Skip to main content
Scientific Reports logoLink to Scientific Reports
. 2023 Aug 20;13:13547. doi: 10.1038/s41598-023-40687-4

Combination of memory type ratio and product estimators under extended EWMA statistic with application to wheat production

Rashiqa Zahid 1, Muhammad Noor-ul-Amin 1, Imad Khan 2, Salman A AlQahtani 3,, Pranav Kumar Pathak 4, Javed Rahimi 5,
PMCID: PMC10440344  PMID: 37599295

Abstract

The extended exponential weighted moving average (EEWMA) statistic is a memory type statistic that uses past observations along with the current information for the estimation of a population parameter to improve the efficiency of the estimators. This study utilized the EEWMA statistic to estimate the population mean with a suitable auxiliary variable. The ratio and product estimators are proposed for the surveys that are time-based by using current information along with that information. The approximate mean square errors are computed for the proposed memory type estimators and mathematical comparison is discussed to demonstrate the efficiency of the estimator. The simulation study was carried out to evaluate the performance of the proposed memory type estimators. It can be seen from the results that the efficiency of the estimator enhances by utilizing the current sample as well as past information. A real-life example is presented to illustrate the usage of proposed estimators.

Subject terms: Energy science and technology, Materials science, Physics

Introduction

The efficiency of ratio or product type estimators can be improved by using auxiliary information. Auxiliary information has been considered in education, biostatistics, medical research, agriculture, etc. For example, the tree diameter can be used as an auxiliary variable in an agricultural survey to estimate the average amount of timber produced by the tree. When the linear relationship between the study and auxiliary variable is highly positive with the line passing through the origin, then ratio estimator is used. The ratio estimator is defined by Cochran (1940)1 as

Y¯^r=y¯x¯μx, 1

where it is assumed that the population mean μx of the auxiliary variable is known in advance. Here y¯ is the sample mean of the study variable, x¯ is the sample mean of the auxiliary variable. When there is a negative linear relationship between the study and auxiliary variable, it is convenient to use the product estimators. The product estimator by Robson (1957)2 is given by

Y¯^p=y¯μxx¯. 2

The approximate mean square errors (MSEs) are

MSEY¯^rθCy2+Cx2-2ρCyCx, 3

and

MSEY¯^pθCy2+Cx2+2ρCyCx, 4

where θ = (1–n⁄N)/n, n is the sample size, N is the population size, Cy and Cx are the coefficient of variation for study and auxiliary variable, respectively. The coefficient of variation is a statistical measure used to assess the relative variability between the study variable and the auxiliary variable. Additionally, the correlation coefficient (ρ) quantifies the strength and direction of the linear relationship between the study and auxiliary variables. In the field of research, several authors, including Grover, Kaur, and Vishawkarma3, Noor-Ul-Amin, Shahbaz, and Kadilar4, Zaman5, Zaman and Bulut6, Zaman7, Yasmeen, Noor-Ul-Amin, and Hanif8, Yadav and Zaman9, Zaman and Kadilar10 and Irfan et al.11, have explored the utilization of auxiliary information to develop estimators for population parameters. These researchers have recognized the potential benefits of incorporating auxiliary information in the estimation process, aiming to enhance the efficiency and accuracy of population parameter estimation.

The memory type ratio and product estimators were initially proposed by Noor-Ul-Amin12 and Noor-Ul-Amin13 as an improvement over existing estimators. The author introduced the memory type ratio estimator utilizing the Exponentially Weighted Moving Average (EWMA) statistic, while Noor-Ul-Amin13 introduced the memory type product estimator using the Hybrid Exponentially Weighted Moving Average (HEWMA) statistic. The EWMA statistic was originally introduced by Roberts (1959) 14 as a tool to monitor changes in the process mean. It is a statistic that incorporates both the current and past samples to observe the change in the mean over time. The EWMA statistic can be defined as follows:

Zi=λy¯+1-λZi-1, 5

where y¯ is the current sample mean of observation in time i=1,2, The smoothing parameter (λ) is a value between 0 and 1 that determines the weighting given to current and past observations in the EWMA statistic. A larger value of λ assigns more weight to the current values and less weight to past observations. Conversely, a smaller value of λ gives more weight to past observations and less weight to the current data.When λ is equal to 1, the EWMA statistic becomes equivalent to the usual sample mean, and the latest observation receives all the weight. In this case, there is no consideration given to past observations, and the estimate is solely based on the most recent data point. The term Zi-1 is used to represent past observations. The expected mean of the prior sample is taken as its initial value i.e. Z0. When the initial value is not available, it can be obtained from the pilot survey.

We have,

EZt=μy, 6

where μy is the mean and σy2 is the variance of the study variable. The limiting form of variance of EWMA statistic is given by

VarZt=σy2nλ2-λ. 7

The respective memory type ratio and product estimators due to Noor-Ul-Amin13) are

t^rmi=ZtQtμx, 8

and

t^pmi=ZtμxQt, 9

where Zt and Qt are the memory type statistic for both variables.The respective MSEs are given by

MSEt^rmiθλ2-λCy2+Cx2-2ρCyCx,

and

MSEt^pmiθλ2-λCy2+Cx2+2ρCyCx.

The proposed estimators hold particular relevance for surveys conducted at regular time intervals, such as the Pakistan Social and Living Standard Measurement (PSLM) survey, which is a routine activity conducted by the Pakistan Bureau of Statistics. Additionally, the Pakistan government conducts the Labor Force Survey annually through the platform provided by the Pakistan Bureau of Statistics. These surveys, including economic and health surveys, provide essential insights into socio-economic factors over time. By incorporating the extended EWMA statistic and leveraging both past and current information, the proposed estimators offer a robust framework for estimating population parameters with enhanced precision. This framework is expected to outperform previous estimators used in time-scaled surveys. Consequently, researchers, policymakers, and stakeholders can make more informed decisions based on reliable and up-to-date information. The proposed methodology has the potential to significantly improve the performance of estimators in various time-scaled surveys, contributing to the accuracy and usefulness of survey results.

Let T1,T2,.....,Ti,.. be a sequence of random variables with mean μ and variance σ2 taken from a normal population, then the EEWMA statistic with smoothing constants λ1 and λ2 given by Naveed et al.15 is defined as

Zi0=λ1Ti-λ2Ti-1+(1-λ1+λ2)Zi0-1, 10

The expected mean of EEWMA statistic is given by

EZi0=μ,

and the variance is

VarZi0=σ2γ, 11

where γ=λ12+λ22-2aλ1λ22λ1-λ2-λ1-λ22

This research paper encompasses various sections that delve deeper into the proposed estimators and their performance. In Sect. “Proposed memory type estimators”, the construction of the proposed estimators is discussed. Section “Simulation study” is based on the simulation study and the main findings from the simulation results are presented in Sect. “Discussion”. Section “Mathematical comparison” is the mathematical comparison of the proposed estimators with the existing estimators and the real data application is given in Sect. “Real data application”. Finally, the conclusion is presented in Sect. “Conclusion”.

Proposed memory type estimators

The literature is rich with the conventional ratio and product estimators that only use the current sample information. As we know, surveys are frequently carried out at regular intervals. This allows for the utilization of both historical sample data and present information. Our goal is to bridge the gap using estimators that incorporate not only the current sample information but also the data from past samples. In this context, we introduce the memory type ratio and product estimators that incorporate both the current and past sample information. By utilizing additional historical data, these estimators offer improved performance over the conventional ones. For the said objective, we used the Extended Exponentially Weighted Moving Average (EEWMA) statistic introduced by Naveed et al.15. In our methodology, we consider a variable of interest denoted as y and an auxiliary variable denoted as x. At each time point t, we calculate the EEWMA statistic for both y and x. This EEWMA statistic serves as a crucial component in formulating the memory type ratio estimators.

Zie=λ1y¯-λ2y¯t-1+(1-λ1+λ2)Zie-1, 12

and

Qie=λ1x¯-λ2x¯t-1+(1-λ1+λ2)Qie-1, 13

where 0<λ1<1 and 0<λ2<λ1, and λ1=λ for EWMA statistic.

The initial values can be set as zero, which is a common practice. However, in some cases, it may be beneficial to estimate the expected mean from a pilot survey or any preliminary data available. The proposed estimators are given by the following formulas

t^ermi=ZieQieμx, 14

and

t^epmi=ZieμxQie, 15

respectively, where μx is the population mean of the auxiliary variable, it is assumed to be known in advance. The mean square expression for the proposed memory type estimator using Taylor series approximation is obtained by the following notations,

if ey=Zie-μyμy and ex=Qie-μxμx, then we have

E(ey)=E(ex)=0andθ=1n-1N,
Eey2=θVar(Zie)μy2=θσy2μy2γ
Eex2=θVar(Qie)μx2=θσx2μx2γ, 16
Eexey=Cov(Zie,Qie)μyμx=θρCyCxγ.

The MSE expression for the proposed memory type ratio estimator is simplified as

t^ermi=μy1+ey1+ex-1.
MSEt^ermiμy1+ey1-ex,
MSEt^ermiθVarZieμy2+VarQieμx2-2CovZie,Qieμyμx,

or

MSEt^ermiθγCy2+Cx2-2ρCyCx. 17

or

MSEt^epmiθγCy2+Cx2+2ρCyCx. 18

Simulation study

To assess the effectiveness of the proposed ratio and product estimators, a simulation study was conducted. The performance of the proposed estimator, denoted as t^ermi, was compared to the previous ratio estimator t^rmi developed by Noor-Ul-Amin13. The evaluation involved computing mean square errors and relative efficiencies based on 50,000 replications. The mean square error was determined using the following formula:

MSEti=150000i=150000(ti-μy)2, 19

where ti=y¯,termi,tepmi,trmi,tpmi. The relative efficiency is calculated by using the formula:

REti=MSE(y¯)MSE(ti), 20

The values of MSE for ratio estimators are given in Table 1. The values regarding the REs are presented in Table 2. The values of MSE and RE are computed for several values of a correlation coefficient. i.e. 0.05, 0.25, 0.50, 0.75, and 0.95. The different values of i.e. 0.05, 0.25, 0.50, 0.75, and 1.0 have been used to check the impact of the smoothing constant by fixing λ2.

Table 1.

MSEs of ratio estimators for λ2=0.03.

λ1 0.1 0.15 0.25 0.5 0.75 1
ρ n trmi termi trmi termi trmi termi trmi termi trmi termi trmi termi
0.05 10 0.0054 0.0040 0.0084 0.0071 0.0142 0.0131 0.0341 0.0332 0.0609 0.0606 0.1023 0.1023
20 0.0026 0.0023 0.0041 0.0035 0.0072 0.0067 0.0171 0.0168 0.0308 0.0307 0.0511 0.0511
30 0.0018 0.0013 0.0027 0.0023 0.0050 0.0045 0.0112 0.0110 0.0204 0.0204 0.0344 0.0344
50 0.0010 0.0008 0.0016 0.0014 0.0030 0.0026 0.0068 0.0067 0.0121 0.0121 0.0203 0.0203
200 0.0002 0.0002 0.0004 0.0003 0.0007 0.0006 0.0017 0.0016 0.0030 0.0030 0.0050 0.0050
500 0.0001 0.0000 0.0001 0.0001 0.0003 0.0002 0.0006 0.0006 0.0012 0.0012 0.0020 0.0020
0.25 10 0.0050 0.0038 0.0076 0.0065 0.0133 0.0123 0.0314 0.0307 0.0563 0.0561 0.0951 0.0951
20 0.0024 0.0018 0.0039 0.0033 0.0067 0.0062 0.0159 0.0155 0.0282 0.0281 0.0471 0.0471
30 0.0016 0.0012 0.0025 0.0021 0.0044 0.0041 0.0105 0.0102 0.0189 0.0188 0.0314 0.0314
50 0.0009 0.0007 0.0015 0.0012 0.0027 0.0024 0.0062 0.0061 0.0112 0.0112 0.0186 0.0186
200 0.0002 0.0001 0.0004 0.0003 0.0006 0.0006 0.0015 0.0015 0.0028 0.0028 0.0046 0.0046
500 0.0000 0.0000 0.0001 0.0001 0.0002 0.0002 0.0006 0.0006 0.0011 0.0011 0.0018 0.0018
0.50 10 0.0043 0.0032 0.0067 0.0056 0.0118 0.0109 0.0281 0.0276 0.0503 0.0501 0.0833 0.0833
20 0.0021 0.0015 0.0034 0.0029 0.0060 0.0055 0.0147 0.0137 0.0252 0.0251 0.0418 0.0418
30 0.0015 0.0011 0.0023 0.0019 0.0040 0.0037 0.0092 0.0090 0.0167 0.0166 0.0279 0.0279
50 0.0008 0.0006 0.0013 0.0011 0.0024 0.0022 0.0056 0.0054 0.0100 0.0099 0.0168 0.0168
200 0.0002 0.0001 0.0003 0.0002 0.0006 0.0005 0.0014 0.0013 0.0025 0.0025 0.0041 0.0041
500 0.0000 0.0000 0.0001 0.0001 0.0002 0.0002 0.0005 0.0005 0.0009 0.0009 0.0016 0.0016
0.75 10 0.0040 0.0030 0.0058 0.0049 0.0104 0.0096 0.0247 0.0242 0.0443 0.0441 0.0750 0.0750
20 0.0020 0.0015 0.0030 0.0026 0.0053 0.0049 0.0124 0.0121 0.0220 0.0220 0.0370 0.0370
30 0.0013 0.0009 0.0020 0.0017 0.0035 0.0032 0.0081 0.0079 0.0148 0.0147 0.0245 0.0245
50 0.0007 0.0005 0.0011 0.0010 0.0020 0.0019 0.0050 0.0048 0.0088 0.0087 0.0146 0.0146
200 0.0002 0.0001 0.0003 0.0002 0.0005 0.0004 0.0012 0.0012 0.0022 0.0022 0.0036 0.0036
500 0.0000 0.0000 0.0001 0.0001 0.0002 0.0001 0.0005 0.0004 0.0008 0.0008 0.0014 0.0014
0.95 10 0.0034 0.0025 0.0053 0.0045 0.0094 0.0087 0.0219 0.0215 0.0399 0.0397 0.0662 0.0662
20 0.0031 0.0012 0.0027 0.0023 0.0047 0.0043 0.0109 0.0107 0.0197 0.0197 0.0327 0.0327
30 0.0011 0.0008 0.0018 0.0015 0.0031 0.0029 0.0073 0.0071 0.0131 0.0130 0.0219 0.0219
50 0.0007 0.0005 0.0010 0.0009 0.0018 0.0017 0.0043 0.0042 0.0079 0.0079 0.0131 0.0131
200 0.0001 0.0001 0.0002 0.0002 0.0004 0.0004 0.0010 0.0010 0.0019 0.0019 0.0032 0.0032
500 0.0000 0.0000 0.0001 0.0000 0.0001 0.0001 0.0004 0.0004 0.0008 0.0007 0.0013 0.0013

Table 2.

Relative efficiencies of ratio estimators for λ2=0.03.

λ1 0.1 0.15 0.25 0.5 0.75 1
Ρ n trmi termi trmi termi trmi termi trmi termi trmi termi trmi termi
0.05 10 18.44 24.84 11.87 14.04 6.95 7.53 2.92 2.98 1.63 1.64 0.98 0.98
20 18.81 25.21 12.05 14.23 6.94 7.51 2.93 2.98 1.63 1.63 0.98 0.98
30 18.06 24.08 12.17 14.33 6.76 7.30 2.95 3.01 1.64 1.65 0.98 0.98
50 18.78 25.21 11.91 14.06 6.87 7.44 2.92 2.98 1.63 1.64 0.98 0.98
200 17.90 23.86 12.20 14.44 6.89 7.46 2.96 3.02 1.64 1.64 0.98 0.98
500 18.69 25.15 11.78 13.89 6.82 7.38 2.94 3.00 1.63 1.64 0.98 0.98
0.25 10 19.88 26.52 13.04 15.37 7.42 8.02 3.19 3.26 1.77 1.77 1.06 1.06
20 20.75 27.63 12.93 15.22 7.43 8.04 3.17 3.24 1.77 1.78 1.07 1.07
30 20.42 27.28 12.78 15.10 7.35 7.94 3.19 3.25 1.77 1.78 1.06 1.06
50 19.92 26.63 13.14 15.50 7.42 8.02 3.20 3.26 1.76 1.77 1.06 1.06
200 20.91 28.10 13.34 15.79 7.53 8.15 3.19 3.26 1.77 1.78 1.06 1.06
500 20.78 27.95 13.40 15.84 7.51 8.14 3.19 3.25 1.78 1.79 1.06 1.06
0.50 10 23.00 30.66 14.91 17.67 8.38 9.08 3.55 3.62 1.98 1.99 1.18 1.18
20 23.01 30.97 14.46 17.08 8.26 8.94 3.59 3.66 1.99 1.99 1.19 1.19
30 22.17 29.52 14.57 17.22 8.32 9.01 3.58 3.66 1.98 1.99 1.19 1.19
50 22.67 30.27 14.58 17.21 8.37 9.06 3.58 3.65 1.99 2.00 1.19 1.19
200 22.60 30.03 14.94 17.66 8.40 9.08 3.56 3.63 1.99 2.00 1.19 1.19
500 22.83 30.65 15.00 17.76 8.34 9.02 3.59 3.66 1.98 1.99 1.19 1.19
0.75 10 24.81 33.09 16.93 20.09 9.60 10.40 4.06 4.15 2.24 2.25 1.34 1.34
20 24.86 33.04 16.39 19.32 9.41 10.19 4.05 4.13 2.25 2.26 1.35 1.35
30 25.41 33.82 16.37 19.36 9.47 10.24 4.06 4.14 2.24 2.25 1.35 1.35
50 26.32 35.16 16.83 19.90 9.60 10.39 4.04 4.12 2.26 2.26 1.35 1.35
200 26.26 35.11 16.87 19.99 9.55 10.33 4.08 4.16 2.26 2.27 1.35 1.35
500 25.37 34.18 16.41 19.35 9.55 10.34 4.05 4.13 2.24 2.25 1.35 1.35
0.95 10 29.52 39.78 18.81 22.26 10.59 11.47 4.54 4.63 2.52 2.53 1.50 1.50
20 29.23 39.04 18.30 21.64 10.68 11.55 4.57 4.66 2.52 2.53 1.51 1.51
30 28.55 38.23 18.72 22.07 10.46 11.32 4.56 4.65 2.52 2.53 1.51 1.51
50 28.81 38.45 18.58 21.91 10.63 11.49 4.54 4.63 2.52 2.53 1.51 1.51
200 27.91 36.84 18.67 22.04 10.67 11.53 4.54 4.63 2.52 2.53 1.51 1.51
500 27.28 36.19 18.10 21.37 10.58 11.45 4.54 4.63 2.53 2.54 1.51 1.51

The algorithm that has been used to compute the MSEs and REs of the proposed estimators is given as:

  1. Generating a population of size 5000 make use of bivariate normal distribution with Y,XN2(2,10,1,1,ρ).

  2. Pick the value of λ1 by fixing λ2.

  3. Total 50,000 samples of different sizes are considered i.e. 10, 20, 30, 50, 200, and 500.

  4. Samples of step 3 are used, the 50,000 values are obtained for each estimator.

  5. MSE is calculated for each sample size reported in Table 1.

  6. The REs for each sample is computed by using (20) and given in Table 2.

Discussion

The computed results for mean squared errors (MSEs) and relative errors (REs) are reported in Tables 1, 2, 3, 4, 5, 6, 7 and 8. These tables provide a comparison between the proposed memory type ratio estimators and the previous memory type estimator. Specifically, Tables 1, 2, 3 and 4 showcase the comparison between the proposed memory type ratio estimators and the previous memory type estimator. The values for the proposed product estimators are shown in Tables 5, 6, 7 and 8, respectively. The key findings for the proposed memory type estimators are provided below:

  • It is observed that the MSEs are smaller and the REs are larger compared to the memory type ratio estimators in Tables 1, 2, 3 and 4. This demonstrates the efficiency of the proposed estimator over the previous one. Similar calculations from Tables 5, 6, 7 and 8 pertaining to the product estimators confirm the efficiency of the proposed product estimator over the previous memory type estimator.

  • The correlation coefficient (ρ) between the study and auxiliary variable increases from 0 to 0.95, resulting in reduced MSE values and improved efficiency of the proposed memory type ratio estimator. In the case of the proposed product estimator, the value of ρ decreases from 0 to − 0.95, indicating an increase in estimator efficiency, as shown in Tables 5, 6, 7 and 8. Thus, the use of auxiliary information enhances the efficiency of the estimators.

  • As the sample size increases while keeping λ2 and ρ fixed, different values of n are chosen, such as 10, 20, 30, 50, 200, and 500. The MSE values decrease with an increase in the sample size for each value of n. The values of the prediction relative errors (PRE) are consistently good for all n. Therefore, it can be concluded that the proposed memory type estimators are efficient for all values of n.

  • The weights λ1 and λ2 are employed to assign weights to the current and previous sample values, thereby improving the efficiency of the proposed estimator, as evident in Tables 5, 6, 7 and 8. Ultimately, when λ1 = 1, no weight is given to past values, and the proposed estimators based on exponentially weighted moving average (EEWMA) depend solely on the current observation, similar to the previous ratio and product estimators.

  • Hence, the proposed estimators perform equally well as the previous estimators based on exponentially weighted moving average (EWMA) for λ1 = 1, as shown in the last columns of Tables 5, 6, 7 and 8. Conversely, as the value of λ1 decreases, a larger weight is assigned to past sample values, leading to a gradual increase in the efficiency of the proposed estimator, as observed in Tables 5, 6, 7 and 8.

Table 3.

MSEs of ratio estimators for λ2=0.05.

λ1 0.1 0.15 0.25 0.5 0.75 1
Ρ n trmi termi trmi termi trmi termi trmi termi trmi termi trmi termi
0.05 10 0.0054 0.0032 0.0084 0.0063 0.0145 0.0127 0.0337 0.0326 0.0606 0.0602 0.1005 0.1005
20 0.0026 0.0015 0.0042 0.0031 0.0073 0.0064 0.0171 0.0165 0.0306 0.0304 0.0511 0.0511
30 0.0017 0.0010 0.0028 0.0021 0.0048 0.0042 0.0115 0.0111 0.0202 0.0201 0.0339 0.0339
50 0.0010 0.0006 0.0016 0.0012 0.0029 0.0025 0.0067 0.0065 0.0122 0.0122 0.0205 0.0205
200 0.0002 0.0001 0.0004 0.0003 0.0007 0.0006 0.0016 0.0016 0.0030 0.0030 0.0050 0.0050
500 0.0001 0.0000 0.0001 0.0001 0.0002 0.0002 0.0006 0.0006 0.0012 0.0012 0.0020 0.0020
0.25 10 0.0054 0.0028 0.0073 0.0054 0.0134 0.0117 0.0313 0.0303 0.0568 0.0564 0.0947 0.0947
20 0.0024 0.0014 0.0038 0.0028 0.0066 0.0058 0.0157 0.0152 0.0282 0.0280 0.0471 0.0471
30 0.0016 0.0009 0.0025 0.0018 0.0044 0.0038 0.0104 0.0101 0.0187 0.0186 0.0315 0.0315
50 0.0009 0.0005 0.0015 0.0011 0.0027 0.0023 0.0062 0.0060 0.0112 0.0111 0.0186 0.0186
200 0.0002 0.0001 0.0003 0.0002 0.0006 0.0005 0.0015 0.0014 0.0028 0.0028 0.0046 0.0046
500 0.0000 0.0000 0.0001 0.0001 0.0002 0.0002 0.0006 0.0005 0.0011 0.0011 0.0018 0.0018
0.50 10 0.0040 0.0025 0.0067 0.0050 0.0119 0.0104 0.0276 0.0267 0.0507 0.0503 0.0839 0.0839
20 0.0022 0.0013 0.0033 0.0024 0.0060 0.0053 0.0140 0.0135 0.0254 0.0252 0.0421 0.0421
30 0.0014 0.0008 0.0022 0.0016 0.0040 0.0035 0.0092 0.0089 0.0167 0.0166 0.0280 0.0280
50 0.0008 0.0005 0.0013 0.0010 0.0023 0.0020 0.0055 0.0054 0.0101 0.0101 0.0166 0.0166
200 0.0002 0.0001 0.0003 0.0002 0.0006 0.0005 0.0014 0.0013 0.0025 0.0025 0.0041 0.0041
500 0.0000 0.0000 0.0001 0.0001 0.0002 0.0002 0.0005 0.0005 0.0010 0.0009 0.0016 0.0016
0.75 10 0.0037 0.0021 0.0061 0.0046 0.0106 0.0092 0.0244 0.0236 0.0443 0.0440 0.0740 0.0740
20 0.0019 0.0011 0.0029 0.0021 0.0052 0.0046 0.0123 0.0119 0.0224 0.0222 0.0370 0.0370
30 0.0013 0.0007 0.0019 0.0014 0.0035 0.0030 0.0082 0.0080 0.0147 0.0146 0.0246 0.0246
50 0.0007 0.0004 0.0012 0.0009 0.0021 0.0018 0.0049 0.0048 0.0088 0.0088 0.0148 0.0148
200 0.0001 0.0001 0.0003 0.0002 0.0005 0.0004 0.0012 0.0012 0.0022 0.0021 0.0037 0.0037
500 0.0000 0.0000 0.0001 0.0000 0.0002 0.0001 0.0004 0.0004 0.0008 0.0008 0.0014 0.0014
0.95 10 0.0033 0.0020 0.0053 0.0040 0.0097 0.0085 0.0222 0.0215 0.0400 0.0397 0.0662 0.0662
20 0.0017 0.0010 0.0026 0.0020 0.0047 0.0041 0.0110 0.0106 0.0200 0.0199 0.0329 0.0329
30 0.0011 0.0006 0.0017 0.0013 0.0032 0.0028 0.0072 0.0070 0.0132 0.0131 0.0221 0.0221
50 0.0007 0.0004 0.0010 0.0007 0.0018 0.0016 0.0043 0.0042 0.0078 0.0078 0.0133 0.0133
200 0.0001 0.0001 0.0002 0.0001 0.0004 0.0004 0.0010 0.0010 0.0019 0.0019 0.0033 0.0033
500 0.0000 0.0000 0.0001 0.0000 0.0001 0.0001 0.0004 0.0004 0.0008 0.0007 0.0013 0.0013

Table 4.

Relative efficiencies of ratio estimators for λ2=0.05.

λ1 0.1 0.15 0.25 0.5 0.75 1
Ρ n trmi termi trmi termi trmi termi trmi termi trmi termi trmi termi
0.05 10 18.38 30.99 11.90 15.86 6.86 7.84 2.96 3.06 1.63 1.64 0.98 0.98
20 18.94 32.71 11.83 15.82 6.91 7.89 2.92 3.02 1.63 1.64 0.98 0.98
30 18.88 31.98 11.83 15.79 6.79 7.77 2.93 3.03 1.64 1.65 0.98 0.98
50 18.73 32.20 12.20 16.41 6.90 7.87 2.96 3.06 1.63 1.64 0.98 0.98
200 18.99 32.95 12.10 16.16 6.93 7.92 2.95 3.05 1.62 1.63 0.98 0.98
500 18.69 32.12 12.33 16.57 6.95 7.94 2.95 3.05 1.63 1.64 0.98 0.98
0.25 10 20.24 34.71 13.60 18.30 7.40 8.46 3.18 3.29 1.78 1.79 1.06 1.06
20 20.45 34.89 12.96 17.37 7.51 8.59 3.20 3.30 1.77 1.78 1.06 1.06
30 20.74 35.87 13.14 17.59 7.48 8.54 3.20 3.31 1.77 1.79 1.07 1.07
50 20.22 34.72 13.08 17.59 7.40 8.44 3.20 3.31 1.78 1.79 1.07 1.07
200 20.95 36.04 13.36 17.96 7.50 8.57 3.21 3.32 1.77 1.78 1.07 1.07
500 20.96 36.20 13.01 17.31 7.43 8.50 3.21 3.32 1.77 1.78 1.07 1.07
0.50 10 22.54 38.97 14.81 19.77 8.36 9.58 3.56 3.68 1.98 1.99 1.18 1.18
20 22.41 38.26 14.98 20.16 8.28 9.46 3.56 3.68 1.98 2.00 1.19 1.19
30 22.61 38.92 14.80 19.88 8.21 9.38 3.57 3.68 1.99 2.00 1.19 1.19
50 22.70 38.53 14.55 19.51 8.33 9.51 3.59 3.71 1.99 2.00 1.19 1.19
200 22.28 37.69 14.40 19.18 8.27 9.47 3.57 3.69 1.97 1.99 1.19 1.19
500 22.45 38.31 14.65 19.61 8.45 9.66 3.57 3.69 1.99 2.00 1.19 1.19
0.75 10 26.72 45.85 16.43 21.91 9.44 10.81 4.07 4.21 2.26 2.28 1.34 1.34
20 25.40 43.70 17.06 22.82 9.45 10.80 4.05 4.18 2.24 2.26 1.35 1.35
30 25.65 43.36 16.77 22.45 9.49 10.87 4.02 4.16 2.25 2.26 1.35 1.35
50 25.94 44.77 16.40 21.96 9.38 10.71 4.03 4.16 2.25 2.26 1.35 1.35
200 25.54 43.71 16.65 22.27 9.36 10.68 4.02 4.16 2.25 2.27 1.35 1.35
500 26.06 45.03 16.62 22.31 9.43 10.80 4.04 4.18 2.25 2.27 1.35 1.35
0.95 10 29.55 50.11 18.71 25.04 10.36 11.82 4.51 4.66 2.51 2.52 1.50 1.50
20 28.88 49.46 18.61 24.96 10.58 12.06 4.55 4.70 2.51 2.52 1.51 1.51
30 29.20 50.41 18.64 25.07 10.46 11.93 4.56 4.71 2.51 2.53 1.51 1.51
50 28.62 48.69 18.83 25.26 10.56 12.08 4.57 4.71 2.53 2.55 1.51 1.51
200 28.88 49.51 18.85 25.11 10.42 11.90 4.56 4.71 2.53 2.54 1.51 1.51
500 29.44 50.85 18.85 25.27 10.66 12.18 4.61 4.76 2.53 2.55 1.51 1.51

Table 5.

MSEs of product estimators for λ2=0.03.

λ1 0.1 0.15 0.25 0.5 0.75 1
Ρ n trmi termi trmi termi trmi termi trmi termi trmi termi trmi termi
 − 0.05 10 0.0038 0.0028 0.0082 0.0069 0.0148 0.0137 0.0339 0.0332 0.0624 0.0621 0.1030 0.1030
20 0.0019 0.0014 0.0041 0.0035 0.0072 0.0066 0.0169 0.0166 0.0305 0.0304 0.0511 0.0511
30 0.0012 0.0009 0.0027 0.0023 0.0047 0.0044 0.0111 0.0109 0.0204 0.0203 0.0338 0.0338
50 0.0007 0.0005 0.0016 0.0013 0.0028 0.0026 0.0068 0.0066 0.0123 0.0122 0.0204 0.0204
200 0.0002 0.0001 0.0004 0.0003 0.0007 0.0006 0.0017 0.0016 0.0030 0.0030 0.0051 0.0051
500 0.0000 0.0000 0.0001 0.0001 0.0003 0.0002 0.0006 0.0006 0.0012 0.0012 0.0020 0.0020
 − 0.25 10 0.0049 0.0036 0.0078 0.0066 0.0131 0.0121 0.0309 0.0303 0.0572 0.0570 0.0946 0.0946
20 0.0024 0.0018 0.0037 0.0031 0.0068 0.0062 0.0156 0.0153 0.0282 0.0281 0.0463 0.0463
30 0.0016 0.0012 0.0024 0.0021 0.0044 0.0041 0.0104 0.0101 0.0186 0.0186 0.0314 0.0314
50 0.0009 0.0007 0.0015 0.0012 0.0027 0.0025 0.0062 0.0061 0.0112 0.0112 0.0187 0.0187
200 0.0002 0.0001 0.0004 0.0003 0.0006 0.0006 0.0015 0.0015 0.0028 0.0027 0.0047 0.0047
500 0.0000 0.0000 0.0001 0.0001 0.0002 0.0002 0.0006 0.0006 0.0011 0.0011 0.0018 0.0018
 − 0.50 10 0.0043 0.0032 0.0067 0.0057 0.0120 0.0111 0.0283 0.0277 0.0502 0.0500 0.0842 0.0842
20 0.0026 0.0017 0.0034 0.0028 0.0059 0.0054 0.0138 0.0135 0.0251 0.0250 0.0421 0.0421
30 0.0014 0.0011 0.0022 0.0018 0.0040 0.0037 0.0093 0.0091 0.0167 0.0167 0.0278 0.0278
50 0.0009 0.0006 0.0013 0.0011 0.0023 0.0021 0.0056 0.0054 0.0101 0.0100 0.0167 0.0167
200 0.0002 0.0001 0.0003 0.0002 0.0006 0.0005 0.0013 0.0013 0.0025 0.0025 0.0041 0.0041
500 0.0000 0.0000 0.0001 0.0001 0.0002 0.0002 0.0005 0.0005 0.0010 0.0009 0.0016 0.0016
 − 0.75 10 0.0038 0.0028 0.0060 0.0051 0.0107 0.0098 0.0245 0.0240 0.0445 0.0443 0.0739 0.0739
20 0.0019 0.0014 0.0029 0.0025 0.0052 0.0048 0.0124 0.0121 0.0224 0.0223 0.0370 0.0370
30 0.0012 0.0009 0.0020 0.0017 0.0035 0.0032 0.0081 0.0079 0.0148 0.0147 0.0248 0.0248
50 0.0007 0.0005 0.0011 0.0009 0.0020 0.0019 0.0049 0.0048 0.0088 0.0088 0.0147 0.0147
200 0.0002 0.0001 0.0003 0.0002 0.0005 0.0004 0.0012 0.0012 0.0022 0.0022 0.0036 0.0036
500 0.0000 0.0000 0.0001 0.0001 0.0002 0.0001 0.0004 0.0004 0.0008 0.0008 0.0014 0.0014
 − 0.95 10 0.0035 0.0026 0.0053 0.0045 0.0093 0.0086 0.0219 0.0214 0.0397 0.0395 0.0658 0.0658
20 0.0017 0.0013 0.0026 0.0022 0.0047 0.0043 0.0110 0.0108 0.0196 0.0195 0.0329 0.0329
30 0.0011 0.0008 0.0018 0.0015 0.0031 0.0029 0.0074 0.0072 0.0132 0.0132 0.0218 0.0218
50 0.0007 0.0005 0.0010 0.0009 0.0018 0.0017 0.0044 0.0043 0.0078 0.0078 0.0132 0.0132
200 0.0002 0.0001 0.0002 0.0002 0.0004 0.0004 0.0011 0.0010 0.0019 0.0019 0.0033 0.0033
500 0.0000 0.0000 0.0001 0.0000 0.0001 0.0001 0.0004 0.0004 0.0007 0.0007 0.0013 0.0013

Table 6.

Relative efficiencies of product estimators for λ2=0.03.

λ1 0.1 0.15 0.25 0.5 0.75 1
Ρ n trmi termi trmi termi trmi termi trmi termi trmi termi trmi termi
 − 0.05 10 25.85 34.67 12.15 14.33 6.73 7.27 2.94 3.00 1.63 1.64 0.98 0.98
20 25.99 34.96 11.92 14.00 6.91 7.48 2.94 3.00 1.64 1.64 0.98 0.98
30 26.47 35.50 12.17 14.34 6.87 7.42 2.94 3.00 1.64 1.65 0.98 0.98
50 26.02 34.94 12.17 14.40 6.95 7.53 2.91 2.97 1.62 1.63 0.98 0.98
200 25.32 33.65 12.15 14.34 6.92 7.50 2.94 3.00 1.64 1.65 0.98 0.98
500 24.84 32.91 12.09 14.26 6.72 7.27 2.94 3.00 1.64 1.65 0.98 0.98
 − 0.25 10 20.29 27.20 12.81 15.13 7.58 8.20 3.21 3.27 1.77 1.78 1.06 1.06
20 20.77 27.81 13.34 15.75 7.35 7.95 3.18 3.24 1.76 1.77 1.06 1.06
30 20.59 27.48 13.42 15.87 7.56 8.18 3.21 3.27 1.78 1.78 1.06 1.06
50 20.60 27.54 13.27 15.64 7.28 7.87 3.21 3.28 1.77 1.78 1.06 1.06
200 20.45 27.35 12.78 15.08 7.34 7.94 3.21 3.27 1.78 1.79 1.06 1.06
500 20.19 26.99 13.23 15.63 7.38 7.99 3.17 3.23 1.78 1.79 1.06 1.06
 − 0.50 10 22.96 30.87 14.92 17.65 8.27 8.96 3.54 3.61 1.98 1.99 1.19 1.19
20 22.22 29.56 14.68 17.34 8.40 9.09 3.60 3.67 1.98 1.99 1.19 1.19
30 22.69 30.12 14.82 17.52 8.20 8.86 3.59 3.67 1.99 2.00 1.19 1.19
50 21.73 29.04 14.41 17.04 8.39 9.08 3.56 3.63 1.98 1.99 1.19 1.19
200 22.24 29.50 14.29 16.83 8.36 9.04 3.59 3.66 1.99 2.00 1.19 1.19
500 22.81 30.53 14.57 17.24 8.38 9.06 3.58 3.65 1.98 1.99 1.19 1.19
 − 0.75 10 25.97 34.55 16.56 19.65 9.33 10.09 4.06 4.14 2.24 2.25 1.35 1.35
20 25.63 34.41 16.82 19.83 9.50 10.28 4.04 4.12 2.25 2.26 1.35 1.35
30 26.02 34.80 16.48 19.48 9.41 10.18 4.07 4.15 2.25 2.26 1.35 1.35
50 25.08 33.39 17.20 20.37 9.54 10.33 4.03 4.11 2.26 2.27 1.35 1.35
200 25.81 34.37 16.60 19.64 9.45 10.24 4.03 4.11 2.25 2.26 1.35 1.35
500 24.88 33.06 16.50 19.46 9.35 10.12 4.05 4.14 2.27 2.27 1.35 1.35
 − 0.95 10 28.16 37.71 18.54 21.86 10.70 11.59 4.55 4.64 2.53 2.54 1.51 1.51
20 28.60 38.08 18.62 21.92 10.54 11.39 4.49 4.58 2.52 2.53 1.51 1.51
30 29.86 40.17 18.27 21.54 10.52 11.38 4.52 4.62 2.52 2.53 1.51 1.51
50 28.21 37.61 18.28 21.61 10.59 11.46 4.53 4.62 2.53 2.53 1.51 1.51
200 28.86 38.56 18.59 21.98 10.49 11.35 4.52 4.61 2.52 2.53 1.51 1.51
500 28.97 38.52 18.61 21.97 10.80 11.69 4.53 4.62 2.52 2.53 1.51 1.51

Table 7.

MSEs of product estimator for λ2=0.05.

λ1 0.1 0.15 0.25 0.5 0.75 1
Ρ n trmi termi trmi termi trmi termi trmi termi trmi termi trmi termi
 − 0.05 10 0.0054 0.0031 0.0080 0.0060 0.0141 0.0123 0.0336 0.0325 0.0612 0.0608 0.1012 0.1012
20 0.0027 0.0016 0.0040 0.0030 0.0072 0.0063 0.0170 0.0165 0.0305 0.0303 0.0509 0.0509
30 0.0017 0.0010 0.0028 0.0021 0.0048 0.0042 0.0113 0.0110 0.0203 0.0202 0.0337 0.0337
50 0.0010 0.0006 0.0016 0.0012 0.0029 0.0025 0.0068 0.0066 0.0122 0.0121 0.0203 0.0203
200 0.0002 0.0001 0.0004 0.0003 0.0007 0.0006 0.0017 0.0016 0.0030 0.0030 0.0051 0.0051
500 0.0001 0.0000 0.0001 0.0001 0.0003 0.0002 0.0006 0.0006 0.0012 0.0012 0.0020 0.0020
 − 0.25 10 0.0048 0.0028 0.0074 0.0055 0.0133 0.0116 0.0310 0.0300 0.0566 0.0563 0.0933 0.0933
20 0.0024 0.0014 0.0038 0.0028 0.0067 0.0059 0.0154 0.0149 0.0284 0.0282 0.0472 0.0472
30 0.0016 0.0009 0.0026 0.0019 0.0044 0.0038 0.0103 0.0100 0.0189 0.0188 0.0313 0.0313
50 0.0009 0.0005 0.0015 0.0011 0.0026 0.0023 0.0062 0.0060 0.0113 0.0112 0.0190 0.0190
200 0.0002 0.0001 0.0003 0.0002 0.0006 0.0006 0.0015 0.0015 0.0028 0.0027 0.0046 0.0046
500 0.0000 0.0000 0.0001 0.0001 0.0002 0.0002 0.0006 0.0006 0.0011 0.0011 0.0018 0.0018
 − 0.50 10 0.0050 0.0026 0.0068 0.0051 0.0119 0.0104 0.0279 0.0270 0.0503 0.0500 0.0840 0.0840
20 0.0022 0.0013 0.0034 0.0025 0.0059 0.0051 0.0140 0.0136 0.0254 0.0253 0.0420 0.0420
30 0.0014 0.0008 0.0022 0.0016 0.0039 0.0034 0.0093 0.0090 0.0167 0.0166 0.0279 0.0279
50 0.0009 0.0005 0.0013 0.0009 0.0023 0.0020 0.0055 0.0053 0.0101 0.0100 0.0167 0.0167
200 0.0002 0.0001 0.0003 0.0002 0.0006 0.0005 0.0013 0.0013 0.0025 0.0025 0.0042 0.0042
500 0.0000 0.0000 0.0001 0.0001 0.0002 0.0002 0.0005 0.0005 0.0010 0.0009 0.0016 0.0016
 − 0.75 10 0.0040 0.0023 0.0060 0.0045 0.0108 0.0095 0.0244 0.0236 0.0443 0.0440 0.0742 0.0742
20 0.0019 0.0011 0.0029 0.0021 0.0053 0.0046 0.0120 0.0116 0.0222 0.0221 0.0370 0.0370
30 0.0013 0.0007 0.0019 0.0014 0.0034 0.0030 0.0081 0.0078 0.0148 0.0147 0.0246 0.0246
50 0.0008 0.0004 0.0011 0.0008 0.0020 0.0018 0.0049 0.0047 0.0089 0.0088 0.0147 0.0147
200 0.0001 0.0001 0.0002 0.0002 0.0005 0.0004 0.0012 0.0011 0.0022 0.0022 0.0036 0.0036
500 0.0000 0.0000 0.0001 0.0000 0.0002 0.0001 0.0004 0.0004 0.0008 0.0008 0.0014 0.0014
 − 0.95 10 0.0034 0.0020 0.0052 0.0039 0.0096 0.0084 0.0220 0.0213 0.0396 0.0393 0.0660 0.0660
20 0.0017 0.0010 0.0027 0.0020 0.0047 0.0041 0.0110 0.0106 0.0197 0.0196 0.0330 0.0330
30 0.0011 0.0006 0.0017 0.0013 0.0031 0.0027 0.0073 0.0071 0.0132 0.0131 0.0218 0.0218
50 0.0006 0.0003 0.0010 0.0008 0.0018 0.0016 0.0043 0.0042 0.0079 0.0078 0.0130 0.0130
200 0.0001 0.0001 0.0002 0.0002 0.0004 0.0004 0.0011 0.0010 0.0019 0.0019 0.0033 0.0033
500 0.0000 0.0000 0.0001 0.0000 0.0001 0.0001 0.0004 0.0004 0.0007 0.0007 0.0013 0.0013

Table 8.

Relative efficiencies of product estimators for λ2=0.05.

λ1 0.1 0.15 0.25 0.5 0.75 1
Ρ n trmi termi trmi termi trmi termi trmi termi trmi termi trmi termi
 − 0.05 10 18.43 31.67 12.38 16.53 7.05 8.08 2.95 3.05 1.63 1.64 0.98 0.98
20 18.45 31.16 12.27 16.44 6.83 7.80 2.94 3.04 1.63 1.64 0.98 0.98
30 18.56 31.87 11.88 15.91 6.89 7.89 2.95 3.04 1.64 1.65 0.98 0.98
50 18.78 32.34 12.01 16.04 6.84 7.81 2.94 3.04 1.63 1.64 0.98 0.98
200 18.45 31.37 11.74 15.66 6.88 7.86 2.93 3.03 1.63 1.64 0.98 0.98
500 18.40 31.31 12.11 16.17 6.85 7.84 2.92 3.02 1.64 1.65 0.98 0.98
 − 0.25 10 20.69 35.38 13.36 17.87 7.47 8.53 3.21 3.32 1.78 1.79 1.06 1.06
20 20.41 35.40 13.05 17.49 7.34 8.40 3.25 3.35 1.77 1.79 1.06 1.06
30 20.74 35.82 12.73 17.04 7.55 8.62 3.21 3.31 1.77 1.79 1.06 1.06
50 20.28 34.81 12.99 17.37 7.45 8.52 3.19 3.29 1.77 1.78 1.06 1.06
200 20.95 36.15 13.34 17.95 7.27 8.30 3.19 3.30 1.77 1.78 1.06 1.06
500 20.07 34.29 13.41 18.06 7.47 8.54 3.19 3.30 1.77 1.78 1.06 1.06
 − 0.50 10 22.11 37.08 14.74 19.62 8.30 9.49 3.59 3.71 1.99 2.00 1.19 1.19
20 22.19 37.94 14.57 19.53 8.41 9.62 3.56 3.68 1.98 1.99 1.19 1.19
30 23.34 39.86 14.73 19.81 8.41 9.61 3.57 3.69 1.99 2.00 1.19 1.19
50 22.02 37.23 15.06 20.26 8.35 9.58 3.59 3.70 1.98 1.99 1.20 1.20
200 22.54 38.79 14.51 19.41 8.23 9.42 3.55 3.67 1.97 1.99 1.19 1.19
500 22.44 38.26 14.44 19.26 8.21 9.38 3.56 3.68 1.99 2.00 1.19 1.19
 − 0.75 10 25.21 43.08 16.48 21.99 9.24 10.55 4.06 4.20 2.25 2.26 1.35 1.35
20 25.27 43.43 17.00 22.77 9.39 10.73 4.08 4.22 2.24 2.25 1.35 1.35
30 25.86 44.94 17.11 22.94 9.52 10.89 4.08 4.22 2.26 2.27 1.35 1.35
50 25.00 42.43 16.69 22.38 9.48 10.83 4.02 4.16 2.25 2.26 1.35 1.35
200 25.09 42.28 16.78 22.42 9.45 10.79 4.05 4.19 2.26 2.27 1.35 1.35
500 26.14 44.27 16.72 22.34 9.50 10.86 4.07 4.20 2.25 2.27 1.35 1.35
 − 0.95 10 28.71 48.93 18.91 25.31 10.51 12.01 4.58 4.73 2.54 2.55 1.51 1.51
20 28.32 48.47 18.51 24.71 10.60 12.10 4.58 4.73 2.52 2.54 1.51 1.51
30 29.22 50.48 18.76 25.18 10.55 12.03 4.52 4.68 2.52 2.54 1.51 1.51
50 29.60 50.84 18.50 24.77 10.63 12.17 4.55 4.70 2.52 2.54 1.52 1.52
200 28.37 48.28 18.64 24.96 10.61 12.13 4.49 4.64 2.53 2.55 1.52 1.52
500 29.04 50.09 18.28 24.24 10.68 12.21 4.59 4.74 2.53 2.54 1.51 1.51

Mathematical comparison

The memory type proposed estimators are recommended for use in real life as compared to the previous estimators if they have lesser mean square errors. In this section, we explained the conditions under which the proposed memory estimator performs well than previous memory type estimators. the proposed memory type will be more efficient than the previous one if:

MSEt^ermi<MSEt^rmi,
θγCy2+Cx2-2ρCyCx<θλ2-λCy2+Cx2-2ρCyCx,
γ<λ2-λ,
γ(2-λ)λ<1, 21

The condition for the proposed product estimator is:

MSEY¯^epmi<MSEY¯^pmi,
θγCy2+Cx2+2ρCyCx<θλ2-λCy2+Cx2+2ρCyCx,
γ<λ2-λ,
γ(2-λ)λ<1, 22

which will always be the case unless λ1<λ2. Hence, the proposed memory type ratio and product estimators are preferable and more efficient than the previous ones.

Real data application

In this section, we apply the proposed estimator to a real data set to demonstrate its practical application. The data set used in this illustration is obtained from the agricultural statistics reports of Pakistan, specifically from the department of research and national food security. The data set focuses on the yield of wheat, denoted as variable Y, measured in kilograms, and the corresponding area of cultivation, denoted as variable X. By analyzing this real data set, we can assess the performance and effectiveness of the proposed ratio estimator in estimating the relationship between wheat yield and cultivation area. This application allows us to evaluate the practical utility of the proposed estimator in the context of agricultural statistics in Pakistan.

The values of the population average for variables y and x are attained as μy= 2545.4 and μx= 6341.2 by taking the average of all sample mean values. The mean per unit estimator is attained from the agricultural report as y¯ and x¯. The EEWMA statistic is evaluated from each sample with λ1 = 0.25 and λ2 = 0.05. The Table 9 presents the computation of the proposed ratio type estimator and the estimated values of variables Y and X. From the Table 9 we observed that proposed EEWMA ratio estimator provides more smoothed estimation as compared to the comparative one. This shows that using of EEWMA provides more efficient estimate with respect to the time.

Table 9.

Computation of proposed memory type ratio estimator.

Year x¯ y¯ t^rmi Zi Qi t`^ermi
1996 5973.5 2081 2513.49 2429.30 6249.27 2465.04
1997 5839.9 2118 2493.59 2368.89 6160.72 2438.29
1998 5934.6 2327 2492.86 2370.96 6120.23 2456.57
1999 5934.6 2226 2481.93 2336.92 6083.10 2436.07
2000 6180.3 2667 2507.27 2424.99 6114.83 2514.76
2001 6255.5 2465 2506.40 2422.89 6146.72 2499.55
2002 6101.8 2392 2504.36 2413.06 6130.05 2496.18
2003 6097.3 2518 2515.67 2440.35 6123.28 2527.20
2004 6255.5 2500 2517.56 2451.38 6157.63 2524.46
2005 6378.9 2724 2537.09 2517.10 6208.06 2571.09
2006 6483.4 2588 2536.44 2524.48 6268.35 2553.82
2007 6432.8 2775 2556.94 2583.94 6298.71 2601.37
2008 6402.0 2438 2542.41 2537.90 6317.83 2547.29
2009 6836.2 2694 2537.76 2581.92 6443.21 2541.04
2010 6913.5 2592 2520.40 2578.84 6541.13 2500.01
2011 6691.0 2846 2538.81 2644.97 6559.98 2556.76
2012 6482.9 2736 2552.71 2657.67 6534.16 2579.19
2013 6511.3 2855 2575.72 2703.09 6531.01 2624.53
2014 6778.4 2821 2582.37 2724.97 6593.84 2620.56

Conclusion

Sampling techniques give several estimation methods to enrich the efficiency of the estimators. The developed estimators use only current sample information. In this paper, we have proposed the ratio and product type estimators in the form of EEWMA statistic which incorporates the previous sample data with the current information. Based on the results of PREs given in Tables 5, 6, 7 and 8, it may be concluded that the proposed memory type estimators are more efficient to estimate the population mean as compared to the previous memory type estimator based on EWMA statistic. In the current study, we utilized a single auxiliary variable for the estimation. More than one auxiliary variable can be used for the estimation. Furthermore, the study can be extended to other sampling designs.

Acknowledgements

The research is funded by Research Supporting Project number (RSPD2023R585), King Saud University, Riyadh, Saudi Arabia.

Author contributions

R.Z. and M.N.A. drafted the initial manuscript, conducted mathematical analyses, and performed numerical simulations. I.K. conceptualized the primary problem, carried out data analysis, and contributed to manuscript restructuring. S.A.A. and P.K.P. diligently validated all results, provided manuscript revisions, and secured funding. J.R. enhanced the language of the manuscript and conducted additional numerical simulations. All authors have reached a consensus on the final version of the submitted manuscript.

Data availability

The datasets used and/or analyzed during the current study are available from the corresponding author upon reasonable request. Further, no experiments on humans and/or the use of human tissue samples involved in this study.

Competing interests

The authors declare no competing interests.

Footnotes

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Contributor Information

Salman A. AlQahtani, Email: salmanq@ksu.edu.sa

Javed Rahimi, Email: Javedrahimi09@gmail.com.

References

  • 1.Cochran W. Design of a control chart using extended EWMA statistic. J. Agricultural Science. 1940;30(2):262–275. doi: 10.1017/S0021859600048012. [DOI] [Google Scholar]
  • 2.Robson DS. Applications of multivariate polykays to the theory of unbiased ratio-type estimation. J. American Statistical Association. 1957;52(280):511–522. doi: 10.1080/01621459.1957.10501407. [DOI] [Google Scholar]
  • 3.Grover LK, Kaur P, Vishawkarma GK. Product type exponential estimators of population mean under the linear transformation of auxiliary variable in simple random sampling. Appl. Math. Comput. 2012;219(4):1937–46. doi: 10.1016/j.amc.2012.08.036. [DOI] [Google Scholar]
  • 4.Noor-Ul-Amin M, Shahbaz MQ, Kadılar C. Ratio estimators for population mean using robust regression in double sampling. Gazi Univ. J. Sci. 2016;29(4):793–8. [Google Scholar]
  • 5.Zaman T. Improvement of modified ratio estimators using robust regression methods. Appl. Math. Comput. 2019;348:627–31. [Google Scholar]
  • 6.Zaman T, Bulut H. Modified regression estimators using robust regression methods and covariance matrices in stratified random sampling. Commun. Stat. Theory Methods. 2019 doi: 10.1080/03610926.2019.1588324. [DOI] [Google Scholar]
  • 7.Zaman T. New family of estimators using two auxiliary attributes. Int. J. Adv. Res. I Eng. Manag. 2018;4(11):11–16. [Google Scholar]
  • 8.Yasmeen U, Noor-Ul-Amin M, Hanif M. Exponential estimators of finite population variance using transformed auxiliary variables. Proc. Natl. Acad. Sci. India Sect. A Phys. Sci. 2019;89(1):185–91. doi: 10.1007/s40010-017-0410-5. [DOI] [Google Scholar]
  • 9.Yadav SK, Zaman T. Use of some conventional and non-conventional parameters for improving the efficiency of ratio-type estimators. J. Stat. Manag. Syst. 2021;24(5):1077–1100. [Google Scholar]
  • 10.Zaman T, Kadilar C. Exponential ratio and product type estimators of the mean in stratified two-phase sampling. AIMS Math. 2021;6(5):4265–4279. doi: 10.3934/math.2021252. [DOI] [Google Scholar]
  • 11.Aslam I, Noor-ul-Amin M, Hanif M, Sharm P. Memory type ratio and product estimators under ranked-based sampling schemes. Commun. Stat. Theory Method. 2021 doi: 10.1080/03610926.2021.1924784. [DOI] [Google Scholar]
  • 12.Noor-Ul-Amin M. Memory type ratio and product estimators for population mean for time-based surveys. J. Stat. Comput. Simul. 2020;90(17):3080–92. doi: 10.1080/00949655.2020.1795660. [DOI] [Google Scholar]
  • 13.Noor-Ul-Amin M. Memory type estimators of population mean using exponentially weighted moving averages for time scaled surveys. Commun. Stat. Theory Methods. 2021;50(12):2747–58. doi: 10.1080/03610926.2019.1670850. [DOI] [Google Scholar]
  • 14.Roberts SW. Control Chart Tests Based on Geometric Moving Averages. Technometrics. 1959;42(1):97–101. doi: 10.1080/00401706.2000.10485986. [DOI] [Google Scholar]
  • 15.Naveed M, Azam M, Khan N, Aslam M. Design of a control chart using extended EWMA statistic. Technologies. 2018;6(108):1–15. [Google Scholar]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Data Availability Statement

The datasets used and/or analyzed during the current study are available from the corresponding author upon reasonable request. Further, no experiments on humans and/or the use of human tissue samples involved in this study.


Articles from Scientific Reports are provided here courtesy of Nature Publishing Group

RESOURCES