Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2023 Jun 6;79(Pt 7):610–613. doi: 10.1107/S2056989023004668

Crystal structure and Hirshfeld-surface analysis of a monoclinic polymorph of 2-amino-5-chloro­benzo­phenone oxime at 90 K

Doreswamy Geetha a, Channappa N Kavitha b, Thayamma R Divakara c, Yeriyur B Basavaraju a, Hemmige S Yathirajan a,*, Sean Parkin d
Editor: B Therriene
PMCID: PMC10439431  PMID: 37601585

The synthesis and crystal structure of a monoclinic polymorph of 2-amino-5-chloro­benzo­phenone oxime, C13H11ClN2O, are presented along with a comparison to a previously determined triclinic form.

Keywords: crystal structure, benzo­phenone oxime, polymorph, Hirshfeld surface

Abstract

The synthesis and crystal structure of a monoclinic polymorph of 2-amino-5-chloro­benzo­phenone oxime, C13H11ClN2O, are presented. The mol­ecular conformation results from twisting of the phenyl and 2-amino-5-chloro benzene rings attached to the oxime group, which subtend a dihedral angle of 80.53 (4)°. In the crystal, centrosymmetric dimers are formed as a result of pairs of strong O—H⋯N hydrogen bonds. A comparison is made to a previously known triclinic polymorph, including differences in atom–atom contacts obtained via a Hirshfeld-surface analysis.

1. Chemical context

2-Amino-5-chloro­benzo­phenone is an ecologically friendly cross-linking agent. Benzo­phenone and related compounds have been reported to act as anti-allergic, anti-inflammatory, anti-asthmatic, and anti-anaphylactic agents (Evans et al., 1987; Wiesner et al., 2002; Sieron et al., 2004). Benzo­phenone derivatives are widely used in sunscreen lotions, offering UV-A and UV-B protection (Deleu et al., 1992). 2-Amino-5-chloro­benzo­phenone is used to produce inter­mediates for the synthesis of oxazolam drugs and inter­mediates for psychotherapeutic agents, such as chloro­diazepoxide and diazepam (Sternbach & Reeder, 1961a ,b ). 2-Amino­benzo­phenone and its derivatives have importance because of their applications in heterocyclic synthesis and medicines (Walsh, 1980) and are also used as anti-mitotic agents (Liou et al., 2002). The growth and characterization of 2-amino-5-chloro­benzo­phenone single crystals was reported by Mohamed et al. (2007). Synthesis, herbicidal evaluation and structure–activity relationships of some benzo­phenone oxime ether derivatives was reported by Ma et al. (2015). The synthesis, physicochemical, and bio­logical evaluation of 2-amino-5-chloro­benzo­phenone derivatives as potent skeletal muscle relaxants was reported by Singh et al. (2015). Details of synthetic methodologies and the pharmacological significance of 2-amino­benzo­phenones as versatile building blocks was published by Chaudhary et al. (2018). The reactivity of oximes for diverse methodologies and synthetic applications was recently reported by Rykaczewski et al. (2022). In view of the general importance of benzo­phenone derivatives and those of 2-amino-5-chloro­benzo­phenone in particular, this paper reports the 90 K crystal structure and Hirshfeld-surface studies of a monoclinic form of 2-amino-5-chloro­benzo­phenone oxime, C13H11ClN2O, mon-2A-5CBO. A triclinic polymorph was recently published as a CSD communication (refcode REZSIB) by Lanzilotto, Housecroft et al. (2018). Some comparisons between the two crystal structures are presented. 1.

2. Structural commentary

The overall conformation of the mon-2A-5CBO mol­ecule (Fig. 1) is determined by torsion angles about the C6—C7 and C7—C8 bonds that connect the chloro­aniline and phenyl rings to the oxime carbon, C7. These are held in check by an intra-mol­ecular hydrogen bond, N1—H1NA⋯O1 [dD⋯A = 2.8875 (19) Å, Table 1]. These torsion angles result in a dihedral angle between the two rings of 80.53 (4)°. The conformation defining torsion and dihedral angles are gathered in Table 2 along with those of the triclinic polymorph, REZSIB (Lanzilotto, Housecroft et al., 2018). The conformations of the 2A-5CBO mol­ecules in the two polymorphs are quite similar, as shown by the overlay plot in Fig. 2. The r.m.s. deviation obtained from a weighted least-squares fit of all non-hydrogen atoms using OFIT in SHELXTL-XP (Sheldrick, 2008) is only 0.1315 Å, with the largest deviation being 0.267 Å for C12.

Figure 1.

Figure 1

An ellipsoid plot (50% probability) of mon-2A-5CBO. The intra­molecular N—H⋯O hydrogen bond is shown as a dashed line.

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1NA⋯O1 0.91 (2) 2.23 (2) 2.8875 (19) 128.7 (16)
O1—H1O⋯N2i 0.95 (2) 1.84 (2) 2.7411 (16) 156.4 (19)

Symmetry code: (i) Inline graphic .

Table 2. Comparison of conformation-defining torsion and dihedral angles (°) in mon-2A-5CBO and CSD entry REZSIB.

  mon-2A-5CBO REZSIB a,b
Torsion angle    
N1—C1—C6—C7 −1.3 (2) −5.6
C1—C6—C7—N2 60.8 (2) 56.7
C6—C7—N2—O1 0.5 (2) 7.8
Dihedral angle    
C1–C6/C8–C13 80.53 (4) 75.82

Notes: (a) The numbering scheme in REZSIB is different from mon-2A-5CBO; (b) Values from Mercury (Macrae et al., 2020), therefore there are no SUs.

Figure 2.

Figure 2

A least-squares fit overlay of mon-2A-5CBO and the triclinic polymorph REZSIB (red).

3. Supra­molecular features

The main supra­molecular constructs in the mon-2A-5CBO crystal structure are Inline graphic (6) centrosymmetric dimers that result from pairs (O1—H1O⋯N2inv and O1inv—H1O inv⋯N2, inv = 1 − x, 1 − y, 1 − z) of strong hydrogen bonds [dD⋯A = 2.7411 (16) Å, Table 1]. These are shown as dashed lines in Fig. 3 along with a representation of the Hirshfeld surface, as generated by CrystalExplorer (Spackman et al., 2021), on which the hydrogen bonds are responsible for the prominent red spots. Similar dimer motifs are present in REZSIB. The most striking difference in packing between the two polymorphs is that REZSIB exhibits slip-stacked π–π overlap [inter­planar separation = 3.340 (2) Å, centroid–centroid distance = 3.897 (2) Å] of inversion-related (1 − x, −y, 1 − z) chloro­aniline rings, whereas mon-2A-5CBO does not. Hirshfeld surface 2D-fingerprint plots for mon-2A-5CBO are shown in Fig. 4 and the differences in contacts between the polymorphs are summarized in Table 3.

Figure 3.

Figure 3

A partial packing plot of mon-2A-5CBO viewed approximately down the b-axis showing the Hirshfeld surface (left) and the Inline graphic (6) centrosymmetric dimer formed by pairs of O—H⋯N hydrogen bonds (dashed lines and prominent red spots).

Figure 4.

Figure 4

Hirshfeld surface two-dimensional fingerprint plots of mon-2A-5CBO showing (a) H⋯H, (b) H⋯C, (c) H⋯Cl, (d) H⋯N, (e) H⋯O, and (f) C⋯Cl close contacts.

Table 3. Atom–atom contact coverages (%) for polymorphs mon-2A-5CBO and REZSIB.

Atom contacts a mon-2A-5CBO REZSIB
H⋯H 38.6 43.6
H⋯C 27.1 17.6
H⋯Cl 15.8 13.6
H⋯N 7.8 8.8
H⋯O 5.1 6.4
C⋯Cl 4.4 6.0
C⋯C 0.0 3.9

Note: (a) Includes reciprocal contacts. All other contact percentages are negligible.

4. Database survey

A survey of the Cambridge Structural Database (CSD: v5.43 including all updates through November 2022; Groom et al., 2016) returned 5507 hits for a search fragment consisting of unsubstituted benzo­phenone. A search using benzo­phenone oxime as the probe, however, returned only 35 entries. Of these, ten have a nitro­gen-bound functional group at the ortho-position of one of the benzene rings, while six have ‘any halogen’ attached at one of the meta-positions. In only two structures is this halogen a chlorine atom: YIFCIC (Lanzilotto, Prescimone et al., 2018), C15H11Cl2FN2O2, systematic name 2-chloro-N-{4-chloro-2-[(2-fluoro­phen­yl)(hy­droxy­imino)­meth­yl]phen­yl}acetamide and REZSIB (Lanzilotto, Housecroft et al., 2018), the triclinic (P Inline graphic ) polymorph of the monoclinic (P21/n) 2A-5CBO crystal structure described herein.

Some other related crystal structures include 2-amino-5-chloro­benzo­phenone as monoclinic (NUVFAL; Vasco-Mendez et al., 1996) and triclinic (NUVFAL02; Javed et al., 2018) polymorphs, benzo­phenone oxime (XULKUK; Sharutin et al., 2002), and 2-benzo­yloxy-5-methyl­benzo­phenone (OCAMOV; Sieron et al., 2004).

5. Synthesis and crystallization

The synthesis of 2A-5CBO (Fig. 5) was by a modification of Beckmann’s conversion of benzo­phenone to benzo­phenone oxime (Beckmann, 1886). In a 100 ml round-bottom flask fitted with a magnetic stirrer was placed a mixture of 100 mmol (23.2 g) of 2-amino-5-chloro­benzo­phenone, 120 mmol (7 g) of hydroxyl­amine hydro­chloride in 10 ml of ethanol. To this stirred mixture, 0.5 g of sodium hydroxide pellets was added in small portions. When the reaction became vigorous, the flask was placed in an ice bath. A condenser was attached to the flask and the mixture was refluxed for 5 minutes on a steam bath. The solution was cooled and poured into a beaker containing 5 ml of hydro­chloric acid and crushed ice. This was stirred until a precipitate formed. After filtering the precipitate with suction and washing with cold distilled water, the product was spread out on filter paper and air dried. The yield was 87%. X-ray quality crystals were obtained from methanol by slow evaporation (m.p.: 390–393 K).

Figure 5.

Figure 5

A general reaction scheme for the formation of 2A-5CBO.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 4. All hydrogen atoms were found in difference-Fourier maps. Those bound to carbon were subsequently included in the refinement using a riding model, with constrained distances fixed at 0.95 Å and U iso(H) values set to 1.2U eq of the attached atom. The amine and oxime hydrogen atoms were refined freely.

Table 4. Experimental details.

Crystal data
Chemical formula C13H11ClN2O
M r 246.69
Crystal system, space group Monoclinic, P21/n
Temperature (K) 90
a, b, c (Å) 12.8264 (3), 5.5423 (1), 17.4082 (4)
β (°) 109.522 (1)
V3) 1166.37 (4)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.31
Crystal size (mm) 0.30 × 0.24 × 0.02
 
Data collection
Diffractometer Bruker D8 Venture dual source
Absorption correction Multi-scan (SADABS; Krause et al., 2015)
T min, T max 0.924, 0.971
No. of measured, independent and observed [I > 2σ(I)] reflections 26003, 2680, 2294
R int 0.042
(sin θ/λ)max−1) 0.650
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.033, 0.083, 1.05
No. of reflections 2680
No. of parameters 166
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.32, −0.27

Computer programs: APEX3 (Bruker, 2016), SHELXT (Sheldrick, 2015a ), SHELXL2019/2 (Sheldrick, 2015b ), XP in SHELXTL (Sheldrick, 2008), SHELX (Sheldrick, 2008) and publCIF (Westrip, 2010)’.

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S2056989023004668/tx2069sup1.cif

e-79-00610-sup1.cif (917.3KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989023004668/tx2069Isup2.hkl

e-79-00610-Isup2.hkl (214.5KB, hkl)

Supporting information file. DOI: 10.1107/S2056989023004668/tx2069Isup3.cml

CCDC reference: 2265648

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

DG is grateful to DOS in Chemistry, University of Mysore for providing research facilities. HSY thanks UGC for a BSR Faculty fellowship for three years.

supplementary crystallographic information

Crystal data

C13H11ClN2O F(000) = 512
Mr = 246.69 Dx = 1.405 Mg m3
Monoclinic, P21/n Mo Kα radiation, λ = 0.71073 Å
a = 12.8264 (3) Å Cell parameters from 9975 reflections
b = 5.5423 (1) Å θ = 2.5–27.5°
c = 17.4082 (4) Å µ = 0.31 mm1
β = 109.522 (1)° T = 90 K
V = 1166.37 (4) Å3 Semi-regular block, pale yellow
Z = 4 0.30 × 0.24 × 0.02 mm

Data collection

Bruker D8 Venture dual source diffractometer 2680 independent reflections
Radiation source: microsource 2294 reflections with I > 2σ(I)
Detector resolution: 7.41 pixels mm-1 Rint = 0.042
φ and ω scans θmax = 27.5°, θmin = 2.4°
Absorption correction: multi-scan (SADABS; Krause et al., 2015) h = −16→16
Tmin = 0.924, Tmax = 0.971 k = −7→7
26003 measured reflections l = −22→22

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.033 Hydrogen site location: mixed
wR(F2) = 0.083 H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0334P)2 + 0.6832P] where P = (Fo2 + 2Fc2)/3
2680 reflections (Δ/σ)max = 0.001
166 parameters Δρmax = 0.32 e Å3
0 restraints Δρmin = −0.27 e Å3

Special details

Experimental. The crystal was mounted using polyisobutene oil on the tip of a fine glass fibre, which was fastened in a copper mounting pin with electrical solder. It was placed directly into the cold gas stream of a liquid-nitrogen based cryostat (Hope, 1994; Parkin & Hope, 1998). Diffraction data were collected with the crystal at 90K, which is standard practice in this laboratory for the majority of flash-cooled crystals.
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Cl1 0.63274 (3) 0.54249 (7) 0.94134 (2) 0.03072 (12)
O1 0.58250 (8) 0.6496 (2) 0.57328 (6) 0.0249 (2)
H1O 0.5830 (17) 0.572 (4) 0.5245 (14) 0.055 (6)*
N1 0.58120 (12) 1.1196 (3) 0.64451 (9) 0.0292 (3)
H1NA 0.5690 (15) 1.042 (4) 0.5962 (12) 0.037 (5)*
H1NB 0.6301 (17) 1.238 (4) 0.6523 (12) 0.045 (6)*
N2 0.47023 (9) 0.6201 (2) 0.56650 (7) 0.0198 (3)
C1 0.59550 (11) 0.9785 (3) 0.71326 (9) 0.0203 (3)
C2 0.66473 (11) 1.0555 (3) 0.79012 (9) 0.0235 (3)
H2 0.705557 1.200830 0.794290 0.028*
C3 0.67496 (11) 0.9256 (3) 0.85971 (9) 0.0223 (3)
H3 0.720922 0.983038 0.911337 0.027*
C4 0.61783 (11) 0.7109 (3) 0.85389 (8) 0.0197 (3)
C5 0.54751 (10) 0.6311 (3) 0.77926 (8) 0.0172 (3)
H5 0.507391 0.485190 0.776017 0.021*
C6 0.53533 (10) 0.7638 (3) 0.70891 (8) 0.0165 (3)
C7 0.45154 (10) 0.6753 (2) 0.63216 (8) 0.0165 (3)
C8 0.33591 (10) 0.6438 (2) 0.63101 (7) 0.0156 (3)
C9 0.29101 (11) 0.8182 (3) 0.66846 (8) 0.0189 (3)
H9 0.335250 0.950014 0.695888 0.023*
C10 0.18202 (11) 0.8003 (3) 0.66587 (9) 0.0226 (3)
H10 0.151395 0.920969 0.690712 0.027*
C11 0.11782 (11) 0.6062 (3) 0.62701 (9) 0.0229 (3)
H11 0.043042 0.594435 0.624967 0.028*
C12 0.16249 (12) 0.4292 (3) 0.59117 (9) 0.0226 (3)
H12 0.118668 0.294962 0.565375 0.027*
C13 0.27141 (11) 0.4477 (3) 0.59285 (8) 0.0189 (3)
H13 0.301768 0.326585 0.567964 0.023*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cl1 0.0381 (2) 0.0335 (2) 0.01636 (17) −0.00308 (17) 0.00354 (14) 0.00155 (15)
O1 0.0139 (5) 0.0399 (7) 0.0236 (5) −0.0007 (4) 0.0097 (4) −0.0040 (5)
N1 0.0323 (7) 0.0244 (7) 0.0325 (7) −0.0064 (6) 0.0128 (6) 0.0057 (6)
N2 0.0127 (5) 0.0282 (7) 0.0205 (6) 0.0008 (5) 0.0081 (4) 0.0002 (5)
C1 0.0172 (6) 0.0191 (7) 0.0269 (7) 0.0009 (5) 0.0105 (5) 0.0007 (6)
C2 0.0178 (6) 0.0199 (7) 0.0342 (8) −0.0042 (6) 0.0107 (6) −0.0058 (6)
C3 0.0149 (6) 0.0262 (8) 0.0247 (7) −0.0012 (5) 0.0051 (5) −0.0081 (6)
C4 0.0177 (6) 0.0235 (7) 0.0176 (6) 0.0017 (5) 0.0057 (5) −0.0005 (5)
C5 0.0142 (6) 0.0178 (7) 0.0200 (6) −0.0010 (5) 0.0063 (5) −0.0023 (5)
C6 0.0132 (6) 0.0182 (7) 0.0192 (6) 0.0009 (5) 0.0069 (5) −0.0019 (5)
C7 0.0158 (6) 0.0167 (7) 0.0172 (6) 0.0018 (5) 0.0060 (5) 0.0020 (5)
C8 0.0153 (6) 0.0188 (7) 0.0135 (6) 0.0016 (5) 0.0057 (5) 0.0029 (5)
C9 0.0194 (6) 0.0191 (7) 0.0191 (6) −0.0007 (5) 0.0077 (5) −0.0010 (5)
C10 0.0209 (7) 0.0246 (8) 0.0260 (7) 0.0029 (6) 0.0128 (6) −0.0001 (6)
C11 0.0158 (6) 0.0295 (8) 0.0248 (7) −0.0003 (6) 0.0086 (5) 0.0053 (6)
C12 0.0211 (7) 0.0240 (8) 0.0216 (7) −0.0059 (6) 0.0055 (5) 0.0002 (6)
C13 0.0207 (6) 0.0197 (7) 0.0171 (6) 0.0003 (5) 0.0073 (5) 0.0001 (5)

Geometric parameters (Å, º)

Cl1—C4 1.7409 (14) C5—H5 0.9500
O1—N2 1.4145 (14) C6—C7 1.4903 (18)
O1—H1O 0.95 (2) C7—C8 1.4869 (17)
N1—C1 1.3894 (19) C8—C13 1.3927 (19)
N1—H1NA 0.91 (2) C8—C9 1.3937 (19)
N1—H1NB 0.89 (2) C9—C10 1.3871 (18)
N2—C7 1.2809 (17) C9—H9 0.9500
C1—C2 1.402 (2) C10—C11 1.386 (2)
C1—C6 1.4065 (19) C10—H10 0.9500
C2—C3 1.377 (2) C11—C12 1.385 (2)
C2—H2 0.9500 C11—H11 0.9500
C3—C4 1.383 (2) C12—C13 1.3913 (19)
C3—H3 0.9500 C12—H12 0.9500
C4—C5 1.3834 (18) C13—H13 0.9500
C5—C6 1.3920 (19)
N2—O1—H1O 100.5 (13) C1—C6—C7 123.03 (12)
C1—N1—H1NA 117.7 (13) N2—C7—C8 116.31 (12)
C1—N1—H1NB 113.8 (13) N2—C7—C6 125.78 (12)
H1NA—N1—H1NB 112.5 (17) C8—C7—C6 117.90 (11)
C7—N2—O1 112.76 (11) C13—C8—C9 119.48 (12)
N1—C1—C2 120.65 (14) C13—C8—C7 121.94 (12)
N1—C1—C6 121.17 (13) C9—C8—C7 118.58 (12)
C2—C1—C6 118.03 (13) C10—C9—C8 120.30 (13)
C3—C2—C1 121.59 (13) C10—C9—H9 119.9
C3—C2—H2 119.2 C8—C9—H9 119.9
C1—C2—H2 119.2 C11—C10—C9 119.97 (13)
C2—C3—C4 119.53 (13) C11—C10—H10 120.0
C2—C3—H3 120.2 C9—C10—H10 120.0
C4—C3—H3 120.2 C12—C11—C10 120.11 (13)
C3—C4—C5 120.47 (13) C12—C11—H11 119.9
C3—C4—Cl1 119.77 (11) C10—C11—H11 119.9
C5—C4—Cl1 119.76 (11) C11—C12—C13 120.14 (13)
C4—C5—C6 120.23 (13) C11—C12—H12 119.9
C4—C5—H5 119.9 C13—C12—H12 119.9
C6—C5—H5 119.9 C12—C13—C8 119.98 (13)
C5—C6—C1 120.10 (12) C12—C13—H13 120.0
C5—C6—C7 116.75 (12) C8—C13—H13 120.0
N1—C1—C2—C3 176.07 (13) C1—C6—C7—N2 60.8 (2)
C6—C1—C2—C3 0.5 (2) C5—C6—C7—C8 55.87 (17)
C1—C2—C3—C4 1.5 (2) C1—C6—C7—C8 −120.15 (14)
C2—C3—C4—C5 −2.5 (2) N2—C7—C8—C13 39.36 (18)
C2—C3—C4—Cl1 178.60 (11) C6—C7—C8—C13 −139.76 (13)
C3—C4—C5—C6 1.4 (2) N2—C7—C8—C9 −139.76 (13)
Cl1—C4—C5—C6 −179.73 (10) C6—C7—C8—C9 41.12 (17)
C4—C5—C6—C1 0.7 (2) C13—C8—C9—C10 −1.7 (2)
C4—C5—C6—C7 −175.41 (12) C7—C8—C9—C10 177.41 (12)
N1—C1—C6—C5 −177.17 (13) C8—C9—C10—C11 1.0 (2)
C2—C1—C6—C5 −1.63 (19) C9—C10—C11—C12 0.4 (2)
N1—C1—C6—C7 −1.3 (2) C10—C11—C12—C13 −1.1 (2)
C2—C1—C6—C7 174.25 (12) C11—C12—C13—C8 0.3 (2)
O1—N2—C7—C8 −178.54 (11) C9—C8—C13—C12 1.05 (19)
O1—N2—C7—C6 0.5 (2) C7—C8—C13—C12 −178.07 (12)
C5—C6—C7—N2 −123.16 (15)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N1—H1NA···O1 0.91 (2) 2.23 (2) 2.8875 (19) 128.7 (16)
O1—H1O···N2i 0.95 (2) 1.84 (2) 2.7411 (16) 156.4 (19)

Symmetry code: (i) −x+1, −y+1, −z+1.

Funding Statement

Funding for this research was provided by: National Science Foundation, Directorate for Mathematical and Physical Sciences (award No. CHE-1625732 to SP).

References

  1. Beckmann, E. (1886). Ber. Dtsch. Chem. Ges. 19, 988–993.
  2. Bruker (2016). APEX3. Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Chaudhary, S., Sharda, S., Prasad, D. N., Kumar, S. & Singh, R. K. (2018). Asia. J. Org. Med. Chem. 3, 107–115.
  4. Deleu, H., Maes, M. & Roelandts, R. (1992). Photodermatol. Photoimmunol. Photomed. 9, 29–32. [PubMed]
  5. Evans, D., Cracknell, M. E., Saunders, J. C., Smith, C. E., Williamson, W. R. N., Dawson, W. & Sweatman, W. J. F. (1987). J. Med. Chem. 30, 1321–1327. [DOI] [PubMed]
  6. Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
  7. Gulam Mohamed, M., Rajarajan, K., Mani, G., Vimalan, M., Prabha, K., Madhavan, J. & Sagayaraj, P. (2007). J. Cryst. Growth, 300, 409–414.
  8. Javed, S., Faizi, M. S. H., Nazia, S. & Iskenderov, T. (2018). IUCrData, 3, x181444.
  9. Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10. [DOI] [PMC free article] [PubMed]
  10. Lanzilotto, A., Housecroft, C. E., Constable, E. C. & Prescimone, A. (2018). CSD Communication (refcode REZSIB). CCDC, Cambridge, England.
  11. Lanzilotto, A., Prescimone, A., Constable, E. C. & Housecroft, C. E. (2018). CSD Communication (refcode YIFCIC). CCDC, Cambridge, England.
  12. Liou, J. P., Chang, C. W., Song, J. S., Yang, Y. N., Yeh, C. F., Tseng, H. Y., Lo, Y. K., Chang, Y. L., Chang, C. M. & Hsieh, H. P. (2002). J. Med. Chem. 45, 2556–2562. [DOI] [PubMed]
  13. Ma, J., Ma, M., Sun, L., Zeng, Z. & Jiang, H. (2015). J. Chem. 2015 Article ID 435219.
  14. Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235. [DOI] [PMC free article] [PubMed]
  15. Rykaczewski, K. A., Wearing, E. R., Blackmun, D. E. & Schindler, C. S. (2022). Nat. Synth. 1, 24–36.
  16. Sharutin, V. V., Sharutina, O. K., Molokova, O. V., Ettenko, E. N., Krivolapov, D. B., Gubaidullin, A. T. & Litvinov, I. A. (2002). Zh. Obshch. Khim. 72, 893–898.
  17. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  18. Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.
  19. Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.
  20. Sieroń, L., Shashikanth, S., Yathirajan, H. S., Venu, T. D., Nagaraj, B., Nagaraja, P. & Khanum, S. A. (2004). Acta Cryst. E60, o1889–o1891.
  21. Singh, R. K., Devi, S. & Prasad, D. N. (2015). Arab. J. Chem. 8, 307–312.
  22. Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006–1011. [DOI] [PMC free article] [PubMed]
  23. Sternbach, L. H. & Reeder, E. (1961a). J. Org. Chem. 26, 1111–1118.
  24. Sternbach, L. H. & Reeder, E. (1961b). J. Org. Chem. 26, 4936–4941.
  25. Vasco-Mendez, N. L., Panneerselvam, K., Rudino-Pinera, E. & Soriano-Garcia, M. (1996). Anal. Sci. 12, 677–678.
  26. Walsh, D. A. (1980). Synthesis, pp. 677–688.
  27. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.
  28. Wiesner, J., Kettler, K., Jomaa, H. & Schlitzer, M. (2002). Bioorg. Med. Chem. Lett. 12, 543–545. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S2056989023004668/tx2069sup1.cif

e-79-00610-sup1.cif (917.3KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989023004668/tx2069Isup2.hkl

e-79-00610-Isup2.hkl (214.5KB, hkl)

Supporting information file. DOI: 10.1107/S2056989023004668/tx2069Isup3.cml

CCDC reference: 2265648

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES