19) C13—O3—C14—C15 178.94 (16)
C3—C4—C5—O1 147.75 (16) C13—O3—C14—C17 −62.9 (2)
C3—C4—C5—C6 −34.2 (2) C13—O3—C14—C16 61.4 (2)
N1—C1—C6—C5 −174.53 (15) C6—C7—C18—C23 134.13 (17)
C2—C1—C6—C5 5.1 (3) C8—C7—C18—C23 −103.82 (18)
N1—C1—C6—C7 8.1 (2) C6—C7—C18—C19 −46.2 (2)
C2—C1—C6—C7 −172.29 (15) C8—C7—C18—C19 75.88 (19)
O1—C5—C6—C1 −178.91 (16) C23—C18—C19—C20 −3.1 (3)
C4—C5—C6—C1 3.1 (2) C7—C18—C19—C20 177.17 (16)
O1—C5—C6—C7 −1.5 (3) C18—C19—C20—C21 1.3 (3)
C4—C5—C6—C7 −179.50 (15) C19—C20—C21—C22 1.3 (3)
C1—C6—C7—C8 −27.6 (2) C19—C20—C21—O4 −174.90 (16)
C5—C6—C7—C8 155.05 (15) C24—O4—C21—C20 −20.1 (3)
C1—C6—C7—C18 95.14 (19) C24—O4—C21—C22 163.51 (16)
C5—C6—C7—C18 −82.24 (19) C20—C21—C22—C23 −1.9 (3)
C6—C7—C8—C9 29.0 (2) O4—C21—C22—C23 174.61 (15)
C18—C7—C8—C9 −94.12 (19) C21—C22—C23—C18 0.0 (3)
C6—C7—C8—C13 −154.26 (15) C19—C18—C23—C22 2.5 (3)
C18—C7—C8—C13 82.65 (19) C7—C18—C23—C22 −177.84 (15)
C13—C8—C9—N1 172.33 (15) C21—O4—C24—F2 −169.91 (14)
C7—C8—C9—N1 −10.9 (2) C21—O4—C24—F1 76.36 (19)
C13—C8—C9—C12 −8.0 (3)

Hydrogen-bond geometry (Å, º)

Cg3 is the centroid of the C18–C23 ring.

D—H···A D—H H···A D···A D—H···A
N1—H1N···O1i 0.91 (2) 1.96 (2) 2.866 (2) 176.6 (18)
C12—H12A···O2 0.98 2.25 2.800 (2) 114
C16—H16A···O2 0.98 2.36 2.938 (2) 117
C17—H17C···O2 0.98 2.37 2.958 (3) 118
C20—H20A···F1 0.95 2.46 2.989 (2) 115
C24—H24A···O1ii 1.00 2.35 3.230 (2) 147
C2—H2A···Cg3iii 0.99 2.74 3.6959 (19) 162

Symmetry codes: (i) x, −y+3/2, z−1/2; (ii) x, y−1, z; (iii) x, −y+1/2, z−3/2.

References

  1. Bruker (2018). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Çetin, G., Çetin, B., Çolak, B., Aşan, M., Birlik Demirel, G., Cansaran-Duman, D., Akçelik, N. & Şimşek, R. (2022). J. Res. Pharm. 26, 219–230.
  3. Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.
  4. Elwahy, A. H. M., Eid, E. M., Abdel-Latif, S. A., Hassaneen, H. M. E. & Abdelhamid, I. A. (2022). Polycyclic Aromat. Compd. pp. 1–30.
  5. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  6. Furman, D., Campisi, J., Verdin, E., Carrera-Bastos, P., Targ, S., Franceschi, C., Ferrucci, L., Gilroy, D. W., Fasano, A., Miller, G. W., Miller, A. H., Mantovani, A., Weyand, C. M., Barzilai, N., Goronzy, J. J., Rando, T. A., Effros, R. B., Lucia, A., Kleinstreuer, N. & Slavich, G. M. (2019). Nat. Med. 25, 1822–1832. [DOI] [PMC free article] [PubMed]
  7. Ghosh, S., Saikh, F., Das, J. & Pramanik, A. K. (2013). Tetrahedron Lett. 54, 58–62.
  8. Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
  9. Gündüz, M. G., Butcher, R. J., Öztürk Yildirim, S., El-Khouly, A., Şafak, C. & Şimşek, R. (2012). Acta Cryst. E68, o3404–o3405. [DOI] [PMC free article] [PubMed]
  10. Khot, S., Auti, P. B. & Khedkar, S. A. (2021). Mini Rev. Med. Chem. 21, 135–149. [DOI] [PubMed]
  11. Linden, A., Gündüz, M. G., Şimşek, R. & Şafak, C. (2006). Acta Cryst. C62, o227–o230. [DOI] [PubMed]
  12. Linden, A., Şafak, C., Şimşek, R. & Gündüz, M. G. (2011). Acta Cryst. C67, o80–o84. [DOI] [PubMed]
  13. Linden, A., Şimşek, R., Gündüz, M. & Şafak, C. (2005). Acta Cryst. C61, o731–o734. [DOI] [PubMed]
  14. Mookiah, P., Rajesh, K., Narasimhamurthy, T., Vijayakumar, V. & Srinivasan, N. (2009). Acta Cryst. E65, o2664. [DOI] [PMC free article] [PubMed]
  15. Öztürk Yildirim, S., Butcher, R. J., Gündüz, M. G., El-Khouly, A., Şimşek, R. & Şafak, C. (2013). Acta Cryst. E69, o40–o41. [DOI] [PMC free article] [PubMed]
  16. Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.
  17. Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.
  18. Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006–1011. [DOI] [PMC free article] [PubMed]
  19. Spek, A. L. (2020). Acta Cryst. E76, 1–11. [DOI] [PMC free article] [PubMed]
  20. Steiger, S. A., Monacelli, A. J., Li, C., Hunting, J. L. & Natale, N. R. (2014). Acta Cryst. C70, 790–795. [DOI] [PMC free article] [PubMed]
  21. Tu, Z., Zhong, Y., Hu, H., Shao, D., Haag, R., Schirner, M., Lee, J., Sullenger, B. & Leong, K. W. (2022). Nat. Rev. Mater. 557–574. [DOI] [PMC free article] [PubMed]
  22. Yıldırım, S. Ö., Akkurt, M., Çetin, G., Şimşek, R., Butcher, R. J. & Bhattarai, A. (2022). Acta Cryst. E78, 798–803. [DOI] [PMC free article] [PubMed]
  23. Yıldırım, S. Ö., Akkurt, M., Çetin, G., Şimşek, R., Butcher, R. J. & Bhattarai, A. (2023). Acta Cryst. E79, 187–191. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989023005455/zn2030sup1.cif

e-79-00664-sup1.cif (954.6KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989023005455/zn2030Isup2.hkl

e-79-00664-Isup2.hkl (252.2KB, hkl)

Supporting information file. DOI: 10.1107/S2056989023005455/zn2030Isup3.cml

CCDC reference: 2271384

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES