Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2023 Jun 13;79(Pt 7):637–643. doi: 10.1107/S205698902300511X

Crystal structures and Hirshfeld surface analyses of (E)-1-[1-(4-tert-butyl­phen­yl)-2,2-di­chloro­ethen­yl]-2-phenyl­diazene, (E)-1-[1-(4-tert-butyl­phen­yl)-2,2-di­chloro­ethen­yl]-2-(4-methyl­phen­yl)diazene, (E)-1-[1-(4-tert-butyl­phen­yl)-2,2-di­chloro­ethen­yl]-2-(4-meth­oxy­phen­yl)diazene and (E)-1-[1-(4-tert-butyl­phen­yl)-2,2-di­chloro­ethen­yl]-2-(3-methyl­phen­yl)diazene

Abel Maharramov a, Namiq Q Shikhaliyev a, Ayten Qajar a, Gulnar T Atakishiyeva a, Ayten Niyazova b, Victor N Khrustalev c,d, Mehmet Akkurt e, Sema Öztürk Yıldırım f,g, Ajaya Bhattarai h,*
Editor: M Weili
PMCID: PMC10439426  PMID: 37601575

C—H⋯π and C—Cl⋯π inter­actions are the most important inter­molecular inter­actions in the crystal structures of the title compounds.

Keywords: crystal structure, azo compounds, C—H⋯π and C—Cl⋯π inter­actions, Hirshfeld surface analysis

Abstract

The crystal structures and Hirshfeld surface analyses of four similar azo compounds are reported. (E)-1-[1-(4-tert-Butyl­phen­yl)-2,2-di­chloro­ethen­yl]-2-phenyl­diazene, C18H18Cl2N2, (I), and (E)-1-[1-(4-tert-butyl­phen­yl)-2,2-di­chloro­ethen­yl]-2-(4-methyl­phen­yl)diazene, C19H20Cl2N2, (II), crystallize in the monoclinic space group C2/c with Z = 8, and (E)-1-[1-(4-tert-butyl­phen­yl)-2,2-di­chloro­ethen­yl]-2-(4-meth­oxy­phen­yl)diazene, C19H20Cl2N2O, (III), in the monoclinic space group P21/c with Z = 4. (E)-1-[1-(4-tert-Butyl­phen­yl)-2,2-di­chloro­ethen­yl]-2-(3-methyl­phen­yl)diazene, C19H20Cl2N2, (IV), crystallizes in the triclinic space group P Inline graphic with Z = 4 and comprises two mol­ecules (A and B) in the asymmetric unit. In the crystal structures of (I) and (II), mol­ecules are linked by C—H⋯π and C—Cl⋯π inter­actions, forming layers parallel to ( Inline graphic 02), while mol­ecules of (III) are linked by C—H⋯O contacts, C—H⋯π and C—Cl⋯π inter­actions forming layers parallel to ( Inline graphic 02). The stability of the mol­ecular packing is ensured by van der Waals forces between these layers. In the crystal structure of (IV), mol­ecules are linked by C—H⋯π and C—Cl⋯π inter­actions, forming a tri-periodic network.

1. Chemical context

The synthesis of polyfunctional compounds and the study of their structures and properties are one of the directions in organic chemistry that have been studied in detail in recent years. In this regard, the synthesis of dihalogendi­aza­butadienes from the reaction of N-substituted hydrazones of benzaldehyde derivatives with polyhalo­methanes (CCI4, CBr4) in the presence of a CuCI catalyst (Maharramov et al., 2018; Shikhaliyev et al., 2019a ,b , 2021a ,b ; Nenajdenko et al., 2020, 2022), the investigation of their structural features by the RQA method (Shikhaliyev et al., 2021c ,d ,e ; Atioğlu et al., 2020) and the investigation of the factors affecting the direction of the reaction are distinguished by their relevance.

The presence of an attached di­aza­diene system in dihalogendi­aza­butadiene derivatives leads to their application as a new class of diazo dyes, and the reaction of heminal halogen atoms with various nucleophiles results in important compounds such as azido­triazoles, hydrozo derivatives of α-ketoethers and other nitro­gen-containing heterocyclic compounds (Shikhaliyev et al., 2021f ; Tsyrenova et al., 2021). 1.

In this context, the corresponding azo dyes were synthesized based on 4-(tert-but­yl)benzaldehyde (Fig. 1), their crystal structures determined and their Hirshfeld surface analysed, and the results of these studies are reported in the current communication.

Figure 1.

Figure 1

Reaction scheme for the synthesis of compounds (I), (II), (III) and (IV).

2. Structural commentary

In the crystal structure of (I), the central fragment of the mol­ecule, C1/C2/N1/N2/C3/C13/Cl1/Cl2, is almost planar (Fig. 2), with an r.m.s. deviation of fitted atoms of 0.0625 Å from the least-squares plane. This plane forms a dihedral angles of 26.86 (7) and 66.71 (5)° with the planes of the phenyl (C13–C18) and 4-tert-butyl­phenyl (C3–C8) rings, respectively. In the crystal structure of (II), the central fragment (C1/C2/N2/N1/C3/C13/Cl1/Cl2; r.m.s. deviation of fitted atoms = 0.0779 Å) of the mol­ecule (Fig. 3) makes dihedral angles of 42.41 (5) and 65.31 (4)° with the planes of the 4-methyl­phenyl (C13–C18) and 4-tert-butyl­phenyl (C3–C8) rings, respectively. In the crystal structure of (III), the central fragment (C1/C2/N1/N2/C3/C13/Cl1/Cl2; r.m.s. deviation of fitted atoms = 0.0324 Å) of the mol­ecule (Fig. 4) forms dihedral angles of 10.75 (3) and 82.00 (3)° with the planes of the 4-meth­oxy­phenyl (C13–C18) and 4-tert-butyl­phenyl (C3–C8) rings, respectively.

Figure 2.

Figure 2

The mol­ecular structure of (I) with displacement ellipsoids drawn at the 50% probability level.

Figure 3.

Figure 3

The mol­ecular structure of (II) with displacement ellipsoids drawn at the 50% probability level.

Figure 4.

Figure 4

The mol­ecular structure of (III) with displacement ellipsoids drawn at the 50% probability level.

In the crystal structure of (IV), the asymmetric unit comprises two mol­ecules (A and B), Fig. 5. The central fragments (C1/C2/N1/N2/C3/C13/Cl1/Cl2 and C20/C21/N3/N4/C22/C32/Cl3/Cl4) of the mol­ecules A and B are almost planar with the r.m.s. deviations of fitted atoms being 0.0336 for A and 0.0243 Å for B. The central fragment of mol­ecule A forms dihedral angles of 13.45 (4) and 67.03 (5)°, respectively, with the planes of the 3-methyl­phenyl (C13–C18) and 4-tert-butyl­phenyl (C3–C8) rings. The central fragment of mol­ecule B forms dihedral angles of 3.45 (2) and 84.00 (5)°, respectively, with the planes of the 3-methyl­phenyl (C32–C37) and 4-tert-butyl­phenyl (C22–C27) rings.

Figure 5.

Figure 5

View of the two mol­ecules (A and B) in the asymmetric unit of (IV) with displacement ellipsoids drawn at the 30% probability level.

Bond lengths and angles in all compounds are in agreement with those reported for the related azo compounds discussed in the Database survey section.

3. Supra­molecular features and Hirshfeld surface analysis

In the crystal structures of (I) and (II), mol­ecules are mainly connected by C—Cl⋯π inter­actions [for (I), C2—Cl1⋯Cg1i = 3.5617 (8) Å; 158.39 (8)°; symmetry code: (i) 1 − x, −y, 1 − z, and for (II), C2—Cl1⋯Cg1i = 3.6343 (1) Å; 160.79 (1)°, with Cg1 being the centroid of the 4-tert-butyl­phenyl ring (C3–C8); symmetry code: (i) 1 − x, −y, 1 − z]. These inter­actions, together with C—H⋯Cg1 inter­actions (Tables 1 and 2), lead to the formation of layers parallel to ( Inline graphic 02), Figs. 6 and 7. In the crystal structure of (III), mol­ecules are connected by C—H⋯O and C—H⋯π inter­actions (Table 3) and additional C—Cl⋯π [C2—Cl1⋯Cg1i = 3.7693 (1) Å; 146.35 (1) Å; Cg1 is the centroid of the 4-tert-butyl­phenyl ring (C3–C8); symmetry code: (i) 1 − x, −y, 1 − z], forming layers parallel to ( Inline graphic 02) (Table 3, Fig. 8). van der Waals forces between these layers maintain the stability of the mol­ecular packing. In the crystal structure of (IV), mol­ecules are connected via C—H⋯π (Table 4) and C—Cl⋯π [C2—Cl2⋯Cg3ii = 3.9515 (9) Å; C2—Cl2⋯Cg3ii = 165.48 (1)°; symmetry code: (ii) −x, y, −1 + z; Cg3 is the centroid of the 4-tert-butyl­phenyl ring (C22–C27) of mol­ecule (IVB)] inter­actions, creating a tri-periodic network (Fig. 9).

Table 1. Hydrogen-bond geometry (Å, °) for (I) .

Cg1 is the centroid of the 4-tert-butyl­phenyl ring (C3–C8).

D—H⋯A D—H H⋯A DA D—H⋯A
C17—H17⋯Cg1i 0.95 2.95 3.476 (2) 116

Symmetry code: (i) Inline graphic .

Table 2. Hydrogen-bond geometry (Å, °) for (II) .

Cg1 is the centroid of the 4-tert-butyl­phenyl ring (C3–C8).

D—H⋯A D—H H⋯A DA D—H⋯A
C17—H17⋯Cg1i 0.95 2.88 3.675 (2) 142

Symmetry code: (i) Inline graphic .

Figure 6.

Figure 6

The C—Cl⋯π and C—H⋯π contacts (solid lines) of (I), shown along the b axis.

Figure 7.

Figure 7

The C—Cl⋯π and C—H⋯π contacts (solid lines) of (II), shown along the b axis.

Table 3. Hydrogen-bond geometry (Å, °) for (III) .

Cg1 is the centroid of the 4-tert-butyl­phenyl ring (C3–C8).

D—H⋯A D—H H⋯A DA D—H⋯A
C18—H18⋯O1i 0.95 2.39 3.2753 (17) 155
C19—H19BCg1ii 0.98 2.87 3.4276 (17) 117

Symmetry codes: (i) Inline graphic ; (ii) Inline graphic .

Figure 8.

Figure 8

The C—H⋯O, C—Cl⋯π and C—H⋯π contacts (dashed lines) of (III), shown along the a axis.

Table 4. Hydrogen-bond geometry (Å, °) for (IV) .

Cg1 and Cg2 are the centroids of the 4-tert-butyl­phenyl rings [(IVA: C3–C8 and (IVB): C13–C18]. Cg4 is the centroid of the 3-methyl­phenyl ring (C32–C37) of mol­ecule (IVB).

D—H⋯A D—H H⋯A DA D—H⋯A
C7—H7⋯Cg4i 0.95 2.91 3.768 (2) 151
C24—H24⋯Cg2ii 0.95 2.97 3.824 (2) 150
C29—H29BCg1iii 0.98 2.78 3.706 (2) 157

Symmetry codes: (i) Inline graphic ; (ii) Inline graphic ; (iii) Inline graphic .

Figure 9.

Figure 9

The C—Cl⋯π and C—H⋯π contacts (dashed lines) of (IV), shown along the a axis.

To qu­antify inter­molecular inter­actions between mol­ecules (I), (II), (III), (IVA) and (IVB) in their respective crystal structures, Hirshfeld surface analyses were performed, and the two-dimensional fingerprint plots generated with CrystalExplorer17 (Spackman et al., 2021). The two-dimensional fingerprint plots are shown in Fig. 10. Comparative inter­actions calculated for each compound are given in Table 5. The dominant inter­actions of all compounds are H⋯H [(I): 45.3%, (II): 47.1%, (III): 43.6%, (IVA): 47.0% and (IVB): 44.2%], Cl⋯H/H⋯Cl [(I): 22.8%, (II): 22.2%, (III): 21.3%, (IVA): 20.1% and (IVB): 19.8%] and C⋯H/H⋯C [(I) 17.5%, (II): 18.6%, (III): 17.0%, (IVA): 20.7% and (IVB): 21.1%]. These inter­actions play a crucial role in the overall stabilization of the crystal packing. The presence of different functional groups in the compounds leads to some differences in the remaining weak inter­actions.

Figure 10.

Figure 10

Two-dimensional fingerprint graphs showing the H⋯H, Cl⋯H/H⋯Cl and C⋯H/H⋯C inter­actions of (I), (II), (III), (IVA) and (IV B).

Table 5. Percentage contributions of inter­atomic contacts to the Hirshfeld surface in the crystal structure.

Contact Percentage contribution
  (I) (II) (III) (IVA) (IVB)
H⋯H 45.3 47.1 43.6 47.0 44.2
Cl⋯H/H⋯Cl 22.8 22.2 21.3 20.1 19.8
C⋯H/H⋯C 17.5 18.6 17.0 20.7 21.1
N⋯H/H⋯N 5.3 5.8 3.7 7.2 8.3
O⋯H/H⋯O 5.1
Cl⋯C/C⋯Cl 3.2 2.8 2.7 2.4 3.3
C⋯C 2.4 1.2 1.7 0.3 0.3
N⋯C/C⋯N 1.5 0.7 1.4
Cl⋯N/N⋯Cl 1.2 0.5 2.9
Cl⋯Cl 0.8 1.2 0.6 2.3 3.0

4. Database survey

A search of the Cambridge Structural Database (CSD, Version 5.42, update of September 2021; Groom et al., 2016) for the (E)-1-(2,2-di­chloro-1-phenyl­ethen­yl)-2-phenyl­diazene moiety resulted in 32 hits. Fourteen compounds are closely related to the title compound, viz. those with CSD refcodes TAZDIL (Atioğlu et al., 2022a ), HEHKEO (Akkurt et al., 2022), ECUDAL (Atioğlu et al., 2022b ), PAXDOL (Çelikesir et al., 2022), CANVUM, (Shikhaliyev et al., 2021d ), EBUCUD (Shikhaliyev et al., 2021d ), GUPHIL (Özkaraca et al., 2020a ), DULTAI (Özkaraca et al., 2020b ), XIZREG (Atioğlu et al., 2019), HODQAV (Shikhaliyev et al., 2019c ), HONBUK (Akkurt et al., 2019), HONBOE (Akkurt et al., 2019), LEQXOX (Shikhaliyev et al., 2018) and LEQXIR (Shikhaliyev et al., 2018).

The mol­ecules in TAZDIL are joined into layers parallel to (011) by C—H⋯O and C—H⋯F hydrogen bonds. C—Br⋯π and C—F⋯π contacts, as well as π–π stacking inter­actions strengthen the crystal packing. C—H⋯Br inter­actions connect the mol­ecules in the crystal of the polymorph-1 of HEHKEO, resulting in zigzag C(8) chains along [100]. These chains are connected by C—Br⋯π inter­actions into layers parallel to (001). van der Waals inter­actions between the layers contribute to the crystal cohesion. In the crystals of ECUDAL, C—H⋯O hydrogen bonds link mol­ecules into chains. These chains are linked by face-to-face π–π stacking inter­actions, resulting in a layered structure. Short inter­molecular Br⋯O contacts and van der Waals inter­actions between the layers aid in the cohesion of the crystal packing. The mol­ecules in the crystal of PAXDOL are connected into chains running parallel to [001] by C—H⋯O hydrogen bonds. C—F⋯π contacts and π–π stacking inter­actions help to consolidate the crystal packing, and short Br⋯O [2.9828 (13) Å] distances are also observed. In CANVUM, the mol­ecules are linked by C—H⋯N inter­actions along [100], forming a C(6) chain. The mol­ecules are further connected by C—Cl⋯π inter­actions and face-to-face π–π stacking inter­actions, resulting in ribbons along [100]. The crystal structure of EBUCUD features short C—H⋯Cl and C—H⋯O contacts and C—H⋯π and van der Waals inter­actions. In GUPHIL, mol­ecules are associated into inversion dimers via short Cl⋯Cl contacts [3.3763 (9) Å]. In DULTAI, the crystal structure is stabilized by a short C—H⋯Cl contact, C—Cl⋯π and van der Waals inter­actions. In XIZREG, the mol­ecules are linked by C—H⋯O hydrogen bonds into zigzag chains running along [001]. The crystal packing also features C—Cl⋯π, C—F⋯π and N—O⋯π inter­actions. In HODQAV, mol­ecules are stacked in columns along [100] via weak C—H⋯Cl hydrogen bonds and face-to-face π–π stacking inter­actions. The crystal packing is further consolidated by short Cl⋯Cl contacts. In HONBUK and HONBOE, mol­ecules are linked through weak X⋯Cl contacts (X = Cl for HONBUK and Br for HONBOE), C—H⋯Cl and C—Cl⋯π inter­actions into sheets parallel to (001). Additional van der Waals inter­actions consolidate the three-dimensional packing. In the crystals of LEQXOX, C—H⋯N and short Cl⋯Cl contacts are observed and in LEQXIR, C—H⋯N and C—H⋯O hydrogen bonds and short C—Cl⋯O contacts occur.

5. Synthesis and crystallization

Dyes (I), (II), (III) and (IV) were synthesized according to a literature protocol (Shikhaliyev et al., 2018).

For (I), a 20 ml screw-neck vial was charged with DMSO (10 ml), (E)-1-(4-(tert-but­yl)benzyl­idene)-2-phenyl­hydrazine (252 mg, 1 mmol), tetra­methyl­ethylenedi­amine (TMEDA) (295 mg, 2.5 mmol), CuCl (2 mg, 0.02 mmol) and CBr4 (4.5 mmol). After 1–3 h (until TLC analysis showed complete consumption of the corresponding Schiff base), the reaction mixture was poured into a 0.01 M solution of HCl (100 ml, pH = 2–3), and extracted with di­chloro­methane (3× ≃ 20 ml). The combined organic phase was washed with water (3× ≃ 50 ml), brine (30 ml), dried over anhydrous Na2SO4 and concentrated in vacuo using a rotary evaporator. The residue was purified by column chromatography on silica gel using appropriate mixtures of hexane and di­chloro­methane (v/v: 3/1–1/1). Red solid (yield 69%); m.p. 361 K. Analysis calculated for C18H18Cl2N2 (M = 333.26): 1H NMR (300 MHz, CDCl3) δ 7.87 (dd, J = 6.6, 2.9 Hz, 2H), 7.54–7.47 (m, 5H), 7.21 (d, J = 8.3 Hz, 2H), 1.44 (s, 9H). 13C NMR (75 MHz, CDCl3) δ 162.3, 153.0, 152.2, 151.6, 135.1, 131.5, 129.7, 129.3, 129.0, 125.1, 123.3, 31.4, 29.8.

For (II), the procedure was the same as that for (I) using (E)-1-(4-(tert-but­yl)benzyl­idene)-2-(p-tol­yl)hydrazine (266 mg, 1 mmol). A red solid was obtained (yield 71%); mp 369 K. Analysis calculated for C19H20Cl2N2 (M = 347.28): 1H NMR (300 MHz, CDCl3) δ 7.72 (d, J = 8.3 Hz, 2H), 7.46 (d, J = 8.3 Hz, 2H), 7.25 (d, J = 8.2 Hz, 2H), 7.15 (d, J = 8.3 Hz, 2H), 2.42 (s, 3H), 1.39 (s, 9H). 13C NMR (75 MHz, CDCl3) 152.1, 151.5, 151.1, 142.2, 134.2, 129.7, 129.7, 129.4, 125.0, 123.3, 34.8, 31.3, 21.6.

For (III), the procedure was the same as that for (I) using (E)-1-(4-(tert-but­yl)benzyl­idene)-2-(4-meth­oxy­phen­yl)hydrazine (276 mg, 1 mmol). An orange solid was obtained (yield 63%); mp 400 K. Analysis calculated for C19H20Cl2N2O (M = 363.28): 1H NMR (300 MHz, CDCl3) δ 7.83 (d, J = 9.0 Hz, 2H), 7.48 (d, J = 8.4 Hz, 2H), 7.17 (d, J = 8.3 Hz, 2H), 6.96 (d, J = 9.0 Hz, 2H), 3.88 (s, 3H), 1.41 (s, 9H). 13C NMR (75 MHz, CDCl3) δ 162.5, 152.0, 151.4, 147.4, 132.9, 129.7, 129.6, 125.2, 125.0, 114.1, 55.5, 34.7, 31.3.

For (IV), the procedure was the same as that for (I) using (E)-1-(4-(tert-but­yl)benzyl­idene)-2-(m-tol­yl)hydrazine (276 mg, 1 mmol). An orange solid was obtained (yield 63%); mp 339 K. Analysis calculated for C19H20Cl2N2 (M = 347.28): 1 H NMR (300 MHz, CDCl3) δ 7.66 (s, 2H), 7.50 (d, J = 8.3 Hz, 2H), 7.37 (dd, J = 9.7, 6.0 Hz, 1H), 7.31 (s, 1H), 7.19 (d, J = 8.3 Hz, 2H), 2.45 (s, 3H), 1.43 (s, 9H). 13C NMR (75 MHz, CDCl3) δ δ 153.0, 152.2, 151.5, 138.9, 134.7, 132.3, 129.7, 129.3, 128.8, 125.1, 124.0, 120.3, 34.8, 31.3, 21.3.

Compounds (I), (II), (III) and (IV) were dissolved in di­chloro­methane and then left at room temperature for slow evaporation; red crystals of all compounds suitable for X-rays started to form after ca 2 d.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 6. For all structures, H atoms were positioned geometrically and treated as riding atoms, with C—H = 0.95–0.98 Å and U iso(H) = 1.2U eq(C) or 1.5U eq(C-meth­yl).

Table 6. Experimental details.

  (I) (II) (III) (IV)
Crystal data
Chemical formula C18H18Cl2N2 C19H20Cl2N2 C19H20Cl2N2O C19H20Cl2N2
M r 333.24 347.27 363.27 347.27
Crystal system, space group Monoclinic, C2/c Monoclinic, C2/c Monoclinic, P21/c Triclinic, P Inline graphic
Temperature (K) 100 100 100 100
a, b, c (Å) 31.7847 (8), 6.0289 (1), 23.7220 (6) 30.9062 (6), 6.27248 (5), 23.3475 (4) 13.8738 (2), 12.5946 (2), 11.3013 (1) 9.8352 (2), 11.8401 (2), 16.3964 (2)
α, β, γ (°) 90, 132.669 (4), 90 90, 127.223 (3), 90 90, 112.505 (1), 90 98.397 (1), 96.189 (1), 107.149 (1)
V3) 3342.4 (2) 3604.08 (15) 1824.35 (4) 1781.77 (5)
Z 8 8 4 4
Radiation type Cu Kα Cu Kα Cu Kα Cu Kα
μ (mm−1) 3.46 3.23 3.26 3.27
Crystal size (mm) 0.23 × 0.18 × 0.15 0.19 × 0.17 × 0.14 0.24 × 0.20 × 0.18 0.25 × 0.22 × 0.18
 
Data collection
Diffractometer XtaLAB Synergy, Dualflex, HyPix XtaLAB Synergy, Dualflex, HyPix XtaLAB Synergy, Dualflex, HyPix XtaLAB Synergy, Dualflex, HyPix
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2021) Multi-scan (CrysAlis PRO; Rigaku OD, 2021) Multi-scan (CrysAlis PRO; Rigaku OD, 2021) Multi-scan (CrysAlis PRO; Rigaku OD, 2021)
T min, T max 0.339, 0.580 0.464, 0.630 0.431, 0.550 0.328, 0.550
No. of measured, independent and observed [I > 2σ(I)] reflections 25151, 3543, 3242 28692, 3805, 3643 25894, 3843, 3603 53607, 7515, 6948
R int 0.074 0.047 0.076 0.071
(sin θ/λ)max−1) 0.634 0.633 0.634 0.634
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.038, 0.105, 1.08 0.033, 0.090, 1.10 0.043, 0.118, 1.06 0.058, 0.171, 1.04
No. of reflections 3543 3805 3843 7515
No. of parameters 202 213 221 423
H-atom treatment H-atom parameters constrained H-atom parameters constrained H-atom parameters constrained H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.34, −0.36 0.29, −0.30 0.53, −0.33 0.93, −0.63

Computer programs: CrysAlis PRO (Rigaku OD, 2021), SHELXT2016/6 (Sheldrick, 2015a ), SHELXL2016/6 (Sheldrick, 2015b ), ORTEP-3 for Windows (Farrugia, 2012) and PLATON (Spek, 2020).

Supplementary Material

Crystal structure: contains datablock(s) I, II, III, IV, global. DOI: 10.1107/S205698902300511X/wm5684sup1.cif

e-79-00637-sup1.cif (4.1MB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S205698902300511X/wm5684Isup2.hkl

e-79-00637-Isup2.hkl (283.1KB, hkl)

Structure factors: contains datablock(s) II. DOI: 10.1107/S205698902300511X/wm5684IIsup3.hkl

e-79-00637-IIsup3.hkl (303.8KB, hkl)

Structure factors: contains datablock(s) III. DOI: 10.1107/S205698902300511X/wm5684IIIsup4.hkl

e-79-00637-IIIsup4.hkl (306.5KB, hkl)

Structure factors: contains datablock(s) IV. DOI: 10.1107/S205698902300511X/wm5684IVsup5.hkl

e-79-00637-IVsup5.hkl (596.8KB, hkl)

CCDC references: 2268431, 2268430, 2268429, 2268428

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors’ contributions are as follows. Conceptualization, MA, NQS and AB; synthesis, AM, AQ, GTA and AN; X-ray analysis, VNK, MA, and SÖY; writing (review and editing of the manuscript) MA, NQS and AB; funding acquisition, AM and NQS; supervision, MA and AB.

supplementary crystallographic information

(E)-1-[1-(4-tert-Butylphenyl)-2,2-dichloroethenyl]-2-phenyldiazene (I) . Crystal data

C18H18Cl2N2 F(000) = 1392
Mr = 333.24 Dx = 1.324 Mg m3
Monoclinic, C2/c Cu Kα radiation, λ = 1.54184 Å
a = 31.7847 (8) Å Cell parameters from 12999 reflections
b = 6.0289 (1) Å θ = 3.7–77.3°
c = 23.7220 (6) Å µ = 3.46 mm1
β = 132.669 (4)° T = 100 K
V = 3342.4 (2) Å3 Prism, red
Z = 8 0.23 × 0.18 × 0.15 mm

(E)-1-[1-(4-tert-Butylphenyl)-2,2-dichloroethenyl]-2-phenyldiazene (I) . Data collection

XtaLAB Synergy, Dualflex, HyPix diffractometer 3242 reflections with I > 2σ(I)
Radiation source: micro-focus sealed X-ray tube Rint = 0.074
φ and ω scans θmax = 77.7°, θmin = 3.7°
Absorption correction: multi-scan (CrysAlisPro; Rigaku OD, 2021) h = −40→33
Tmin = 0.339, Tmax = 0.580 k = −7→7
25151 measured reflections l = −30→30
3543 independent reflections

(E)-1-[1-(4-tert-Butylphenyl)-2,2-dichloroethenyl]-2-phenyldiazene (I) . Refinement

Refinement on F2 0 restraints
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.038 H-atom parameters constrained
wR(F2) = 0.105 w = 1/[σ2(Fo2) + (0.0617P)2 + 1.5568P] where P = (Fo2 + 2Fc2)/3
S = 1.08 (Δ/σ)max = 0.001
3543 reflections Δρmax = 0.34 e Å3
202 parameters Δρmin = −0.35 e Å3

(E)-1-[1-(4-tert-Butylphenyl)-2,2-dichloroethenyl]-2-phenyldiazene (I) . Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

(E)-1-[1-(4-tert-Butylphenyl)-2,2-dichloroethenyl]-2-phenyldiazene (I) . Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.41113 (6) 0.3707 (3) 0.34806 (7) 0.0190 (3)
C2 0.44632 (6) 0.2439 (3) 0.34891 (8) 0.0202 (3)
C3 0.40396 (6) 0.3436 (2) 0.40351 (8) 0.0181 (3)
C4 0.42175 (6) 0.5130 (3) 0.45571 (8) 0.0209 (3)
H4 0.439678 0.641238 0.456824 0.025*
C5 0.41349 (6) 0.4962 (2) 0.50612 (8) 0.0202 (3)
H5 0.426029 0.613327 0.541285 0.024*
C6 0.38719 (6) 0.3110 (2) 0.50615 (7) 0.0174 (3)
C7 0.37085 (6) 0.1406 (3) 0.45491 (8) 0.0202 (3)
H7 0.353829 0.010531 0.454639 0.024*
C8 0.37887 (6) 0.1563 (3) 0.40417 (8) 0.0202 (3)
H8 0.367082 0.037981 0.369712 0.024*
C9 0.37725 (6) 0.2913 (2) 0.56103 (8) 0.0190 (3)
C10 0.37583 (8) 0.5188 (3) 0.58853 (10) 0.0298 (4)
H10A 0.413067 0.591510 0.617926 0.045*
H10B 0.367473 0.499800 0.621133 0.045*
H10C 0.346043 0.610581 0.544116 0.045*
C11 0.32022 (7) 0.1755 (3) 0.52144 (9) 0.0276 (3)
H11A 0.289387 0.251751 0.473242 0.041*
H11B 0.312533 0.179721 0.555056 0.041*
H11C 0.322279 0.020866 0.510718 0.041*
C12 0.42652 (7) 0.1554 (3) 0.63116 (9) 0.0290 (4)
H12A 0.427998 0.009439 0.614365 0.044*
H12B 0.420195 0.136703 0.665981 0.044*
H12C 0.462777 0.233242 0.657860 0.044*
C13 0.31598 (6) 0.8111 (3) 0.23028 (8) 0.0190 (3)
C14 0.33920 (6) 0.9139 (3) 0.20375 (8) 0.0223 (3)
H14 0.373214 0.858034 0.217910 0.027*
C15 0.31215 (7) 1.0977 (3) 0.15666 (9) 0.0263 (3)
H15 0.327976 1.169410 0.138947 0.032*
C16 0.26201 (7) 1.1785 (3) 0.13505 (8) 0.0258 (3)
H16 0.243926 1.305662 0.103079 0.031*
C17 0.23826 (6) 1.0734 (3) 0.16015 (8) 0.0260 (3)
H17 0.203476 1.126355 0.144314 0.031*
C18 0.26553 (6) 0.8909 (3) 0.20839 (8) 0.0231 (3)
H18 0.249845 0.820563 0.226471 0.028*
Cl1 0.48464 (2) 0.02700 (6) 0.41131 (2) 0.02358 (12)
Cl2 0.45673 (2) 0.28133 (7) 0.28705 (2) 0.02385 (12)
N1 0.38241 (5) 0.5414 (2) 0.29193 (7) 0.0193 (3)
N2 0.34302 (5) 0.6330 (2) 0.28416 (6) 0.0199 (3)

(E)-1-[1-(4-tert-Butylphenyl)-2,2-dichloroethenyl]-2-phenyldiazene (I) . Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0203 (6) 0.0199 (7) 0.0164 (6) −0.0021 (5) 0.0123 (5) −0.0010 (5)
C2 0.0205 (7) 0.0230 (7) 0.0170 (6) −0.0001 (5) 0.0127 (5) 0.0002 (5)
C3 0.0195 (6) 0.0190 (7) 0.0164 (6) 0.0016 (5) 0.0123 (5) 0.0006 (5)
C4 0.0251 (7) 0.0194 (7) 0.0208 (6) −0.0038 (5) 0.0165 (6) −0.0018 (6)
C5 0.0245 (7) 0.0186 (7) 0.0184 (6) −0.0035 (5) 0.0149 (6) −0.0044 (5)
C6 0.0193 (6) 0.0179 (7) 0.0161 (6) 0.0022 (5) 0.0124 (5) 0.0014 (5)
C7 0.0245 (7) 0.0177 (7) 0.0214 (6) −0.0027 (5) 0.0168 (6) −0.0021 (5)
C8 0.0246 (7) 0.0179 (7) 0.0198 (6) −0.0018 (5) 0.0157 (6) −0.0039 (5)
C9 0.0256 (7) 0.0175 (7) 0.0190 (6) 0.0018 (5) 0.0171 (6) 0.0012 (5)
C10 0.0499 (10) 0.0213 (8) 0.0375 (8) 0.0005 (7) 0.0373 (8) −0.0022 (7)
C11 0.0296 (8) 0.0337 (9) 0.0284 (7) −0.0040 (7) 0.0232 (7) −0.0027 (7)
C12 0.0323 (8) 0.0366 (9) 0.0246 (7) 0.0103 (7) 0.0218 (7) 0.0099 (7)
C13 0.0204 (6) 0.0203 (7) 0.0154 (6) −0.0014 (5) 0.0118 (5) −0.0025 (5)
C14 0.0238 (7) 0.0233 (7) 0.0223 (6) 0.0001 (6) 0.0167 (6) −0.0008 (6)
C15 0.0295 (8) 0.0250 (8) 0.0261 (7) −0.0028 (6) 0.0196 (6) 0.0012 (6)
C16 0.0282 (8) 0.0217 (8) 0.0198 (6) 0.0029 (6) 0.0133 (6) 0.0017 (6)
C17 0.0223 (7) 0.0308 (8) 0.0216 (7) 0.0048 (6) 0.0136 (6) −0.0002 (6)
C18 0.0218 (7) 0.0291 (8) 0.0197 (6) −0.0007 (6) 0.0145 (6) −0.0021 (6)
Cl1 0.0259 (2) 0.0243 (2) 0.02326 (19) 0.00553 (13) 0.01777 (16) 0.00450 (13)
Cl2 0.0253 (2) 0.0312 (2) 0.02177 (19) 0.00330 (13) 0.01869 (16) 0.00240 (13)
N1 0.0210 (6) 0.0201 (6) 0.0174 (5) −0.0001 (5) 0.0132 (5) −0.0006 (5)
N2 0.0212 (6) 0.0217 (6) 0.0181 (5) −0.0003 (5) 0.0138 (5) −0.0009 (5)

(E)-1-[1-(4-tert-Butylphenyl)-2,2-dichloroethenyl]-2-phenyldiazene (I) . Geometric parameters (Å, º)

C1—C2 1.344 (2) C10—H10C 0.9800
C1—N1 1.4205 (19) C11—H11A 0.9800
C1—C3 1.4886 (19) C11—H11B 0.9800
C2—Cl1 1.7146 (15) C11—H11C 0.9800
C2—Cl2 1.7240 (15) C12—H12A 0.9800
C3—C8 1.388 (2) C12—H12B 0.9800
C3—C4 1.396 (2) C12—H12C 0.9800
C4—C5 1.391 (2) C13—C18 1.394 (2)
C4—H4 0.9500 C13—C14 1.398 (2)
C5—C6 1.395 (2) C13—N2 1.4269 (19)
C5—H5 0.9500 C14—C15 1.383 (2)
C6—C7 1.396 (2) C14—H14 0.9500
C6—C9 1.5381 (19) C15—C16 1.390 (2)
C7—C8 1.393 (2) C15—H15 0.9500
C7—H7 0.9500 C16—C17 1.391 (2)
C8—H8 0.9500 C16—H16 0.9500
C9—C11 1.532 (2) C17—C18 1.388 (2)
C9—C10 1.532 (2) C17—H17 0.9500
C9—C12 1.536 (2) C18—H18 0.9500
C10—H10A 0.9800 N1—N2 1.2628 (18)
C10—H10B 0.9800
C2—C1—N1 115.21 (13) H10A—C10—H10C 109.5
C2—C1—C3 123.29 (13) H10B—C10—H10C 109.5
N1—C1—C3 121.45 (13) C9—C11—H11A 109.5
C1—C2—Cl1 122.94 (12) C9—C11—H11B 109.5
C1—C2—Cl2 123.42 (12) H11A—C11—H11B 109.5
Cl1—C2—Cl2 113.64 (9) C9—C11—H11C 109.5
C8—C3—C4 118.41 (13) H11A—C11—H11C 109.5
C8—C3—C1 122.15 (13) H11B—C11—H11C 109.5
C4—C3—C1 119.42 (13) C9—C12—H12A 109.5
C5—C4—C3 120.69 (14) C9—C12—H12B 109.5
C5—C4—H4 119.7 H12A—C12—H12B 109.5
C3—C4—H4 119.7 C9—C12—H12C 109.5
C4—C5—C6 121.41 (13) H12A—C12—H12C 109.5
C4—C5—H5 119.3 H12B—C12—H12C 109.5
C6—C5—H5 119.3 C18—C13—C14 120.28 (14)
C5—C6—C7 117.28 (13) C18—C13—N2 115.83 (13)
C5—C6—C9 121.94 (13) C14—C13—N2 123.75 (13)
C7—C6—C9 120.78 (13) C15—C14—C13 119.32 (14)
C8—C7—C6 121.63 (14) C15—C14—H14 120.3
C8—C7—H7 119.2 C13—C14—H14 120.3
C6—C7—H7 119.2 C14—C15—C16 120.54 (15)
C3—C8—C7 120.55 (13) C14—C15—H15 119.7
C3—C8—H8 119.7 C16—C15—H15 119.7
C7—C8—H8 119.7 C15—C16—C17 120.12 (15)
C11—C9—C10 107.75 (13) C15—C16—H16 119.9
C11—C9—C12 109.54 (13) C17—C16—H16 119.9
C10—C9—C12 108.60 (13) C18—C17—C16 119.81 (14)
C11—C9—C6 110.65 (12) C18—C17—H17 120.1
C10—C9—C6 111.93 (12) C16—C17—H17 120.1
C12—C9—C6 108.33 (12) C17—C18—C13 119.91 (14)
C9—C10—H10A 109.5 C17—C18—H18 120.0
C9—C10—H10B 109.5 C13—C18—H18 120.0
H10A—C10—H10B 109.5 N2—N1—C1 113.43 (12)
C9—C10—H10C 109.5 N1—N2—C13 113.31 (12)
N1—C1—C2—Cl1 −179.36 (10) C7—C6—C9—C11 −37.58 (18)
C3—C1—C2—Cl1 3.2 (2) C5—C6—C9—C10 23.30 (19)
N1—C1—C2—Cl2 −0.05 (19) C7—C6—C9—C10 −157.77 (14)
C3—C1—C2—Cl2 −177.52 (11) C5—C6—C9—C12 −96.41 (16)
C2—C1—C3—C8 −67.0 (2) C7—C6—C9—C12 82.52 (17)
N1—C1—C3—C8 115.67 (16) C18—C13—C14—C15 1.1 (2)
C2—C1—C3—C4 114.42 (17) N2—C13—C14—C15 −174.40 (14)
N1—C1—C3—C4 −62.90 (18) C13—C14—C15—C16 −0.8 (2)
C8—C3—C4—C5 −1.2 (2) C14—C15—C16—C17 −0.6 (2)
C1—C3—C4—C5 177.40 (13) C15—C16—C17—C18 1.6 (2)
C3—C4—C5—C6 −0.2 (2) C16—C17—C18—C13 −1.3 (2)
C4—C5—C6—C7 1.7 (2) C14—C13—C18—C17 −0.1 (2)
C4—C5—C6—C9 −179.38 (13) N2—C13—C18—C17 175.75 (13)
C5—C6—C7—C8 −1.8 (2) C2—C1—N1—N2 169.00 (13)
C9—C6—C7—C8 179.25 (13) C3—C1—N1—N2 −13.47 (19)
C4—C3—C8—C7 1.1 (2) C1—N1—N2—C13 177.31 (11)
C1—C3—C8—C7 −177.48 (13) C18—C13—N2—N1 168.30 (13)
C6—C7—C8—C3 0.4 (2) C14—C13—N2—N1 −16.0 (2)
C5—C6—C9—C11 143.50 (14)

(E)-1-[1-(4-tert-Butylphenyl)-2,2-dichloroethenyl]-2-phenyldiazene (I) . Hydrogen-bond geometry (Å, º)

Cg1 is the centroid of the 4-tert-butylphenyl ring (C3–C8).

D—H···A D—H H···A D···A D—H···A
C17—H17···Cg1i 0.95 2.95 3.476 (2) 116

Symmetry code: (i) −x+1/2, y+1/2, −z+1/2.

(E)-1-[1-(4-tert-Butylphenyl)-2,2-dichloroethenyl]-2-\ (4-methylphenyl)diazene (II) . Crystal data

C19H20Cl2N2 F(000) = 1456
Mr = 347.27 Dx = 1.280 Mg m3
Monoclinic, C2/c Cu Kα radiation, λ = 1.54184 Å
a = 30.9062 (6) Å Cell parameters from 19033 reflections
b = 6.27248 (5) Å θ = 3.6–77.1°
c = 23.3475 (4) Å µ = 3.23 mm1
β = 127.223 (3)° T = 100 K
V = 3604.08 (15) Å3 Prism, red
Z = 8 0.19 × 0.17 × 0.14 mm

(E)-1-[1-(4-tert-Butylphenyl)-2,2-dichloroethenyl]-2-\ (4-methylphenyl)diazene (II) . Data collection

XtaLAB Synergy, Dualflex, HyPix diffractometer 3643 reflections with I > 2σ(I)
Radiation source: micro-focus sealed X-ray tube Rint = 0.047
φ and ω scans θmax = 77.5°, θmin = 3.6°
Absorption correction: multi-scan (CrysAlisPro; Rigaku OD, 2021) h = −38→38
Tmin = 0.464, Tmax = 0.630 k = −6→7
28692 measured reflections l = −29→29
3805 independent reflections

(E)-1-[1-(4-tert-Butylphenyl)-2,2-dichloroethenyl]-2-\ (4-methylphenyl)diazene (II) . Refinement

Refinement on F2 Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: full H-atom parameters constrained
R[F2 > 2σ(F2)] = 0.033 w = 1/[σ2(Fo2) + (0.047P)2 + 2.8P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.090 (Δ/σ)max = 0.001
S = 1.10 Δρmax = 0.29 e Å3
3805 reflections Δρmin = −0.30 e Å3
213 parameters Extinction correction: SHELXL2016/6 (Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraints Extinction coefficient: 0.00017 (5)

(E)-1-[1-(4-tert-Butylphenyl)-2,2-dichloroethenyl]-2-\ (4-methylphenyl)diazene (II) . Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

(E)-1-[1-(4-tert-Butylphenyl)-2,2-dichloroethenyl]-2-\ (4-methylphenyl)diazene (II) . Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Cl1 0.48998 (2) 0.03552 (5) 0.41749 (2) 0.02454 (11)
Cl2 0.46363 (2) 0.25942 (5) 0.29246 (2) 0.02446 (11)
N1 0.39101 (4) 0.51844 (18) 0.30369 (6) 0.0208 (2)
N2 0.35039 (5) 0.59579 (18) 0.29674 (6) 0.0222 (2)
C1 0.41805 (5) 0.3591 (2) 0.35785 (7) 0.0201 (3)
C2 0.45276 (5) 0.2354 (2) 0.35637 (7) 0.0208 (3)
C3 0.40920 (5) 0.3421 (2) 0.41360 (7) 0.0195 (3)
C4 0.42254 (6) 0.5155 (2) 0.45907 (7) 0.0227 (3)
H4 0.438159 0.639440 0.455003 0.027*
C5 0.41316 (6) 0.5082 (2) 0.51023 (7) 0.0220 (3)
H5 0.422523 0.627803 0.540667 0.026*
C6 0.39028 (5) 0.3292 (2) 0.51781 (7) 0.0191 (3)
C7 0.37776 (5) 0.1560 (2) 0.47236 (7) 0.0211 (3)
H7 0.362819 0.030753 0.477002 0.025*
C8 0.38657 (5) 0.1621 (2) 0.42057 (7) 0.0209 (3)
H8 0.377088 0.042930 0.389929 0.025*
C9 0.38015 (5) 0.3145 (2) 0.57443 (7) 0.0206 (3)
C10 0.38607 (6) 0.5300 (2) 0.60923 (8) 0.0284 (3)
H10A 0.423263 0.582766 0.634072 0.043*
H10B 0.378300 0.513209 0.643923 0.043*
H10C 0.360454 0.632136 0.571982 0.043*
C11 0.32232 (6) 0.2333 (3) 0.53954 (8) 0.0295 (3)
H11A 0.296101 0.325794 0.499032 0.044*
H11B 0.315190 0.234963 0.575128 0.044*
H11C 0.318734 0.087345 0.522185 0.044*
C12 0.42191 (6) 0.1599 (3) 0.63358 (8) 0.0315 (3)
H12A 0.417802 0.019311 0.612496 0.047*
H12B 0.415934 0.147896 0.670170 0.047*
H12C 0.458667 0.213787 0.655851 0.047*
C13 0.32527 (5) 0.7652 (2) 0.24618 (7) 0.0199 (3)
C14 0.35328 (5) 0.8930 (2) 0.22966 (7) 0.0221 (3)
H14 0.390374 0.865296 0.250923 0.027*
C15 0.32646 (6) 1.0606 (2) 0.18195 (8) 0.0252 (3)
H15 0.345643 1.148864 0.171144 0.030*
C16 0.27186 (6) 1.1026 (2) 0.14946 (7) 0.0247 (3)
C17 0.24436 (6) 0.9736 (2) 0.16630 (8) 0.0263 (3)
H17 0.206996 0.999041 0.144008 0.032*
C18 0.27109 (6) 0.8078 (2) 0.21550 (8) 0.0261 (3)
H18 0.252413 0.723936 0.228125 0.031*
C19 0.24335 (7) 1.2860 (3) 0.09755 (9) 0.0361 (4)
H19A 0.204956 1.250175 0.061231 0.054*
H19B 0.260343 1.313112 0.073900 0.054*
H19C 0.246248 1.413799 0.123816 0.054*

(E)-1-[1-(4-tert-Butylphenyl)-2,2-dichloroethenyl]-2-\ (4-methylphenyl)diazene (II) . Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cl1 0.02633 (18) 0.02606 (18) 0.02459 (17) 0.00732 (11) 0.01716 (14) 0.00613 (11)
Cl2 0.02460 (18) 0.03214 (19) 0.02356 (17) 0.00413 (12) 0.01819 (15) 0.00397 (11)
N1 0.0216 (5) 0.0219 (5) 0.0208 (5) 0.0017 (4) 0.0139 (4) 0.0011 (4)
N2 0.0225 (5) 0.0241 (5) 0.0229 (5) 0.0014 (4) 0.0153 (5) 0.0021 (4)
C1 0.0210 (6) 0.0207 (6) 0.0197 (6) −0.0009 (5) 0.0129 (5) 0.0008 (5)
C2 0.0207 (6) 0.0241 (6) 0.0192 (6) 0.0006 (5) 0.0129 (5) 0.0022 (5)
C3 0.0192 (6) 0.0211 (6) 0.0194 (6) 0.0021 (5) 0.0123 (5) 0.0018 (5)
C4 0.0268 (7) 0.0202 (6) 0.0242 (6) −0.0034 (5) 0.0170 (6) −0.0009 (5)
C5 0.0256 (6) 0.0201 (6) 0.0229 (6) −0.0030 (5) 0.0160 (5) −0.0029 (5)
C6 0.0178 (6) 0.0210 (6) 0.0191 (6) 0.0023 (5) 0.0115 (5) 0.0014 (5)
C7 0.0246 (6) 0.0184 (6) 0.0253 (6) −0.0019 (5) 0.0177 (5) −0.0005 (5)
C8 0.0236 (6) 0.0190 (6) 0.0227 (6) −0.0001 (5) 0.0153 (5) −0.0016 (5)
C9 0.0223 (6) 0.0225 (6) 0.0213 (6) −0.0007 (5) 0.0154 (5) −0.0007 (5)
C10 0.0361 (8) 0.0275 (7) 0.0312 (7) −0.0034 (6) 0.0255 (7) −0.0064 (6)
C11 0.0278 (7) 0.0386 (8) 0.0303 (7) −0.0081 (6) 0.0218 (6) −0.0078 (6)
C12 0.0361 (8) 0.0381 (8) 0.0308 (7) 0.0110 (6) 0.0258 (7) 0.0103 (6)
C13 0.0225 (6) 0.0208 (6) 0.0188 (6) 0.0018 (5) 0.0138 (5) 0.0002 (5)
C14 0.0208 (6) 0.0237 (6) 0.0245 (6) 0.0015 (5) 0.0151 (5) 0.0008 (5)
C15 0.0266 (7) 0.0237 (6) 0.0287 (7) 0.0010 (5) 0.0185 (6) 0.0036 (5)
C16 0.0274 (7) 0.0218 (6) 0.0230 (6) 0.0036 (5) 0.0143 (6) 0.0002 (5)
C17 0.0217 (6) 0.0290 (7) 0.0284 (7) 0.0048 (5) 0.0151 (6) 0.0016 (5)
C18 0.0243 (7) 0.0299 (7) 0.0293 (7) 0.0016 (5) 0.0189 (6) 0.0026 (6)
C19 0.0327 (8) 0.0305 (8) 0.0383 (8) 0.0102 (6) 0.0180 (7) 0.0111 (6)

(E)-1-[1-(4-tert-Butylphenyl)-2,2-dichloroethenyl]-2-\ (4-methylphenyl)diazene (II) . Geometric parameters (Å, º)

Cl1—C2 1.7163 (13) C10—H10B 0.9800
Cl2—C2 1.7229 (13) C10—H10C 0.9800
N1—N2 1.2613 (16) C11—H11A 0.9800
N1—C1 1.4202 (16) C11—H11B 0.9800
N2—C13 1.4199 (17) C11—H11C 0.9800
C1—C2 1.3415 (19) C12—H12A 0.9800
C1—C3 1.4871 (17) C12—H12B 0.9800
C3—C8 1.3887 (18) C12—H12C 0.9800
C3—C4 1.3964 (18) C13—C18 1.3921 (19)
C4—C5 1.3898 (19) C13—C14 1.3944 (18)
C4—H4 0.9500 C14—C15 1.3844 (19)
C5—C6 1.3942 (18) C14—H14 0.9500
C5—H5 0.9500 C15—C16 1.394 (2)
C6—C7 1.3995 (18) C15—H15 0.9500
C6—C9 1.5348 (17) C16—C17 1.391 (2)
C7—C8 1.3915 (18) C16—C19 1.5089 (19)
C7—H7 0.9500 C17—C18 1.391 (2)
C8—H8 0.9500 C17—H17 0.9500
C9—C10 1.5303 (18) C18—H18 0.9500
C9—C11 1.5349 (18) C19—H19A 0.9800
C9—C12 1.5353 (19) C19—H19B 0.9800
C10—H10A 0.9800 C19—H19C 0.9800
N2—N1—C1 112.90 (11) H10B—C10—H10C 109.5
N1—N2—C13 113.32 (10) C9—C11—H11A 109.5
C2—C1—N1 115.67 (11) C9—C11—H11B 109.5
C2—C1—C3 123.67 (12) H11A—C11—H11B 109.5
N1—C1—C3 120.60 (11) C9—C11—H11C 109.5
C1—C2—Cl1 123.05 (10) H11A—C11—H11C 109.5
C1—C2—Cl2 123.35 (10) H11B—C11—H11C 109.5
Cl1—C2—Cl2 113.60 (7) C9—C12—H12A 109.5
C8—C3—C4 118.82 (12) C9—C12—H12B 109.5
C8—C3—C1 122.23 (12) H12A—C12—H12B 109.5
C4—C3—C1 118.92 (11) C9—C12—H12C 109.5
C5—C4—C3 120.59 (12) H12A—C12—H12C 109.5
C5—C4—H4 119.7 H12B—C12—H12C 109.5
C3—C4—H4 119.7 C18—C13—C14 120.14 (12)
C4—C5—C6 121.38 (12) C18—C13—N2 117.00 (12)
C4—C5—H5 119.3 C14—C13—N2 122.78 (12)
C6—C5—H5 119.3 C15—C14—C13 119.31 (12)
C5—C6—C7 117.26 (11) C15—C14—H14 120.3
C5—C6—C9 122.75 (11) C13—C14—H14 120.3
C7—C6—C9 119.96 (11) C14—C15—C16 121.31 (13)
C8—C7—C6 121.85 (12) C14—C15—H15 119.3
C8—C7—H7 119.1 C16—C15—H15 119.3
C6—C7—H7 119.1 C17—C16—C15 118.81 (12)
C3—C8—C7 120.09 (12) C17—C16—C19 120.69 (13)
C3—C8—H8 120.0 C15—C16—C19 120.49 (13)
C7—C8—H8 120.0 C18—C17—C16 120.58 (13)
C10—C9—C6 112.52 (11) C18—C17—H17 119.7
C10—C9—C11 107.56 (11) C16—C17—H17 119.7
C6—C9—C11 109.98 (10) C17—C18—C13 119.81 (13)
C10—C9—C12 108.35 (12) C17—C18—H18 120.1
C6—C9—C12 108.31 (10) C13—C18—H18 120.1
C11—C9—C12 110.09 (12) C16—C19—H19A 109.5
C9—C10—H10A 109.5 C16—C19—H19B 109.5
C9—C10—H10B 109.5 H19A—C19—H19B 109.5
H10A—C10—H10B 109.5 C16—C19—H19C 109.5
C9—C10—H10C 109.5 H19A—C19—H19C 109.5
H10A—C10—H10C 109.5 H19B—C19—H19C 109.5
C1—N1—N2—C13 175.97 (11) C6—C7—C8—C3 1.1 (2)
N2—N1—C1—C2 164.44 (12) C5—C6—C9—C10 12.41 (17)
N2—N1—C1—C3 −18.16 (17) C7—C6—C9—C10 −169.31 (12)
N1—C1—C2—Cl1 179.34 (9) C5—C6—C9—C11 132.31 (13)
C3—C1—C2—Cl1 2.03 (19) C7—C6—C9—C11 −49.41 (16)
N1—C1—C2—Cl2 −1.51 (18) C5—C6—C9—C12 −107.35 (14)
C3—C1—C2—Cl2 −178.82 (10) C7—C6—C9—C12 70.94 (15)
C2—C1—C3—C8 −65.16 (18) N1—N2—C13—C18 157.20 (12)
N1—C1—C3—C8 117.65 (14) N1—N2—C13—C14 −26.07 (18)
C2—C1—C3—C4 116.87 (15) C18—C13—C14—C15 −0.7 (2)
N1—C1—C3—C4 −60.31 (17) N2—C13—C14—C15 −177.35 (12)
C8—C3—C4—C5 −0.2 (2) C13—C14—C15—C16 −0.8 (2)
C1—C3—C4—C5 177.83 (12) C14—C15—C16—C17 0.7 (2)
C3—C4—C5—C6 0.0 (2) C14—C15—C16—C19 −179.95 (14)
C4—C5—C6—C7 0.74 (19) C15—C16—C17—C18 0.9 (2)
C4—C5—C6—C9 179.07 (12) C19—C16—C17—C18 −178.43 (14)
C5—C6—C7—C8 −1.27 (19) C16—C17—C18—C13 −2.4 (2)
C9—C6—C7—C8 −179.65 (12) C14—C13—C18—C17 2.3 (2)
C4—C3—C8—C7 −0.30 (19) N2—C13—C18—C17 179.13 (12)
C1—C3—C8—C7 −178.27 (12)

(E)-1-[1-(4-tert-Butylphenyl)-2,2-dichloroethenyl]-2-\ (4-methylphenyl)diazene (II) . Hydrogen-bond geometry (Å, º)

Cg1 is the centroid of the 4-tert-butylphenyl ring (C3–C8).

D—H···A D—H H···A D···A D—H···A
C17—H17···Cg1i 0.95 2.88 3.675 (2) 142

Symmetry code: (i) −x+1/2, y+1/2, −z+1/2.

(E)-1-[1-(4-tert-Butylphenyl)-2,2-dichloroethenyl]-2-(4-methoxyphenyl)diazene (III) . Crystal data

C19H20Cl2N2O F(000) = 760
Mr = 363.27 Dx = 1.323 Mg m3
Monoclinic, P21/c Cu Kα radiation, λ = 1.54184 Å
a = 13.8738 (2) Å Cell parameters from 17727 reflections
b = 12.5946 (2) Å θ = 3.4–77.6°
c = 11.3013 (1) Å µ = 3.26 mm1
β = 112.505 (1)° T = 100 K
V = 1824.35 (4) Å3 Prism, red
Z = 4 0.24 × 0.20 × 0.18 mm

(E)-1-[1-(4-tert-Butylphenyl)-2,2-dichloroethenyl]-2-(4-methoxyphenyl)diazene (III) . Data collection

XtaLAB Synergy, Dualflex, HyPix diffractometer 3603 reflections with I > 2σ(I)
Radiation source: micro-focus sealed X-ray tube Rint = 0.076
φ and ω scans θmax = 77.9°, θmin = 3.5°
Absorption correction: multi-scan (CrysAlisPro; Rigaku OD, 2021) h = −15→17
Tmin = 0.431, Tmax = 0.550 k = −15→15
25894 measured reflections l = −14→14
3843 independent reflections

(E)-1-[1-(4-tert-Butylphenyl)-2,2-dichloroethenyl]-2-(4-methoxyphenyl)diazene (III) . Refinement

Refinement on F2 0 restraints
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.043 H-atom parameters constrained
wR(F2) = 0.118 w = 1/[σ2(Fo2) + (0.0831P)2 + 0.4008P] where P = (Fo2 + 2Fc2)/3
S = 1.06 (Δ/σ)max < 0.001
3843 reflections Δρmax = 0.53 e Å3
221 parameters Δρmin = −0.33 e Å3

(E)-1-[1-(4-tert-Butylphenyl)-2,2-dichloroethenyl]-2-(4-methoxyphenyl)diazene (III) . Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

(E)-1-[1-(4-tert-Butylphenyl)-2,2-dichloroethenyl]-2-(4-methoxyphenyl)diazene (III) . Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.20324 (11) 0.34882 (11) 0.22693 (13) 0.0187 (3)
C2 0.14902 (11) 0.30352 (11) 0.11245 (13) 0.0202 (3)
C3 0.19934 (10) 0.46520 (11) 0.24859 (12) 0.0176 (3)
C4 0.13412 (10) 0.50501 (11) 0.30620 (13) 0.0189 (3)
H4 0.093607 0.457391 0.333412 0.023*
C5 0.12770 (10) 0.61349 (11) 0.32425 (13) 0.0188 (3)
H5 0.081387 0.638876 0.361713 0.023*
C6 0.18772 (10) 0.68598 (11) 0.28860 (12) 0.0170 (3)
C7 0.25514 (11) 0.64453 (12) 0.23454 (14) 0.0213 (3)
H7 0.298483 0.691647 0.211415 0.026*
C8 0.26040 (11) 0.53661 (12) 0.21381 (13) 0.0214 (3)
H8 0.306116 0.511166 0.175511 0.026*
C9 0.18118 (11) 0.80655 (11) 0.30498 (13) 0.0205 (3)
C10 0.09974 (13) 0.83569 (12) 0.35970 (16) 0.0268 (3)
H10A 0.030833 0.811599 0.301035 0.040*
H10B 0.098759 0.912885 0.370051 0.040*
H10C 0.117338 0.801296 0.443148 0.040*
C11 0.28773 (13) 0.84892 (13) 0.39614 (16) 0.0282 (3)
H11A 0.305696 0.817148 0.481074 0.042*
H11B 0.284263 0.926299 0.402705 0.042*
H11C 0.341121 0.830301 0.362727 0.042*
C12 0.15139 (14) 0.86056 (13) 0.17359 (15) 0.0298 (3)
H12A 0.205161 0.845923 0.139406 0.045*
H12B 0.145827 0.937393 0.183169 0.045*
H12C 0.084214 0.832769 0.114538 0.045*
C13 0.37438 (10) 0.24915 (11) 0.52562 (13) 0.0184 (3)
C14 0.39042 (11) 0.14261 (11) 0.50182 (13) 0.0193 (3)
H14 0.360543 0.115106 0.417218 0.023*
C15 0.44961 (11) 0.07799 (11) 0.60150 (13) 0.0198 (3)
H15 0.461097 0.006053 0.585247 0.024*
C16 0.49311 (10) 0.11785 (11) 0.72709 (13) 0.0186 (3)
C17 0.47838 (11) 0.22386 (11) 0.75109 (13) 0.0199 (3)
H17 0.508107 0.251380 0.835695 0.024*
C18 0.41964 (11) 0.28891 (11) 0.64970 (13) 0.0206 (3)
H18 0.410262 0.361533 0.665345 0.025*
C19 0.59249 (13) 0.08155 (13) 0.94780 (14) 0.0275 (3)
H19A 0.641917 0.139312 0.955751 0.041*
H19B 0.629032 0.022336 1.003028 0.041*
H19C 0.536817 0.107057 0.973833 0.041*
Cl1 0.07489 (3) 0.37510 (3) −0.01999 (3) 0.02558 (13)
Cl2 0.14590 (3) 0.16875 (3) 0.08679 (3) 0.02464 (13)
N1 0.26151 (9) 0.27761 (9) 0.32441 (11) 0.0193 (2)
N2 0.31434 (9) 0.32201 (9) 0.42989 (11) 0.0195 (2)
O1 0.54829 (8) 0.04642 (8) 0.81760 (10) 0.0246 (2)

(E)-1-[1-(4-tert-Butylphenyl)-2,2-dichloroethenyl]-2-(4-methoxyphenyl)diazene (III) . Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0212 (6) 0.0180 (6) 0.0175 (6) 0.0014 (5) 0.0081 (5) 0.0008 (5)
C2 0.0227 (7) 0.0178 (6) 0.0191 (6) −0.0003 (5) 0.0070 (5) 0.0001 (5)
C3 0.0202 (6) 0.0168 (6) 0.0139 (6) 0.0012 (5) 0.0042 (5) 0.0002 (5)
C4 0.0200 (6) 0.0193 (7) 0.0168 (6) −0.0019 (5) 0.0064 (5) 0.0009 (5)
C5 0.0192 (6) 0.0207 (7) 0.0168 (6) 0.0004 (5) 0.0072 (5) −0.0002 (5)
C6 0.0188 (6) 0.0167 (6) 0.0129 (6) 0.0002 (5) 0.0034 (5) 0.0002 (5)
C7 0.0237 (7) 0.0200 (7) 0.0227 (7) −0.0028 (5) 0.0116 (6) 0.0008 (5)
C8 0.0240 (7) 0.0217 (7) 0.0219 (6) 0.0017 (5) 0.0126 (5) 0.0008 (5)
C9 0.0253 (7) 0.0156 (6) 0.0193 (6) −0.0009 (5) 0.0071 (5) −0.0007 (5)
C10 0.0318 (8) 0.0185 (7) 0.0316 (8) 0.0042 (6) 0.0137 (6) −0.0015 (6)
C11 0.0293 (8) 0.0225 (7) 0.0301 (8) −0.0055 (6) 0.0084 (6) −0.0064 (6)
C12 0.0457 (9) 0.0192 (7) 0.0230 (7) 0.0005 (6) 0.0114 (7) 0.0031 (6)
C13 0.0204 (6) 0.0172 (6) 0.0171 (6) −0.0002 (5) 0.0065 (5) 0.0010 (5)
C14 0.0219 (7) 0.0182 (6) 0.0179 (6) −0.0018 (5) 0.0079 (5) −0.0020 (5)
C15 0.0227 (6) 0.0157 (6) 0.0202 (6) −0.0001 (5) 0.0073 (5) −0.0005 (5)
C16 0.0181 (6) 0.0180 (7) 0.0185 (6) 0.0003 (5) 0.0056 (5) 0.0030 (5)
C17 0.0218 (6) 0.0193 (7) 0.0169 (6) −0.0010 (5) 0.0054 (5) −0.0012 (5)
C18 0.0242 (7) 0.0165 (6) 0.0198 (6) −0.0001 (5) 0.0069 (5) −0.0009 (5)
C19 0.0326 (8) 0.0238 (7) 0.0183 (7) 0.0041 (6) 0.0009 (6) 0.0018 (5)
Cl1 0.0307 (2) 0.0239 (2) 0.01655 (19) 0.00034 (12) 0.00291 (15) 0.00222 (11)
Cl2 0.0306 (2) 0.0173 (2) 0.0225 (2) −0.00119 (12) 0.00626 (15) −0.00440 (11)
N1 0.0219 (6) 0.0179 (6) 0.0168 (5) 0.0010 (4) 0.0059 (4) 0.0004 (4)
N2 0.0225 (6) 0.0178 (6) 0.0170 (5) 0.0010 (4) 0.0064 (5) 0.0004 (4)
O1 0.0301 (5) 0.0187 (5) 0.0190 (5) 0.0039 (4) 0.0027 (4) 0.0019 (4)

(E)-1-[1-(4-tert-Butylphenyl)-2,2-dichloroethenyl]-2-(4-methoxyphenyl)diazene (III) . Geometric parameters (Å, º)

C1—C2 1.349 (2) C11—H11B 0.9800
C1—N1 1.4106 (18) C11—H11C 0.9800
C1—C3 1.4904 (19) C12—H12A 0.9800
C2—Cl1 1.7125 (14) C12—H12B 0.9800
C2—Cl2 1.7196 (15) C12—H12C 0.9800
C3—C8 1.3913 (19) C13—C18 1.3920 (19)
C3—C4 1.3947 (19) C13—C14 1.4029 (19)
C4—C5 1.389 (2) C13—N2 1.4200 (18)
C4—H4 0.9500 C14—C15 1.377 (2)
C5—C6 1.3951 (19) C14—H14 0.9500
C5—H5 0.9500 C15—C16 1.405 (2)
C6—C7 1.3993 (19) C15—H15 0.9500
C6—C9 1.5366 (19) C16—O1 1.3573 (17)
C7—C8 1.386 (2) C16—C17 1.393 (2)
C7—H7 0.9500 C17—C18 1.3905 (19)
C8—H8 0.9500 C17—H17 0.9500
C9—C10 1.526 (2) C18—H18 0.9500
C9—C11 1.538 (2) C19—O1 1.4305 (18)
C9—C12 1.539 (2) C19—H19A 0.9800
C10—H10A 0.9800 C19—H19B 0.9800
C10—H10B 0.9800 C19—H19C 0.9800
C10—H10C 0.9800 N1—N2 1.2658 (17)
C11—H11A 0.9800
C2—C1—N1 114.99 (12) H11A—C11—H11B 109.5
C2—C1—C3 122.10 (13) C9—C11—H11C 109.5
N1—C1—C3 122.89 (12) H11A—C11—H11C 109.5
C1—C2—Cl1 122.91 (11) H11B—C11—H11C 109.5
C1—C2—Cl2 123.23 (11) C9—C12—H12A 109.5
Cl1—C2—Cl2 113.85 (8) C9—C12—H12B 109.5
C8—C3—C4 118.26 (13) H12A—C12—H12B 109.5
C8—C3—C1 121.67 (12) C9—C12—H12C 109.5
C4—C3—C1 120.07 (12) H12A—C12—H12C 109.5
C5—C4—C3 120.77 (12) H12B—C12—H12C 109.5
C5—C4—H4 119.6 C18—C13—C14 119.59 (13)
C3—C4—H4 119.6 C18—C13—N2 116.23 (12)
C4—C5—C6 121.48 (12) C14—C13—N2 124.19 (12)
C4—C5—H5 119.3 C15—C14—C13 119.80 (13)
C6—C5—H5 119.3 C15—C14—H14 120.1
C5—C6—C7 117.03 (13) C13—C14—H14 120.1
C5—C6—C9 122.86 (12) C14—C15—C16 120.40 (13)
C7—C6—C9 120.10 (12) C14—C15—H15 119.8
C8—C7—C6 121.80 (13) C16—C15—H15 119.8
C8—C7—H7 119.1 O1—C16—C17 124.82 (13)
C6—C7—H7 119.1 O1—C16—C15 115.13 (12)
C7—C8—C3 120.60 (13) C17—C16—C15 120.05 (12)
C7—C8—H8 119.7 C18—C17—C16 119.19 (12)
C3—C8—H8 119.7 C18—C17—H17 120.4
C10—C9—C6 111.93 (12) C16—C17—H17 120.4
C10—C9—C11 108.42 (12) C17—C18—C13 120.95 (13)
C6—C9—C11 109.73 (12) C17—C18—H18 119.5
C10—C9—C12 108.52 (13) C13—C18—H18 119.5
C6—C9—C12 109.09 (11) O1—C19—H19A 109.5
C11—C9—C12 109.10 (13) O1—C19—H19B 109.5
C9—C10—H10A 109.5 H19A—C19—H19B 109.5
C9—C10—H10B 109.5 O1—C19—H19C 109.5
H10A—C10—H10B 109.5 H19A—C19—H19C 109.5
C9—C10—H10C 109.5 H19B—C19—H19C 109.5
H10A—C10—H10C 109.5 N2—N1—C1 114.00 (12)
H10B—C10—H10C 109.5 N1—N2—C13 113.04 (11)
C9—C11—H11A 109.5 C16—O1—C19 117.79 (11)
C9—C11—H11B 109.5
N1—C1—C2—Cl1 −178.80 (10) C7—C6—C9—C11 −62.26 (17)
C3—C1—C2—Cl1 2.57 (19) C5—C6—C9—C12 −122.02 (15)
N1—C1—C2—Cl2 2.48 (18) C7—C6—C9—C12 57.21 (17)
C3—C1—C2—Cl2 −176.14 (10) C18—C13—C14—C15 0.8 (2)
C2—C1—C3—C8 −82.01 (18) N2—C13—C14—C15 −179.66 (12)
N1—C1—C3—C8 99.47 (16) C13—C14—C15—C16 0.7 (2)
C2—C1—C3—C4 98.64 (16) C14—C15—C16—O1 178.87 (12)
N1—C1—C3—C4 −79.88 (17) C14—C15—C16—C17 −1.4 (2)
C8—C3—C4—C5 2.2 (2) O1—C16—C17—C18 −179.72 (13)
C1—C3—C4—C5 −178.43 (12) C15—C16—C17—C18 0.5 (2)
C3—C4—C5—C6 −1.6 (2) C16—C17—C18—C13 1.0 (2)
C4—C5—C6—C7 −0.37 (19) C14—C13—C18—C17 −1.7 (2)
C4—C5—C6—C9 178.89 (12) N2—C13—C18—C17 178.79 (12)
C5—C6—C7—C8 1.7 (2) C2—C1—N1—N2 177.92 (12)
C9—C6—C7—C8 −177.56 (13) C3—C1—N1—N2 −3.46 (18)
C6—C7—C8—C3 −1.1 (2) C1—N1—N2—C13 −178.51 (11)
C4—C3—C8—C7 −0.9 (2) C18—C13—N2—N1 −168.92 (12)
C1—C3—C8—C7 179.78 (13) C14—C13—N2—N1 11.54 (18)
C5—C6—C9—C10 −1.92 (18) C17—C16—O1—C19 1.7 (2)
C7—C6—C9—C10 177.32 (13) C15—C16—O1—C19 −178.58 (13)
C5—C6—C9—C11 118.51 (14)

(E)-1-[1-(4-tert-Butylphenyl)-2,2-dichloroethenyl]-2-(4-methoxyphenyl)diazene (III) . Hydrogen-bond geometry (Å, º)

Cg1 is the centroid of the 4-tert-butylphenyl ring (C3–C8).

D—H···A D—H H···A D···A D—H···A
C18—H18···O1i 0.95 2.39 3.2753 (17) 155
C19—H19B···Cg1ii 0.98 2.87 3.4276 (17) 117

Symmetry codes: (i) −x+1, y+1/2, −z+3/2; (ii) −x+1, y−1/2, −z+3/2.

(E)-1-[1-(4-tert-Butylphenyl)-2,2-dichloroethenyl]-2-\ (3-methylphenyl)δiazene (IV) . Crystal data

C19H20Cl2N2 Z = 4
Mr = 347.27 F(000) = 728
Triclinic, P1 Dx = 1.295 Mg m3
a = 9.8352 (2) Å Cu Kα radiation, λ = 1.54184 Å
b = 11.8401 (2) Å Cell parameters from 36250 reflections
c = 16.3964 (2) Å θ = 2.7–77.7°
α = 98.397 (1)° µ = 3.27 mm1
β = 96.189 (1)° T = 100 K
γ = 107.149 (1)° Prism, red
V = 1781.77 (5) Å3 0.25 × 0.22 × 0.18 mm

(E)-1-[1-(4-tert-Butylphenyl)-2,2-dichloroethenyl]-2-\ (3-methylphenyl)δiazene (IV) . Data collection

XtaLAB Synergy, Dualflex, HyPix diffractometer 6948 reflections with I > 2σ(I)
Radiation source: micro-focus sealed X-ray tube Rint = 0.071
φ and ω scans θmax = 77.9°, θmin = 2.8°
Absorption correction: multi-scan (CrysAlisPro; Rigaku OD, 2021) h = −12→12
Tmin = 0.328, Tmax = 0.550 k = −14→12
53607 measured reflections l = −20→20
7515 independent reflections

(E)-1-[1-(4-tert-Butylphenyl)-2,2-dichloroethenyl]-2-\ (3-methylphenyl)δiazene (IV) . Refinement

Refinement on F2 0 restraints
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.058 H-atom parameters constrained
wR(F2) = 0.171 w = 1/[σ2(Fo2) + (0.1247P)2 + 0.6991P] where P = (Fo2 + 2Fc2)/3
S = 1.04 (Δ/σ)max = 0.001
7515 reflections Δρmax = 0.93 e Å3
423 parameters Δρmin = −0.63 e Å3

(E)-1-[1-(4-tert-Butylphenyl)-2,2-dichloroethenyl]-2-\ (3-methylphenyl)δiazene (IV) . Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

(E)-1-[1-(4-tert-Butylphenyl)-2,2-dichloroethenyl]-2-\ (3-methylphenyl)δiazene (IV) . Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.61178 (18) 0.35073 (16) 0.16342 (12) 0.0249 (4)
C2 0.6208 (2) 0.27286 (17) 0.09726 (12) 0.0286 (4)
C3 0.58777 (18) 0.31800 (15) 0.24597 (11) 0.0230 (3)
C4 0.46666 (19) 0.32673 (16) 0.28085 (12) 0.0265 (4)
H4 0.393723 0.347551 0.249429 0.032*
C5 0.45226 (19) 0.30530 (16) 0.36066 (12) 0.0265 (4)
H5 0.369067 0.311600 0.383040 0.032*
C6 0.55770 (18) 0.27437 (15) 0.40967 (11) 0.0239 (3)
C7 0.67636 (19) 0.26365 (16) 0.37312 (12) 0.0255 (4)
H7 0.748785 0.241541 0.403958 0.031*
C8 0.69106 (18) 0.28451 (16) 0.29288 (12) 0.0255 (4)
H8 0.772654 0.275817 0.269671 0.031*
C9 0.5398 (2) 0.25476 (16) 0.49849 (12) 0.0272 (4)
C10 0.5205 (2) 0.36724 (18) 0.54994 (13) 0.0333 (4)
H10A 0.603703 0.437581 0.550108 0.050*
H10B 0.512989 0.355418 0.607413 0.050*
H10C 0.432478 0.380217 0.525009 0.050*
C11 0.4060 (2) 0.14560 (18) 0.49507 (13) 0.0344 (4)
H11A 0.320435 0.160683 0.468623 0.052*
H11B 0.394079 0.132610 0.551906 0.052*
H11C 0.418147 0.073943 0.462518 0.052*
C12 0.6708 (2) 0.2312 (2) 0.54356 (13) 0.0343 (4)
H12A 0.681949 0.157211 0.513836 0.051*
H12B 0.656545 0.222374 0.600823 0.051*
H12C 0.757630 0.298939 0.544841 0.051*
C13 0.67080 (18) 0.66543 (17) 0.20121 (12) 0.0267 (4)
C14 0.67993 (19) 0.69894 (17) 0.12348 (12) 0.0273 (4)
H14 0.659272 0.638881 0.074597 0.033*
C15 0.7192 (2) 0.81996 (18) 0.11699 (13) 0.0300 (4)
C16 0.7485 (2) 0.90601 (17) 0.18984 (13) 0.0313 (4)
H16 0.776188 0.988838 0.186220 0.038*
C17 0.7382 (2) 0.87368 (18) 0.26740 (13) 0.0313 (4)
H17 0.757830 0.933887 0.316095 0.038*
C18 0.69929 (19) 0.75318 (17) 0.27368 (13) 0.0284 (4)
H18 0.691972 0.730266 0.326601 0.034*
C19 0.7313 (3) 0.85617 (19) 0.03339 (14) 0.0372 (5)
H19A 0.681665 0.915895 0.027531 0.056*
H19B 0.686864 0.785258 −0.010902 0.056*
H19C 0.833165 0.891001 0.028971 0.056*
C20 0.91894 (19) 0.62019 (16) 0.82034 (12) 0.0257 (4)
C21 0.9535 (2) 0.69058 (16) 0.89645 (12) 0.0290 (4)
C22 0.87259 (19) 0.48653 (16) 0.80936 (11) 0.0237 (3)
C23 0.72883 (19) 0.41702 (17) 0.79251 (12) 0.0278 (4)
H23 0.656334 0.454890 0.787674 0.033*
C24 0.68937 (18) 0.29242 (16) 0.78259 (12) 0.0261 (4)
H24 0.589993 0.246660 0.771607 0.031*
C25 0.79213 (18) 0.23299 (15) 0.78837 (11) 0.0228 (3)
C26 0.93658 (19) 0.30439 (17) 0.80626 (12) 0.0286 (4)
H26 1.009196 0.266638 0.811020 0.034*
C27 0.97708 (19) 0.42862 (17) 0.81727 (13) 0.0292 (4)
H27 1.076283 0.474732 0.830261 0.035*
C28 0.75234 (19) 0.09595 (16) 0.77649 (11) 0.0253 (4)
C29 0.5908 (2) 0.03328 (16) 0.74827 (13) 0.0306 (4)
H29A 0.537672 0.059455 0.790546 0.046*
H29B 0.570431 −0.054050 0.741081 0.046*
H29C 0.560719 0.054255 0.695097 0.046*
C30 0.8320 (2) 0.05048 (18) 0.70974 (14) 0.0341 (4)
H30A 0.808999 0.077558 0.657793 0.051*
H30B 0.801615 −0.037641 0.699604 0.051*
H30C 0.936143 0.082550 0.729276 0.051*
C31 0.7981 (2) 0.06146 (18) 0.85985 (14) 0.0369 (5)
H31A 0.902082 0.099535 0.877774 0.055*
H31B 0.774929 −0.026150 0.852401 0.055*
H31C 0.746315 0.089054 0.902386 0.055*
C32 0.92807 (19) 0.68230 (17) 0.61640 (12) 0.0254 (4)
C33 0.90203 (19) 0.61415 (17) 0.53664 (12) 0.0279 (4)
H33 0.868253 0.528857 0.529137 0.034*
C34 0.9247 (2) 0.66907 (18) 0.46696 (12) 0.0293 (4)
C35 0.9724 (2) 0.79377 (18) 0.48010 (13) 0.0310 (4)
H35 0.988008 0.832852 0.433702 0.037*
C36 0.9977 (2) 0.86290 (18) 0.55985 (13) 0.0328 (4)
H36 1.029797 0.948185 0.567020 0.039*
C37 0.9767 (2) 0.80869 (17) 0.62886 (12) 0.0293 (4)
H37 0.994786 0.855806 0.683334 0.035*
C38 0.8987 (3) 0.5940 (2) 0.38145 (13) 0.0393 (5)
H38A 0.955999 0.538846 0.381276 0.059*
H38B 0.926960 0.646511 0.341058 0.059*
H38C 0.796204 0.547539 0.366089 0.059*
Cl1 0.58942 (6) 0.12256 (4) 0.09905 (3) 0.03558 (15)
Cl2 0.66274 (6) 0.31202 (5) 0.00425 (3) 0.03661 (15)
Cl3 0.93882 (6) 0.63467 (4) 0.98652 (3) 0.03543 (15)
Cl4 1.01859 (6) 0.84553 (4) 0.91208 (3) 0.03931 (16)
N1 0.63865 (16) 0.47049 (14) 0.15050 (10) 0.0266 (3)
N2 0.63619 (16) 0.54441 (14) 0.21407 (10) 0.0260 (3)
N3 0.93773 (17) 0.68198 (14) 0.75331 (10) 0.0269 (3)
N4 0.90357 (16) 0.61543 (14) 0.68230 (10) 0.0264 (3)

(E)-1-[1-(4-tert-Butylphenyl)-2,2-dichloroethenyl]-2-\ (3-methylphenyl)δiazene (IV) . Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0242 (8) 0.0224 (8) 0.0308 (9) 0.0099 (6) 0.0048 (6) 0.0082 (7)
C2 0.0314 (9) 0.0264 (9) 0.0314 (9) 0.0123 (7) 0.0071 (7) 0.0083 (7)
C3 0.0257 (8) 0.0165 (7) 0.0286 (9) 0.0091 (6) 0.0043 (6) 0.0050 (6)
C4 0.0261 (8) 0.0235 (9) 0.0346 (9) 0.0135 (7) 0.0045 (7) 0.0085 (7)
C5 0.0254 (8) 0.0246 (9) 0.0339 (10) 0.0126 (7) 0.0073 (7) 0.0075 (7)
C6 0.0260 (8) 0.0180 (8) 0.0289 (9) 0.0088 (6) 0.0043 (7) 0.0047 (6)
C7 0.0256 (8) 0.0229 (8) 0.0308 (9) 0.0113 (6) 0.0035 (7) 0.0075 (7)
C8 0.0232 (8) 0.0231 (8) 0.0339 (9) 0.0116 (6) 0.0058 (7) 0.0067 (7)
C9 0.0302 (9) 0.0251 (9) 0.0286 (9) 0.0109 (7) 0.0061 (7) 0.0065 (7)
C10 0.0399 (10) 0.0312 (10) 0.0331 (10) 0.0164 (8) 0.0101 (8) 0.0048 (8)
C11 0.0365 (10) 0.0300 (10) 0.0355 (10) 0.0056 (8) 0.0084 (8) 0.0102 (8)
C12 0.0386 (10) 0.0387 (11) 0.0311 (10) 0.0184 (8) 0.0056 (8) 0.0107 (8)
C13 0.0223 (8) 0.0256 (9) 0.0354 (10) 0.0103 (7) 0.0055 (7) 0.0093 (7)
C14 0.0268 (8) 0.0248 (9) 0.0329 (9) 0.0121 (7) 0.0042 (7) 0.0057 (7)
C15 0.0276 (8) 0.0309 (10) 0.0346 (10) 0.0117 (7) 0.0048 (7) 0.0109 (8)
C16 0.0284 (9) 0.0236 (9) 0.0430 (11) 0.0100 (7) 0.0040 (8) 0.0075 (8)
C17 0.0306 (9) 0.0262 (9) 0.0367 (10) 0.0113 (7) 0.0027 (7) 0.0013 (7)
C18 0.0267 (8) 0.0266 (9) 0.0344 (10) 0.0118 (7) 0.0044 (7) 0.0064 (7)
C19 0.0501 (12) 0.0270 (10) 0.0386 (11) 0.0146 (9) 0.0089 (9) 0.0129 (8)
C20 0.0255 (8) 0.0235 (9) 0.0303 (9) 0.0093 (7) 0.0070 (7) 0.0070 (7)
C21 0.0361 (9) 0.0206 (8) 0.0327 (10) 0.0097 (7) 0.0094 (7) 0.0082 (7)
C22 0.0280 (8) 0.0214 (8) 0.0237 (8) 0.0101 (7) 0.0059 (6) 0.0048 (6)
C23 0.0270 (8) 0.0233 (9) 0.0364 (10) 0.0137 (7) 0.0045 (7) 0.0048 (7)
C24 0.0214 (8) 0.0232 (9) 0.0344 (9) 0.0086 (6) 0.0033 (7) 0.0053 (7)
C25 0.0269 (8) 0.0221 (8) 0.0224 (8) 0.0117 (7) 0.0042 (6) 0.0048 (6)
C26 0.0254 (8) 0.0271 (9) 0.0371 (10) 0.0145 (7) 0.0039 (7) 0.0056 (7)
C27 0.0217 (8) 0.0260 (9) 0.0398 (10) 0.0076 (7) 0.0048 (7) 0.0059 (7)
C28 0.0287 (8) 0.0212 (8) 0.0287 (9) 0.0120 (7) 0.0035 (7) 0.0052 (6)
C29 0.0303 (9) 0.0197 (8) 0.0417 (11) 0.0071 (7) 0.0063 (8) 0.0059 (7)
C30 0.0329 (9) 0.0263 (9) 0.0426 (11) 0.0127 (7) 0.0069 (8) −0.0026 (8)
C31 0.0492 (12) 0.0264 (10) 0.0375 (11) 0.0158 (8) −0.0009 (9) 0.0112 (8)
C32 0.0246 (8) 0.0269 (9) 0.0293 (9) 0.0130 (7) 0.0054 (7) 0.0086 (7)
C33 0.0278 (8) 0.0237 (9) 0.0336 (10) 0.0113 (7) 0.0020 (7) 0.0050 (7)
C34 0.0298 (9) 0.0309 (10) 0.0300 (9) 0.0159 (7) 0.0008 (7) 0.0041 (7)
C35 0.0352 (9) 0.0308 (10) 0.0324 (10) 0.0168 (8) 0.0052 (7) 0.0100 (7)
C36 0.0411 (10) 0.0254 (9) 0.0351 (10) 0.0147 (8) 0.0052 (8) 0.0078 (8)
C37 0.0340 (9) 0.0263 (9) 0.0315 (9) 0.0154 (7) 0.0052 (7) 0.0053 (7)
C38 0.0563 (13) 0.0344 (11) 0.0305 (10) 0.0231 (10) −0.0010 (9) 0.0040 (8)
Cl1 0.0505 (3) 0.0238 (3) 0.0367 (3) 0.0175 (2) 0.0099 (2) 0.00496 (19)
Cl2 0.0483 (3) 0.0372 (3) 0.0302 (3) 0.0181 (2) 0.0131 (2) 0.01026 (19)
Cl3 0.0526 (3) 0.0272 (3) 0.0286 (3) 0.0135 (2) 0.0108 (2) 0.00704 (18)
Cl4 0.0583 (3) 0.0196 (2) 0.0377 (3) 0.0078 (2) 0.0127 (2) 0.00383 (18)
N1 0.0252 (7) 0.0249 (8) 0.0330 (8) 0.0104 (6) 0.0055 (6) 0.0099 (6)
N2 0.0246 (7) 0.0228 (7) 0.0335 (8) 0.0108 (6) 0.0052 (6) 0.0072 (6)
N3 0.0290 (7) 0.0252 (8) 0.0299 (8) 0.0114 (6) 0.0074 (6) 0.0079 (6)
N4 0.0253 (7) 0.0259 (8) 0.0311 (8) 0.0116 (6) 0.0044 (6) 0.0079 (6)

(E)-1-[1-(4-tert-Butylphenyl)-2,2-dichloroethenyl]-2-\ (3-methylphenyl)δiazene (IV) . Geometric parameters (Å, º)

C1—C2 1.346 (3) C20—N3 1.406 (2)
C1—N1 1.416 (2) C20—C22 1.489 (2)
C1—C3 1.485 (2) C21—Cl3 1.7074 (19)
C2—Cl2 1.715 (2) C21—Cl4 1.7252 (19)
C2—Cl1 1.7193 (19) C22—C23 1.384 (3)
C3—C8 1.392 (2) C22—C27 1.399 (2)
C3—C4 1.400 (2) C23—C24 1.390 (3)
C4—C5 1.383 (3) C23—H23 0.9500
C4—H4 0.9500 C24—C25 1.394 (2)
C5—C6 1.409 (2) C24—H24 0.9500
C5—H5 0.9500 C25—C26 1.396 (3)
C6—C7 1.398 (2) C25—C28 1.530 (2)
C6—C9 1.528 (2) C26—C27 1.384 (3)
C7—C8 1.389 (3) C26—H26 0.9500
C7—H7 0.9500 C27—H27 0.9500
C8—H8 0.9500 C28—C29 1.528 (2)
C9—C12 1.533 (3) C28—C30 1.537 (3)
C9—C11 1.538 (3) C28—C31 1.541 (3)
C9—C10 1.542 (3) C29—H29A 0.9800
C10—H10A 0.9800 C29—H29B 0.9800
C10—H10B 0.9800 C29—H29C 0.9800
C10—H10C 0.9800 C30—H30A 0.9800
C11—H11A 0.9800 C30—H30B 0.9800
C11—H11B 0.9800 C30—H30C 0.9800
C11—H11C 0.9800 C31—H31A 0.9800
C12—H12A 0.9800 C31—H31B 0.9800
C12—H12B 0.9800 C31—H31C 0.9800
C12—H12C 0.9800 C32—C33 1.387 (3)
C13—C14 1.393 (3) C32—C37 1.406 (3)
C13—C18 1.402 (3) C32—N4 1.430 (2)
C13—N2 1.425 (2) C33—C34 1.402 (3)
C14—C15 1.393 (3) C33—H33 0.9500
C14—H14 0.9500 C34—C35 1.387 (3)
C15—C16 1.395 (3) C34—C38 1.499 (3)
C15—C19 1.501 (3) C35—C36 1.392 (3)
C16—C17 1.386 (3) C35—H35 0.9500
C16—H16 0.9500 C36—C37 1.385 (3)
C17—C18 1.386 (3) C36—H36 0.9500
C17—H17 0.9500 C37—H37 0.9500
C18—H18 0.9500 C38—H38A 0.9800
C19—H19A 0.9800 C38—H38B 0.9800
C19—H19B 0.9800 C38—H38C 0.9800
C19—H19C 0.9800 N1—N2 1.267 (2)
C20—C21 1.344 (3) N3—N4 1.257 (2)
C2—C1—N1 114.51 (16) N3—C20—C22 123.14 (16)
C2—C1—C3 123.57 (16) C20—C21—Cl3 123.03 (15)
N1—C1—C3 121.73 (16) C20—C21—Cl4 123.05 (15)
C1—C2—Cl2 124.11 (15) Cl3—C21—Cl4 113.91 (11)
C1—C2—Cl1 122.10 (15) C23—C22—C27 118.47 (16)
Cl2—C2—Cl1 113.79 (11) C23—C22—C20 122.24 (16)
C8—C3—C4 118.29 (17) C27—C22—C20 119.28 (16)
C8—C3—C1 120.08 (15) C22—C23—C24 120.73 (16)
C4—C3—C1 121.52 (15) C22—C23—H23 119.6
C5—C4—C3 120.57 (16) C24—C23—H23 119.6
C5—C4—H4 119.7 C23—C24—C25 121.58 (16)
C3—C4—H4 119.7 C23—C24—H24 119.2
C4—C5—C6 121.76 (16) C25—C24—H24 119.2
C4—C5—H5 119.1 C24—C25—C26 117.00 (16)
C6—C5—H5 119.1 C24—C25—C28 122.87 (15)
C7—C6—C5 116.83 (16) C26—C25—C28 120.13 (15)
C7—C6—C9 123.00 (15) C27—C26—C25 121.91 (16)
C5—C6—C9 120.17 (16) C27—C26—H26 119.0
C8—C7—C6 121.65 (16) C25—C26—H26 119.0
C8—C7—H7 119.2 C26—C27—C22 120.28 (16)
C6—C7—H7 119.2 C26—C27—H27 119.9
C7—C8—C3 120.87 (16) C22—C27—H27 119.9
C7—C8—H8 119.6 C29—C28—C25 112.29 (14)
C3—C8—H8 119.6 C29—C28—C30 107.92 (15)
C6—C9—C12 112.17 (15) C25—C28—C30 109.58 (15)
C6—C9—C11 109.16 (15) C29—C28—C31 108.82 (16)
C12—C9—C11 108.39 (16) C25—C28—C31 109.01 (15)
C6—C9—C10 109.85 (15) C30—C28—C31 109.17 (16)
C12—C9—C10 107.88 (16) C28—C29—H29A 109.5
C11—C9—C10 109.34 (16) C28—C29—H29B 109.5
C9—C10—H10A 109.5 H29A—C29—H29B 109.5
C9—C10—H10B 109.5 C28—C29—H29C 109.5
H10A—C10—H10B 109.5 H29A—C29—H29C 109.5
C9—C10—H10C 109.5 H29B—C29—H29C 109.5
H10A—C10—H10C 109.5 C28—C30—H30A 109.5
H10B—C10—H10C 109.5 C28—C30—H30B 109.5
C9—C11—H11A 109.5 H30A—C30—H30B 109.5
C9—C11—H11B 109.5 C28—C30—H30C 109.5
H11A—C11—H11B 109.5 H30A—C30—H30C 109.5
C9—C11—H11C 109.5 H30B—C30—H30C 109.5
H11A—C11—H11C 109.5 C28—C31—H31A 109.5
H11B—C11—H11C 109.5 C28—C31—H31B 109.5
C9—C12—H12A 109.5 H31A—C31—H31B 109.5
C9—C12—H12B 109.5 C28—C31—H31C 109.5
H12A—C12—H12B 109.5 H31A—C31—H31C 109.5
C9—C12—H12C 109.5 H31B—C31—H31C 109.5
H12A—C12—H12C 109.5 C33—C32—C37 120.41 (17)
H12B—C12—H12C 109.5 C33—C32—N4 115.61 (16)
C14—C13—C18 120.31 (17) C37—C32—N4 123.98 (17)
C14—C13—N2 124.27 (17) C32—C33—C34 121.09 (17)
C18—C13—N2 115.41 (17) C32—C33—H33 119.5
C15—C14—C13 120.41 (18) C34—C33—H33 119.5
C15—C14—H14 119.8 C35—C34—C33 117.91 (18)
C13—C14—H14 119.8 C35—C34—C38 121.73 (18)
C14—C15—C16 118.46 (18) C33—C34—C38 120.36 (18)
C14—C15—C19 120.42 (18) C34—C35—C36 121.39 (18)
C16—C15—C19 121.12 (18) C34—C35—H35 119.3
C17—C16—C15 121.63 (18) C36—C35—H35 119.3
C17—C16—H16 119.2 C37—C36—C35 120.73 (18)
C15—C16—H16 119.2 C37—C36—H36 119.6
C16—C17—C18 119.78 (18) C35—C36—H36 119.6
C16—C17—H17 120.1 C36—C37—C32 118.46 (18)
C18—C17—H17 120.1 C36—C37—H37 120.8
C17—C18—C13 119.40 (18) C32—C37—H37 120.8
C17—C18—H18 120.3 C34—C38—H38A 109.5
C13—C18—H18 120.3 C34—C38—H38B 109.5
C15—C19—H19A 109.5 H38A—C38—H38B 109.5
C15—C19—H19B 109.5 C34—C38—H38C 109.5
H19A—C19—H19B 109.5 H38A—C38—H38C 109.5
C15—C19—H19C 109.5 H38B—C38—H38C 109.5
H19A—C19—H19C 109.5 N2—N1—C1 114.26 (15)
H19B—C19—H19C 109.5 N1—N2—C13 113.47 (16)
C21—C20—N3 115.13 (16) N4—N3—C20 114.67 (16)
C21—C20—C22 121.64 (16) N3—N4—C32 112.53 (15)
N1—C1—C2—Cl2 0.6 (2) N3—C20—C22—C23 −86.1 (2)
C3—C1—C2—Cl2 −174.56 (13) C21—C20—C22—C27 −81.6 (2)
N1—C1—C2—Cl1 −178.98 (13) N3—C20—C22—C27 94.7 (2)
C3—C1—C2—Cl1 5.9 (3) C27—C22—C23—C24 −0.8 (3)
C2—C1—C3—C8 64.6 (2) C20—C22—C23—C24 179.97 (17)
N1—C1—C3—C8 −110.21 (19) C22—C23—C24—C25 −0.6 (3)
C2—C1—C3—C4 −119.3 (2) C23—C24—C25—C26 1.3 (3)
N1—C1—C3—C4 65.9 (2) C23—C24—C25—C28 −179.07 (17)
C8—C3—C4—C5 1.5 (3) C24—C25—C26—C27 −0.5 (3)
C1—C3—C4—C5 −174.67 (16) C28—C25—C26—C27 179.86 (17)
C3—C4—C5—C6 0.1 (3) C25—C26—C27—C22 −1.0 (3)
C4—C5—C6—C7 −1.4 (3) C23—C22—C27—C26 1.6 (3)
C4—C5—C6—C9 178.32 (16) C20—C22—C27—C26 −179.16 (17)
C5—C6—C7—C8 1.1 (3) C24—C25—C28—C29 6.5 (2)
C9—C6—C7—C8 −178.62 (16) C26—C25—C28—C29 −173.87 (17)
C6—C7—C8—C3 0.5 (3) C24—C25—C28—C30 126.39 (19)
C4—C3—C8—C7 −1.8 (3) C26—C25—C28—C30 −54.0 (2)
C1—C3—C8—C7 174.42 (16) C24—C25—C28—C31 −114.2 (2)
C7—C6—C9—C12 4.0 (2) C26—C25—C28—C31 65.5 (2)
C5—C6—C9—C12 −175.72 (17) C37—C32—C33—C34 0.6 (3)
C7—C6—C9—C11 −116.16 (19) N4—C32—C33—C34 −178.73 (16)
C5—C6—C9—C11 64.1 (2) C32—C33—C34—C35 −0.8 (3)
C7—C6—C9—C10 123.96 (18) C32—C33—C34—C38 178.83 (18)
C5—C6—C9—C10 −55.7 (2) C33—C34—C35—C36 0.3 (3)
C18—C13—C14—C15 0.8 (3) C38—C34—C35—C36 −179.32 (19)
N2—C13—C14—C15 −177.87 (16) C34—C35—C36—C37 0.4 (3)
C13—C14—C15—C16 −0.2 (3) C35—C36—C37—C32 −0.5 (3)
C13—C14—C15—C19 179.04 (17) C33—C32—C37—C36 0.0 (3)
C14—C15—C16—C17 −0.6 (3) N4—C32—C37—C36 179.35 (17)
C19—C15—C16—C17 −179.74 (18) C2—C1—N1—N2 −177.09 (16)
C15—C16—C17—C18 0.6 (3) C3—C1—N1—N2 −1.8 (2)
C16—C17—C18—C13 0.0 (3) C1—N1—N2—C13 176.92 (14)
C14—C13—C18—C17 −0.7 (3) C14—C13—N2—N1 11.6 (2)
N2—C13—C18—C17 178.04 (16) C18—C13—N2—N1 −167.08 (15)
N3—C20—C21—Cl3 179.92 (13) C21—C20—N3—N4 −179.22 (16)
C22—C20—C21—Cl3 −3.5 (3) C22—C20—N3—N4 4.3 (2)
N3—C20—C21—Cl4 −0.8 (2) C20—N3—N4—C32 −178.50 (14)
C22—C20—C21—Cl4 175.73 (13) C33—C32—N4—N3 175.76 (15)
C21—C20—C22—C23 97.6 (2) C37—C32—N4—N3 −3.6 (2)

(E)-1-[1-(4-tert-Butylphenyl)-2,2-dichloroethenyl]-2-\ (3-methylphenyl)δiazene (IV) . Hydrogen-bond geometry (Å, º)

Cg1 and Cg2 are the centroids of the 4-tert-butylphenyl rings [(IVA: C3–C8 and (IVB): C22–C27, respectively]. Cg4 is the centroid of the 3-methylphenyl ring (C32–C37) of molecule (IVB).

D—H···A D—H H···A D···A D—H···A
C7—H7···Cg4i 0.95 2.91 3.768 (2) 151
C24—H24···Cg2ii 0.95 2.97 3.824 (2) 150
C29—H29B···Cg1iii 0.98 2.78 3.706 (2) 157

Symmetry codes: (i) −x+2, −y+1, −z+1; (ii) −x+1, −y+1, −z+1; (iii) −x+1, −y, −z+1.

Funding Statement

This work was performed under the support of the Science Development Foundation under the President of the Republic of Azerbaijan (grant No. EIF-BGM-4- RFTF-1/2017–21/13/4).

References

  1. Akkurt, M., Shikhaliyev, N. Q., Suleymanova, G. T., Babayeva, G. V., Mammadova, G. Z., Niyazova, A. A., Shikhaliyeva, I. M. & Toze, F. A. A. (2019). Acta Cryst. E75, 1199–1204. [DOI] [PMC free article] [PubMed]
  2. Akkurt, M., Yıldırım, S. Ö., Shikhaliyev, N. Q., Mammadova, N. A., Niyazova, A. A., Khrustalev, V. N. & Bhattarai, A. (2022). Acta Cryst. E78, 732–736. [DOI] [PMC free article] [PubMed]
  3. Atioğlu, Z., Akkurt, M., Shikhaliyev, N. Q., Mammadova, N. A., Babayeva, G. V., Khrustalev, V. N. & Bhattarai, A. (2022a). Acta Cryst. E78, 530–535. [DOI] [PMC free article] [PubMed]
  4. Atioğlu, Z., Akkurt, M., Shikhaliyev, N. Q., Mammadova, N. A., Babayeva, G. V., Khrustalev, V. N. & Bhattarai, A. (2022b). Acta Cryst. E78, 804–808. [DOI] [PMC free article] [PubMed]
  5. Atioğlu, Z., Akkurt, M., Shikhaliyev, N. Q., Suleymanova, G. T., Babayeva, G. V., Gurbanova, N. V., Mammadova, G. Z. & Mlowe, S. (2020). Acta Cryst. E76, 1291–1295. [DOI] [PMC free article] [PubMed]
  6. Atioğlu, Z., Akkurt, M., Shikhaliyev, N. Q., Suleymanova, G. T., Bagirova, K. N. & Toze, F. A. A. (2019). Acta Cryst. E75, 237–241. [DOI] [PMC free article] [PubMed]
  7. Çelikesir, S. T., Akkurt, M., Shikhaliyev, N. Q., Mammadova, N. A., Suleymanova, G. T., Khrustalev, V. N. & Bhattarai, A. (2022). Acta Cryst. E78, 404–408. [DOI] [PMC free article] [PubMed]
  8. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  9. Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
  10. Maharramov, A. M., Shikhaliyev, N. Q., Suleymanova, G. T., Gurbanov, A. V., Babayeva, G. V., Mammadova, G. Z., Zubkov, F. I., Nenajdenko, V. G., Mahmudov, K. T. & Pombeiro, A. J. L. (2018). Dyes Pigments, 159, 135–141.
  11. Nenajdenko, V. G., Shikhaliyev, N. G., Maharramov, A. M., Atakishiyeva, G. T., Niyazova, A. A., Mammadova, N. A., Novikov, A. S., Buslov, I. V., Khrustalev, V. N. & Tskhovrebov, A. G. (2022). Molecules, 27, 5110. [DOI] [PMC free article] [PubMed]
  12. Nenajdenko, V. G., Shikhaliyev, N. G., Maharramov, A. M., Bagirova, K. N., Suleymanova, G. T., Novikov, A. S., Khrustalev, V. N. & Tskhovrebov, A. G. (2020). Molecules, 25, 5013. [DOI] [PMC free article] [PubMed]
  13. Özkaraca, K., Akkurt, M., Shikhaliyev, N. Q., Askerova, U. F., Suleymanova, G. T., Mammadova, G. Z. & Shadrack, D. M. (2020a). Acta Cryst. E76, 1251–1254. [DOI] [PMC free article] [PubMed]
  14. Özkaraca, K., Akkurt, M., Shikhaliyev, N. Q., Askerova, U. F., Suleymanova, G. T., Shikhaliyeva, I. M. & Bhattarai, A. (2020b). Acta Cryst. E76, 811–815. [DOI] [PMC free article] [PubMed]
  15. Rigaku OD (2021). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.
  16. Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.
  17. Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.
  18. Shikhaliyev, N. G., Maharramov, A. M., Bagirova, K. N., Suleymanova, G. T., Tsyrenova, B. D., Nenajdenko, V. G., Novikov, A. S., Khrustalev, V. N. & Tskhovrebov, A. G. (2021a). Mendeleev Commun. 31, 191–193.
  19. Shikhaliyev, N. G., Maharramov, A. M., Suleymanova, G. T., Babayeva, G. V., Mammadova, G. Z., Shikhaliyeva, I. M. & Nenajdenko, V. G. (2021b). Arkivoc, part iii, 67–75.
  20. Shikhaliyev, N. G., Maharramov, A. M., Suleymanova, G. T., Babazade, A. A., Nenajdenko, V. G., Khrustalev, V. N., Novikov, A. S. & Tskhovrebov, A. G. (2021f). Mendeleev Commun. 31, 677–679.
  21. Shikhaliyev, N. G., Suleymanova, G. T., İsrayilova, A. A., Ganbarov, K. G., Babayeva, G. V., Garazadeh, K. A. & Nenajdenko, V. G. (2019b). Arkivoc, part vi, 64–73.
  22. Shikhaliyev, N. Q., Ahmadova, N. E., Gurbanov, A. V., Maharramov, A. M., Mammadova, G. Z., Nenajdenko, V. G., Zubkov, F. I., Mahmudov, K. T. & Pombeiro, A. J. L. (2018). Dyes Pigments, 150, 377–381.
  23. Shikhaliyev, N. Q., Atioğlu, Z., Akkurt, M., Ahmadova, N. E., Askerov, R. K. & Bhattarai, A. (2021c). Acta Cryst. E77, 814–818. [DOI] [PMC free article] [PubMed]
  24. Shikhaliyev, N. Q., Atioğlu, Z., Akkurt, M., Qacar, A. M., Askerov, R. K. & Bhattarai, A. (2021d). Acta Cryst. E77, 965–970. [DOI] [PMC free article] [PubMed]
  25. Shikhaliyev, N. Q., Çelikesir, S. T., Akkurt, M., Bagirova, K. N., Suleymanova, G. T. & Toze, F. A. A. (2019c). Acta Cryst. E75, 465–469. [DOI] [PMC free article] [PubMed]
  26. Shikhaliyev, N. Q., Kuznetsov, M. L., Maharramov, A. M., Gurbanov, A. V., Ahmadova, N. E., Nenajdenko, V. G., Mahmudov, K. T. & Pombeiro, A. J. L. (2019a). CrystEngComm, 21, 5032–5038.
  27. Shikhaliyev, N. Q., Özkaraca, K., Akkurt, M., Bagirova, X. N., Suleymanova, G. T., Abdulov, M. S. & Mlowe, S. (2021e). Acta Cryst. E77, 1158–1163. [DOI] [PMC free article] [PubMed]
  28. Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006–1011. [DOI] [PMC free article] [PubMed]
  29. Spek, A. L. (2020). Acta Cryst. E76, 1–11. [DOI] [PMC free article] [PubMed]
  30. Tsyrenova, B. D., Khrustalev, V. N. & Nenajdenko, V. G. (2021). Org. Biomol. Chem. 19, 8140–8152. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, II, III, IV, global. DOI: 10.1107/S205698902300511X/wm5684sup1.cif

e-79-00637-sup1.cif (4.1MB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S205698902300511X/wm5684Isup2.hkl

e-79-00637-Isup2.hkl (283.1KB, hkl)

Structure factors: contains datablock(s) II. DOI: 10.1107/S205698902300511X/wm5684IIsup3.hkl

e-79-00637-IIsup3.hkl (303.8KB, hkl)

Structure factors: contains datablock(s) III. DOI: 10.1107/S205698902300511X/wm5684IIIsup4.hkl

e-79-00637-IIIsup4.hkl (306.5KB, hkl)

Structure factors: contains datablock(s) IV. DOI: 10.1107/S205698902300511X/wm5684IVsup5.hkl

e-79-00637-IVsup5.hkl (596.8KB, hkl)

CCDC references: 2268431, 2268430, 2268429, 2268428

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES