Skip to main content
Nature Communications logoLink to Nature Communications
. 2023 Aug 22;14:5089. doi: 10.1038/s41467-023-40473-w

Extending the coherence of spin defects in hBN enables advanced qubit control and quantum sensing

Roberto Rizzato 1,2,✉,#, Martin Schalk 3,4,#, Stephan Mohr 1, Jens C Hermann 1,4, Joachim P Leibold 1,5, Fleming Bruckmaier 1, Giovanna Salvitti 1,6, Chenjiang Qian 3, Peirui Ji 3, Georgy V Astakhov 7, Ulrich Kentsch 7, Manfred Helm 7,8, Andreas V Stier 3,4, Jonathan J Finley 3,4, Dominik B Bucher 1,4,
PMCID: PMC10444786  PMID: 37607945

Abstract

Negatively-charged boron vacancy centers (VB) in hexagonal Boron Nitride (hBN) are attracting increasing interest since they represent optically-addressable qubits in a van der Waals material. In particular, these spin defects have shown promise as sensors for temperature, pressure, and static magnetic fields. However, their short spin coherence time limits their scope for quantum technology. Here, we apply dynamical decoupling techniques to suppress magnetic noise and extend the spin coherence time by two orders of magnitude, approaching the fundamental T1 relaxation limit. Based on this improvement, we demonstrate advanced spin control and a set of quantum sensing protocols to detect radiofrequency signals with sub-Hz resolution. The corresponding sensitivity is benchmarked against that of state-of-the-art NV-diamond quantum sensors. This work lays the foundation for nanoscale sensing using spin defects in an exfoliable material and opens a promising path to quantum sensors and quantum networks integrated into ultra-thin structures.

Subject terms: Qubits, Sensors and biosensors, Two-dimensional materials, Magnetic properties and materials


Negatively-charged boron vacancy centers in hBN have short coherence times, hindering their potential as quantum sensors. By employing dynamical decoupling, the authors achieve an ensemble coherence time approaching the fundamental relaxation limit, enabling sensitive detection of MHz range electromagnetic fields.

Introduction

Optically addressable spin defects in semiconductors are promising systems for various applications in quantum science and technology, including sensing and metrology14. In contrast to other defects typically hosted in 3D crystals5, the recently discovered boron vacancy center (VB) in hexagonal boron nitride (hBN)6,7 is embedded in a van der Waals material which can be exfoliated down to the limit of a single monolayer8,9(Fig. 1a). Such a unique feature would be advantageous for a wide range of applications where a minimal spatial separation of the spin defect to a specific target is highly desired. For example, in nanoscale quantum sensing, spatial resolution is determined by the proximity of the defect to the test object1012, or for integrated quantum photonic devices van der Waals materials can be readily exfoliated onto different substrates and used as spin-photon interfaces4. Furthermore, the VB center, incorporated in ultra-thin hBN foils, allows for easier integration of manipulable qubits in 2D heterostructures. This possibility opens up unexplored paths for investigating novel composite materials and phenomena in nanoelectronics, nanophotonics, and spintronics8,9,1315. The first protocols for generating VB centers in hBN have been recently presented16,17, and their spectroscopic characterization has been accomplished in several studies7,1821. Importantly, by detecting the changes in their optically detected magnetic resonance (ODMR) spectra, the VB centers demonstrated to work as sensors for temperature, pressure, and static magnetic fields, in some cases being competitive with more mature spin-defect-based sensors22. Based on these results, first applications have been demonstrated for the magnetic and temperature nanoscale imaging of low-dimensional materials23,24. Coherent control of ensembles of VB centers has recently been shown18,19,2527, although coherence times ≲100 nanoseconds have been reported2729. These short timescales significantly restrict the utility of such spin qubits and discourage the development of applications based on coherent spin manipulation.

Fig. 1. Characterization of the VB defect’s spin properties.

Fig. 1

a Idealized structure of VB spin defects (red arrows) in hBN layers. Nitrogen atoms are displayed in blue, boron in gray. The number of spin defects is only for illustrative purpose and does not reflect the actual density. b Simplified energy levels displaying the ground and excited triplet states, the optical excitation transitions (green arrows), the fluorescence pathways (red arrows), and the non-radiative pathways through intersystem crossing (ISC) to the S = 0 singlet state (yellow arrows) which allows for spin-state dependent optical readout. c Microscope image of the hBN flake positioned on the gold microwave (MW) stripline. d Image of the sample from the optically detected magnetic resonance (ODMR) setup with the laser spot (blue, false color) for the initialization/interrogation of the spin ensembles. In the inset, the Gaussian profile of the laser spot is shown. e ODMR spectrum of the 01 transition at ~8 mT. The data points are fitted with single Gaussian functions (dotted lines) that are summed up to give the overall spectral lineshape (solid-blue line). f Rabi oscillations for four different MW powers. The MW frequency was set at the center of the ODMR spectrum in e. Inset, left: pulse sequence for the Rabi experiment. Right: dependence of the Rabi frequency νR versus the square root of the microwave power P. g Semi-log plot of the spin-lattice relaxation time decay (T1) measured by the recovery pulse sequence (inset). A T1 time of ~6 μs is extracted from the mono-exponential fit. h Semi-log plot of the coherence time T2 measured with the depicted spin-echo sequence. T2 = 60 ns is obtained from a stretched exponential fit. A strong signal modulation is superimposed to the same T2 decay curve with a frequency of ~45 MHz.

In this work, we combine efficient microwave (MW) delivery and precise MW control to perform dynamical decoupling schemes, such as Carr-Purcell-Meiboom-Gill30 (CPMG) to efficiently suppress magnetic noise from the spin bath and increase the VB coherence. We extend the room-temperature T2 coherence time of VB ensembles in hBN by nearly two orders of magnitude. Furthermore, we generate VB dressed-states (DS) by applying spinlock pulses and show that spin coherence can be preserved for a time (T1ρ), which is on the same order as the spin-lattice relaxation time T1. These results show consistency with the recent findings by Ramsay et al.29, who were able to increase the coherence time to a similar extent using an alternative approach based on a continuous concatenated dynamic decoupling (CCD) method3133. In addition, our results offer further evidence that enhanced coherence enables the detection of radiofrequency (RF) signals, even with a frequency resolution that is far beyond the intrinsic coherence time of the spin defect. Furthermore, we investigate the potential of these systems by experimentally assessing their sensitivity to RF fields. With a particular focus on exploring their possible applications in nanoscale spin sensing, we compare their performance to that of typical spin-defect-based sensors relying on NV centers in diamond. This work broadens the applicability of VB defects in hBN, opening up new opportunities for nanoscale quantum sensing and technology.

Results and discussion

Characterization of VB spin properties

The negatively charged boron vacancy center (VB) consists of a missing boron atom in the hBN lattice surrounded by three equivalent nitrogen atoms (Fig. 1a). Ten electrons occupying six defect orbitals result in a triplet S = 1 ground state consisting of the ms=0 (0) and ms=±1 (±1) spin states6,34. At zero magnetic field, the ±1 states are degenerate but separated in energy from the 0 state due to a zero-field splitting (ZFS) of D ~ 3.47 GHz. The transition from the ground state to the excited state by green laser illumination (e.g., λ = 532 nm) is followed by a phonon-assisted radiative decay with broad photoluminescence (PL) peaking at ~850 nm35,36. A spin-state-dependent relaxation path through inter-system crossing (ISC) leads to two important consequences: (1) the VB defects can be optically initialized into the 0 state under ambient conditions; (2) the 0 and ±1 states can be distinguished by their spin-state dependent PL (Fig. 1b)7,19,34,37.

All experiments presented in this work were conducted under ambient conditions on VB ensembles obtained by He+ implantation of hBN flakes (~100 nm-thick, details in the Methods section). As depicted schematically in Fig. 1c, the flakes are directly transferred onto a gold MW microstripline that is used for VB spin manipulation. A microscope for spatially resolved ODMR measurements has been built that can address defined areas of the sample with a laser spot size of ~20 μm diameter (see Fig. 1d and Experimental setup in Methods).

As a first characterization experiment, we measured the electron-spin resonance (ESR) spectrum by performing ODMR at a bias magnetic field B0 ~ 8 mT. The spectrum shows a broad resonance corresponding to the 01 transition (Fig. 1e), revealing characteristic features due to the strong hyperfine (HF) coupling of the VB electronic spin with the three equivalent 14N nuclei. The HF lines can be fitted with seven Gaussian functions, separated by ~ 44 MHz7,18,26,27. Their lineshape indicates the inhomogeneously broadened nature of the spectrum, where the electronic spins experience a broad distribution of local magnetic fields due to the intricate HF structure. Based on this initial observation, we anticipate that the coherence properties of the VB electronic spins will be significantly impacted by hyperfine interactions with nearby nuclear spins. To perform coherent control of the VB centers, we run Rabi experiments with the MW frequency at the central peak of the ODMR spectrum and monitor the fluorescence contrast while sweeping the MW-pulse duration tp. Figure 1f shows Rabi oscillations for different MW amplitudes. We observe a 6−7% fluorescence contrast at maximum amplitude with a π-pulse duration of tp(π)=7.5ns, corresponding to a Rabi frequency νR ~67 MHz. Maximizing the Rabi frequency is crucial for two reasons: (1) it allows for short pulses that are necessary for an efficient spin manipulation, especially in the presence of fast spin-dephasing, (2) it allows us to drive a large bandwidth of the ODMR spectrum. Fourier transformation of our rectangular π/2-pulses gives an excitation bandwidth of approximately 1/tp(π/2)=250MHz for a ~ 4 ns duration. This has the positive effect of increasing the observable contrast whilst reducing detrimental spectral diffusion effects.

To characterize the VB relaxation properties, we measure the spin-lattice relaxation time T1 using a protocol consisting of two 5 μs-long laser pulses for initialization and readout separated by the sweep time τ. A time constant T1 ~ 6 μs is extracted from a mono-exponential fit of the resulting contrast decay (see Fig. 1g). This value is in agreement with a previous work38, where the same conditions for defects generation in hBN were utilized (refer to Sample preparation in the Methods section). However, other groups have reported 2–3 times longer T1 values18,19 which is likely due to differences in the sample preparation.

Furthermore, we measure the native coherence time T2 using the spin-echo sequence depicted in Fig. 1h. Here, the fluorescence contrast is detected while sweeping the free precession time τ. Fitting the resulting signal decay with a stretched exponential function39,40 (see pulse sequences, normalizations and fittings in Methods), gives a time constant T2 ~60 ns, which is similar to reported values27,28. Such a coherence time is short, especially compared to other ensembles of spin defects in 3D-host materials, where typical T2 times lie in the vicinity of microsecond timescales at room-temperature11. Interestingly, a clear oscillation appears superimposed on the spin-echo decay. This modulation is tentatively assigned to the interaction of the VB electronic spin with the three 14N nuclei since the frequency of ~ 45 MHz, fit by a cosine function (see Methods and Supplementary Note 1), matches the HF coupling7. An improvement of the coherence time is a critical step for utilizing VB in hBN in advanced quantum technologies, where qubit coherent manipulation and quantum information storage/retrieval are each essential preconditions.

Extension of the VB coherence

Dynamical decoupling (DD) techniques are traditional tools of nuclear magnetic resonance spectroscopy (NMR)30,41 and have been extensively applied in the past years to prolong the coherence of spin defects in solid-state materials11,4247. Here, we apply this approach to VB ensembles in hBN to improve their short coherence times and unlock possibilities based on advanced spin manipulation.

A significant source of VB decoherence is likely to be found in spin ‘flip-flops’ from the bath spins (nuclei or paramagnetic impurities) surrounding the defects27,28. These processes cause random magnetic field fluctuations felt by the electronic spin on a time scale set by the average interactions involved39,45,48,49. We show that the CPMG DD protocol41 can be applied to decouple the VB spins from magnetic noise. This is done by applying resonant MW π-pulses, following the scheme (π/2)y[τ(π)xτ]N (see bottom-left inset in Fig. 2a), that have the effect to periodically re-phase the VB superpositions and sustain their coherence over longer timescales. Then, the coherence is mapped to the spin populations via a last (π/2)y-pulse for the final optical readout. If τ is shorter than the spin bath fluctuation correlation time tc, the magnetic noise appears to be time-independent39,48, and the train of π-pulses can effectively cancel it out.

Fig. 2. Extension of coherence for VB in hBN.

Fig. 2

a Measured decoherence curves (semi-log plot) for the VB spins under the effect of different CPMG decoupling pulse sequences with an increasing number of π-pulses N. Colored dots and solid lines are data points and fits, respectively. In black, the T1 measurement of Fig. 1g is shown with the corresponding fit as dotted line. Bottom, left: dynamical decoupling (CPMG) pulse sequence. Bottom, right: the data enclosed in the dotted box are shown in Supplementary Fig. 2. Inset: plot of the coherence times vs the number of π-pulses N utilized in each CPMG experiment. The data points fit a power function f(N) = a × N s where s ~ 0.71. b Rotating-frame spin-lattice relaxation time (T1ρ) measured with the depicted spinlock sequence (blue), in comparison with the T1 measurement (black).

In Fig. 2a, we show the signal intensity of the spin-echo obtained after N MW π-pulses upon increasing the delay τ between them. We plot the decays against the total pulse sequence time ts = 2Nτ. This results in multiple decay curves, showing how fast decoherence occurs depending on the number of π-pulses utilized for noise suppression. Then, we extract the characteristic T2(N) times by fitting every curve (see Methods). We observe a factor ~ 70 increase in the coherence time (T2(1000)~4.2μs) by applying up to 1000 π-pulses, with respect to the spin-echo with a single π-pulse (T2 ~ 60 ns). The enhanced coherence times closely approach the spin-lattice relaxation time, which is the theoretical limit50. We observe that DD has no impact on the strong modulation observed in the spin-echo T2 measurement. This modulation remains unchanged in both amplitude and frequency as N increases. We also note that the finite duration of the MW pulses sets the shortest pulse sequence time ts. Moreover, particularly for large N, we expect contributions from pulse errors and T1 relaxation44,45. Please refer to Supplementary Fig. 2 for a better visualization of the data related to the experiments with N = 300, 600, 800, and 1000 π-pulses.

In the upper-right inset of Fig. 2a, we show the increase of the coherence times versus the number of π-pulses N. The plot depicts a sub-linear dependence that can be fit with a simple power function f(N) = a × N s where s ~ 0.71, which is in good agreement with the theoretical dependence of T2 ∝ N 2/3 expected for a Lorentzian spin bath, in the limit of long spin bath correlation times tc ≫ τ39,48. These results demonstrate that dynamical decoupling works effectively for our sample, similar to the situation encountered for nitrogen-vacancy (NV) ensembles in diamond in the presence of high-density paramagnetic impurities (50-100 ppm) and natural abundance 13C nuclear spins39,45 or for VSi in 4H-SiC51.

We also note that a factor of two increase in coherence time by a CPMG protocol was shown by conventional electron paramagnetic resonance (EPR) spectroscopy, although under very different experimental conditions (magnetic field of ~3 T and cryogenic temperature of ~50 K)20.

An alternative approach that preserves coherence relies on generating VB dressed spin states using spinlock pulse sequences52,53. After optical initialization of the defects in the 0 state, a (π/2)x-pulse generates their coherent superposition which is then locked along the y-axis of the Bloch sphere by a spinlock pulse. We measure the spin-lattice relaxation time in the electron-spin rotating-frame (T1ρ) with the experiment depicted in Fig. 2b. Here, the VB fluorescence contrast is monitored while increasing the spinlock pulse duration. We demonstrate that the VB dressed-states and, therefore, the electronic spin coherence can survive ~130× longer than in the case of the spin-echo T2 (Fig. 1h). The decay of the spinlocked coherence can be fit by a bi-exponential function (see Methods) and reaches the ~T1 relaxation time.

Sensing RF signals with VB defects in hBN

With the improved coherence time, the application of advanced quantum sensing protocols is now possible. In particular, we explore RF sensing by alternatively using pulsed dynamical decoupling (pDD) techniques, or continuous dynamical decoupling (cDD) schemes. In both cases, we test the response of the VB-based sensor to an RF magnetic field of the form BRF(t) = bRFcos(2πνRFt + ϕRF). Here, bRF, νRF and ϕRF are the RF amplitude, frequency and phase, respectively. The RF field is aligned perpendicular to the hBN flake’s plane (i.e., quantization z-axis of the spin defects) and its phase is unlocked with respect to the control pulse sequence. A more detailed explanation on quantum sensing of RF fields with hBN is provided in the Supplementary Note 3.

In pDD sequences, the VB spins are brought into a superpostion state through a π/2-pulse and the RF field induces a relative phase θpDD to the VB electronic spin’s superposition, such as: ψ=(0±eiθpDD(ts)1)/2. For detection, the signal is rectified by applying a train of N equidistant π-pulses at times τ = 1/(4νRF). This allows the phase to be accumulated over an interrogation time of ts = 2Nτ, reaching a maximum value of θpDD(ts) = (2/π)γbRFts, where γ is the electron gyromagnetic ratio. This accumulated phase is then converted to a spin population difference by a final π/2-pulse and read out optically. This scheme acts as a pass-band filter with center frequency fc=14τ and bandwidth Δf=1ts. This means that the protocol enhances the effect of RF fields oscillating within the bandwidth Δf while suppressing all other field fluctuations. Supplementary Note 3 presents experimental evidence that the VB spin ensembles are subject to the sensing mechanism described above. As a first example, we use the pulsed dynamical decoupling sequence (XY8-N), depicted in Fig. 3a, to sense the RF frequency νRF. The XY8-N protocol is similar to the CPMG sequence described earlier, but it employs a distinct pattern of MW-pulse phases that alters the spin rotation axis at each π-pulse. This variation is designed to minimize the impact of pulse errors. We have chosen to utilize the XY8-N sequence instead of CPMG as it typically exhibits superior performance in detecting RF fields5456 (see Supplementary Note 4). In Fig. 3b, we employ a sequence with 16 π-pulses (XY8-2) and test the sensor’s response by sweeping τ while keeping νRF at a defined value. Fluorescence contrast dips appear at the expected τ for two different values of νRF and their lineshapes can be fitted by the expected sinc-squared function3, as detailed in the Methods part. In Supplementary Note 6, we explore the frequency range that can be probed using the XY8-N protocols on our sample, which spans from ~10 MHz to 40 MHz. In addition, we provide an analysis of the criteria for optimizing the pDD sequence and determining the optimal number of pulses for a specific sensing frequency. These experiments directly demonstrate the sensor’s ability to detect an unknown RF signal. In Fig. 3c, we show the dependence of the detected signal on the number of π-pulses. As anticipated, the XY8-2 dip narrows down with respect to the one obtained with the XY8-1 sequence, however, simultaneously, the signal-to-noise ratio (SNR) decreases due to decoherence. More details about the experimentally probed spectral bandwidth can be found in Section 4 of Supplementary Note 3.

Fig. 3. RF-sensing with VB in hBN.

Fig. 3

a Pulsed-DD protocol used for sensing RF signals. An XY8-2 pulse sequence was utilized for the experiments in b, c setting a test RF field at a constant frequency νRF and sweeping τ. b Response of the VB sensor as fluorescence contrast dips occurring at matching of the interpulse delay τ with the RF signal period according to: τ = 1/(4νRF). The data points (dots) are best fitted with a (sinc)2 function. c Dependence of the lineshape on the number of pulses for XY8-1,2,3,4 sequences setting νRF = 16 MHz. d Spinlock-based protocol for RF-sensing. A test RF field was set at a constant frequency νRF and the spinlock pulse duration was kept fixed (tSL = 0.5 μs) while its amplitude Ω was swept. e Spectral response as fluorescence contrast dips occurring at matching of the spinlock amplitude with the RF frequency according to νR = νRF. f Dependence of the lineshape on the spinlock duration. g Coherently Averaged Synchronized Readout (CASR) protocol. XY8-2 subsequences are synchronized to the sensing frequency for 2 seconds. h Time domain CASR signal. Each detected point corresponds to an optical readout represented by the red circles in g. In the inset, a zoom-in of the signal in the first 4ms shows the oscillations at Δν = 1000 Hz. i Fourier transformation of the signal in h yields a sharp peak at the relative frequency Δν. A Lorentzian linefit of the peak (red line) results in a 0.9 Hz linewidth.

An alternative approach for sensing RF signals are cDD pulse sequences which are based on rotating-frame magnetometry5759 (Fig. 3d). They exploit the VB coherence locked on the transversal plane by a spinlock pulse of duration tSL and variable amplitude Ω. Matching the VB Rabi frequency νR with the sensing frequency νRF, such that: Ω/(2π) = νR = νRF drives transitions between VB dressed-states ±=(0±ieiθSL(tSL)1)/2 and induces a relative phase θSL(tSL)=12γbRFtSL. As in the previous pDD method, this accumulated phase is translated to a spin population difference by a final π/2-pulse and optically read out, providing direct information about the strength of the RF magnetic field. The spinlock method can also be seen as a pass-band filter whose center frequency is given by the spinlock amplitude fc = νR, and whose bandwidth Δf is set by the spinlock time tSL (see Section 7 of Supplementary Notes 3 for a more detailed description of the spinlock experiment). Figure 3e illustrates RF sensing using the spinlock pulse sequence. We apply a sample RF field to the VB sensor and sweep the spinlock MW amplitude Ω/(2π) in a range of a few tens of MHz around the RF frequency νRF. Similar to what was obtained with the XY8-2 protocol in Fig. 3b, we observe dips at the matching conditions: νRF = Ω/(2π). Moreover, we explore the possible range of detectable RF frequencies which, in this case, is limited by the spinlock amplitude Ω. As shown in Supplementary Fig. 16, the spinlock sequence gives us access to RF frequencies in the range of 2 MHz ≲ νRF ≲ 25 MHz. In Fig. 3f, we investigate the sensor’s response by probing it with various spinlock durations tSL. We observe an increase in SNR and a reduction in linewidth until reaching an optimal duration of approximately 0.5 μs. Beyond this point, we notice a gradual degradation of the signal and broadening of the dips, approaching the limits imposed by the T1ρ and T1 relaxation times. A discussion of these aspects can be found in Section 7 of Supplementary Note 3.

Additionally, in Supplementary Note 7, we demonstrate coherent control of the VB dressed-states and probe their evolution during the spinlock pulse57,59,60. The detection of such states can be particularly useful in scenarios where pseudo-Zeeman spin states are preferred over bare-states due to the convenience of modulating their energy splitting through the microwave amplitude. Applications that benefit from these states include nuclear-spin hyperpolarization, which can enhance the sensitivity of magnetic resonance spectroscopy, enable the use of nuclear spins as quantum registers, or improve the accuracy of quantum simulators12,61,62. A system like the VB in hBN has the potential to benefit all of these areas. As evident from the experimental results, advanced quantum sensing protocols can be applied using spin defects in 2D materials and for qubit-control in 2D quantum technologies26,46,6365.

Sensing of RF signals with arbitrary frequency resolution

The frequency resolution in dynamical decoupling sequences is typically restricted by the duration of the pulse sequence and thus by the coherence time. This is a particular limitation for VB defects in hBN, but it can be overcome by applying sensing schemes that integrate classical heterodyne detection with quantum sensing, which allow spectral resolutions that are independent on the properties of the qubit6668. In particular, we demonstrate a sensing scheme called coherently averaged synchronized readout (CASR)66. As explained in detail in Section 8 of Supplementary Note 3, the fundamental idea of the CASR protocol is the synchronization of a series of pDD sequences (e.g., XY8-N) with the sensing RF magnetic field which is kept phase-locked to the control sequence. For a slight detuning of the RF frequency νRF from the pulse sequence synchronization frequency νpDD = 1/(4τ), the fluorescence oscillates in time domain at the difference frequency Δν = νpDDνRF. This synchronization technique enables arbitrary frequency resolution since it is no longer limited by the intrinsic coherence time of the solid-state spin system, but rather by the clock stability of the experimental setup responsible for the reiteration of the pulse sequences for an arbitrarily long time.

Figure 3g illustrates the pulse scheme utilized for our experiments, which consists of a train of XY8-2 sequences, which are synchronized with an RF signal of frequency νRF = 18 MHz. We run the sequence for a total measurement time tm = 2s (Fig. 3h), resulting in a time-dependent measurement that can be Fourier transformed to give a peak with sub-Hertz linewidth (Fig. 3i). Importantly, this method can render our ultra-thin quantum sensor capable of sensing oscillatory magnetic fields with a high frequency resolution, with possible applications in nanoscale magnetic resonance spectroscopy67,68. Finally, we used the CASR protocol to experimentally determine the sensitivity of our VB detector which resulted to be ~2–3 μT Hz−1/2. Details about the sensitivity measurement can be found in Section 8 of Supplementary Note 3.

Comparison with state-of-the-art NV-diamond sensors

To draw a parallel with other competing systems, we examined and compared the RF sensing capabilities of our VB sensor with other state-of-the-art quantum sensors based on ensembles of NV centers in diamond11,69,70. We explain the details of this comparison in the Supplementary Note 5. In a simplified picture, the sensitivity of optically-active spin-based sensors depends on the number of detected photons (n) and on the spin coherence times (T2) according to: η1n1T211,69,71. Considering the shorter coherence times (on the order of nanoseconds for our VB sample versus microseconds timescales for NV-sensors) and the lower quantum efficiency (~0.03% vs. ~70%)72, we anticipate that our VB sensor will exhibit lower sensitivity compared to the NV-diamond sensors. Indeed, assuming similar experimental conditions, such as the same light collection efficiency, our hBN sample is expected to give a sensitivity on the order of a few μT Hz−1/2, consistent with the experimental findings. In contrast, ensembles of NV centers in diamond typically provide sensitivities on the order of nT Hz−1/2 69,73. While this may initially be perceived as a limitation, it is important to acknowledge the significant signal enhancements that VB sensors can provide in various applications, particularly in nanoscale spin sensing. These enhancements arise from the 2D properties of the host material, which enable an ideal interface with target materials, reduced presence of dangling bonds and surface imperfections, and optimal proximity between the sensors and the target spins for effective interaction. Initial experiments, such as those shown in the recent work of Durand et al.74 investigating VB functionality in few-layer hBN substrates, are crucial steps towards revealing the full potential of these systems.

In conclusion, this work addresses the short spin coherence of the hBN spin defects, a severe limitation for their application in quantum technology. Utilizing pDD protocols, we achieve a ~70 times extension of the coherence with respect to the single spin-echo T2, approaching the limit of the longitudinal relaxation time T1. Furthermore, by generating VB dressed-states with spinlock pulses, we demonstrate an extension of the coherence up to ~7.5 μs, overcoming the spin-echo T2 by more than two orders of magnitude. The improved coherence times enable us to demonstrate RF signal detection in several complementary experiments. In particular, we demonstrate that dynamical decoupling protocols, such as XY8-N or spinlock pulse sequences, are functional for sensing RF signals. Furthermore, we show that despite the intrinsically short VB coherence, sensing RF frequencies with high (sub-Hz) frequency resolution is also possible using quantum heterodyne detection approaches, such as CASR or Qdyne schemes6668,75. While the experiments indicate that our VB sensor is less sensitive to RF fields compared to state-of-the-art NV-diamond quantum sensors, the distinctive potential of hBN as a Van der Waals material to form intimate interfaces with target samples can possibly mitigate this limitation. Additionally, the experiments reported, along with the possible miniaturization and integration of these sensors into 2D heterostructures, set the stage for the establishment of nanoscale spin sensing for the exploration of emergent phenomena in low-dimensional quantum materials and devices. Finally, the improved spin control and the intriguing nuclear-spin environment surrounding the defects open a promising path to the realization of multi-qubit registers for quantum sensors and quantum networks integrated into ultra-thin structures.

Methods

Experimental setup

Initialization of the VB ensemble is realized with a 532 nm laser (Opus 532, Novanta photonics) at a power of ~100 mW (CW). Laser pulses are timed by an acousto-optic modulator (3250-220, Gooch and Housego) with typical pulse durations of 5 μs. The laser light is reflected by a dichroic mirror (DMLP650, Thorlabs) after which it is focused on the hBN flake by an objective (CFI Plan Apochromat VC 20×, NIKON) with a numerical aperture of NA = 0.75. Photoluminescence (PL) is collected by the same objective and alternatively focused by a tube lens on: (1) an avalanche photodiode (APD) (A-Cube-S3000-10, Laser Components) for the spectroscopic path; (2) a camera (a2A3840-45ucBAS, Basler) for imaging the sample. The excitation green light and possible unwanted fluorescence from other defects are filtered out using a long-pass filter with a cut-on wavelength of 736 nm (Brightline 736/128, Semrock). The output voltage of the APD is digitized with a data acquisition unit (USB-6221 DAQ, National Instruments). An arbitrary waveform generator (AWG) up to 2.5 GS/s (AT-AWG-GS2500, Active Technology) is used to synchronize the experiment and generate rectangular arbitrary-phased RF pulses for VB spin control. For up-conversion of the AWG RF frequency (typically 250 MHz) to the MW frequency required for VB driving, mixing with a local oscillator generator (SG384, Stanford Research Systems) is realized by means of an IQ mixer (MMIQ0218LXPC 2030, Marki). The amplified microwave pulses (ZHL-16W-43-S+, Mini-Circuits) are delivered by a gold stripline to the hBN sample. A permanent magnet underneath the sample holder is utilized for applying the magnetic field of ~8 mT. The ODMR frequency is used to determine the magnetic field strength B0 as well as the VB[0,−1] resonance frequency fVB. The radio wave signals used to demonstrate RF magnetometry are produced by an RF waveform generator (DG1022z, Rigol) connected to a 30 W amplifier (LZY-22+, Mini-Circuits). A small wire loop placed in the proximity of the sample was used for the RF delivery.

Sample preparation

The hexagonal boron nitride van der Waals flakes were cleaved and tape-exfoliated starting from hBN seed crystals (2D semiconductors) on a silicon wafer with a 70 nm top oxide layer. We then implanted the exfoliated samples at the ion beam facility (Helmholtz-Zentrum Dresden-Rossendorf, HZDR) with a helium ion fluence of 3 × 1014 ions/cm2 at an energy of 3 keV. Once the photoluminescence spectrum of the boron vacancies was verified, we transferred the boron vacancy containing hexagonal boron nitride with a standard dry transfer method on top of a gold stripline evaporated on a sapphire substrate. The gold stripline was connected to a printed circuit board using several bond-wires in parallel to improve impedance matching and enabling high power MW delivery for short Rabi pulses.

ODMR measurement

For all experiments throughout this work, 5 μs-long laser pulses were used for initialization/readout. The ODMR measurement displayed in Fig. 1e) was performed using a 1 μs-long MW pulse at ~1mW power for the driving of the VB spin populations. The fluorescence contrast was monitored while increasing the MW frequency. For normalization and noise cancellation purposes, a second reference sequence was applied right after the first one, differing only from the MW being off76. The single data points result from dividing the fluorescence readouts of the two sequences. 10,000 averages for each data point and further 600 averages of the full frequency sweep were recorded. After baseline subtraction, the lineshape was fitted with seven Gaussian functions of the form a[exp(ln(2)(ff0)2/LW2)] whose amplitude a and frequency f0 were used as fitting parameters whereas the half-width-half-maximum LW was kept at a constant value of 22 MHz. The relevant fit parameters are reported in Supplementary Table 4.

Rabi experiment

Rabi oscillations were recorded by setting the MW frequency in the center of the ODMR spectrum and sweeping the MW-pulse duration tp in stepwise increments. Different MW power (37, 33, 28 and 23 dBm) were used corresponding to the different datasets in Fig. 1f). For each point, 10,000 averages were acquired following the same normalization and noise cancellation procedure used for the ODMR experiments. In Fig. 1f, the Rabi oscillations were fitted using the following function: 1c/2+c/2(cos(2πνRt+Φ))[a×exp(t/Ta)+b×exp(t/Tb)], where c is a term for coherence normalization, νR the Rabi frequency, Φ a phase term and the bi-exponential factor accounts for the damping of the oscillation. Likely due to the dephasing processes causing damping and out-of-step effects of the Rabi oscillation, we observed a significant discrepancy ( ≳ 20%) between the Rabi frequencies obtained directly from the fits and the expected frequencies based on the first minimum of the Rabi oscillation curve that corresponds to the actual spin population inversion, as determined by θflip = 2πνRtp, where tp represents the duration of the pulse. To address this issue, we calculated the first derivatives of the Rabi curves, fitted them using a polynomial spline, and identified the x-intercept as the precise minimum position, indicative of the π-pulse duration. Consequently, for each Rabi experiment, we measured π-pulse durations of (7.5 ± 0.1), (10.1 ± 0.2), (15.3 ± 0.3), and (28 ± 1) ns. Subsequently, we calculated the corresponding Rabi frequencies νR using the aforementioned flip-angle formula: νR = 1/(2tπ). To illustrate the relationship between the Rabi frequencies and the microwave power, we plotted the νR values against the square root of the microwave power. Performing a linear fit (y = ax), we obtained a slope of a = (32 ± 2) MHz/W (Fig. 1f, inset).

T1 measurement

The T1 time (see Fig. 1g) was measured by sweeping the time τ between initialization and readout pulses in a range from 10 ns to ~ 30 μs. For noise cancellation purposes, a second reference sequence was applied right after the first one, differing only for a MW π-pulse inserted after the first laser pulse. The data points were then obtained by dividing the readouts of the two consecutive sequences. Every point was averaged 100,000 times and the whole time sweep was averaged four times. The T1 decay curve was fitted with a simple mono-exponential function of the form a(exp(τ/T1)) where T1 = (5.84 ± 0.05) μs.

T2 measurement

The spin-echo sequence was set up following the scheme [(π/2)yτ−(π)xτ−(π/2)y] where τ is swept from 10 ns to ~200 ns. Referencing for noise cancellation was achieved by alternating the last MW-pulse of the spin-echo sequence from π/2 to (3/2)π76. Every point was averaged 100,000 times and the whole time sweep was averaged five times. The decay was fitted with the function: a×e(2τ/T2)c+b×cos(2πfτ)×e(τ/Tf) where the first stretched exponential yields the time constant T2 = (58.5 ± 0.4) ns with c = 1.03 ± 0.01. To guide the eye in the figures, we fitted the oscillation superimposed on the decay with a cosine function with f = 44.5 MHz, multiplied by an exponential term which reproduces the damping of the observed oscillation with Tf = 71 ns. The relevant fit parameters are reported in Supplementary Table 5.

CPMG experiments

We applied the same scheme utilized for the T2 measurement, that is monitoring the spin-echo signal while increasing the free evolution time τ. Multiple decoherence curves were acquired for pulse sequences with growing number N of π-pulses, up to N = 1000. The data were normalized according to the following procedure. First, for all datasets, the time axis was multiplied by a scaling factor S = 2N accounting for the real time elapsed between the first and the last π/2-pulse. Then, the decay curve corresponding to the single π-pulse experiment (spin-echo) was fitted by the function: a×e(ts/T2)c+b×cos(2πfts/S)×e(ts/Tf). The point of maximum contrast, namely maximum intensity of the spin-echo, when no decoherence has occurred yet, has been extrapolated from the fit in correspondence to the time t = 0 of the decay. Then, the contrast of all datasets has been normalized to this value and then fitted with the same function, keeping the amplitudes a and b locked. The modulation frequency f has been used as a fitting parameter only for the datasets with N = 1, 4, and 16, yielding f = (44.1 ± 0.5), (44.7 ± 0.6), (45.9 ± 0.8) MHz, respectively. For the other datsets, f was kept locked to 44.5 MHz. The fitted T2 values and relative exponents c are reported in Supplementary Table 6. The dependence of the coherence times on the number of pulses shown in the inset of Fig. 2a was fitted with a simple power function f(N) = a × N s where a = (29 ± 1) ns and s = 0.71 ± 0.05.

T1ρ measurement

T1ρ was measured using a pulse sequence [(π/2)xdspinlockydπ/2x] and monitoring the resulting fluorescence contrast while applying step-by-step increments of the spinlock pulse duration tSL. 3.5 ns-long π/2-pulses were used and the delay times d kept to a value as short as possible (~1−2 ns), in order to avoid significant dephasing during this time. The spinlock amplitude was kept at 10% of the MW amplitude utilized for the π/2-pulses. 100,000 averages were taken for each data point. The resulting curve fits a bi-exponential decay of the form: a(exp(tSL/T1a))+b(exp(tSL/T1b)), with a = 0.48 ± 0.02, T1a = (1.38 ± 0.09) μs, b = 0.52 ± 0.02, T1b = (7.52 ± 0.21) μs.

XY8-N experiments

RF sensing was performed by means of a XY8-2 sequence following the scheme: (π/2)y[[τ(π)ϕτ]8]2, with the following π-pulses phase-scheme: ϕ = [xyxyyxyx]2. π/2 and π-pulse durations of respectively 4 ns and 8 ns have been used. An RF field was applied by a wire loop in the vicinity of the sample and the RF frequency, νRF, was held at a constant value. The interpulse duration, τ, was varied between 10 and 20 nanoseconds, which is in a range where the sensing frequency was expected to match the condition νRF=14τ. The RF phase was left unlocked with respect to the pulse sequence, resulting in random phase variations for each repetition of the pulse sequence. Referencing for noise cancellation was achieved by alternating the last MW-pulse of the spin-echo sequence from π/2 to (3/2)π. Every point was averaged 100,000 times and the whole sweep averaged 49 times. The observed dips were first baseline-corrected by subtracting a dataset of the same experiment performed with no RF signal and then fitted with the following function: a/2sin(2πνRFN(ττ0))/(2πνRFN(ττ0))2. In the fittings, we set νRF at a constant sample frequency and leave a, τ and N as free parameters. The raw data before baseline subtraction are shown in Supplementary Note 9. The same procedure has been applied for the data in Fig. 3c. All relevant fit parameters are reported in Supplementary Tables 7 and 8.

Spinlock protocol

For sensing, the same spinlock sequence described above for the measurement of the T1ρ was utilized. A π/2-pulse of 4 ns and a spinlock duration tSL = 0.5 μs were used. The RF phase was left unlocked to the pulse sequence, resulting in random phase variations for each repetition of the pulse sequence. The RF frequency, νRF, was held at a constant value and the spinlock amplitude Ω was swept, corresponding to sweeping the Rabi frequency νR until matching the condition νR = νRF. The observed dips were first baseline-corrected by subtracting a dataset of the same experiment performed with no RF signal and then fitted with Lorentzian functions of the type: a/(1+(ννRF)2/LW2). The raw data before baseline subtraction are shown in Supplementary Note 9. The same procedure was applied for the data in Fig. 3f. All relevant fit parameters are reported in Supplementary Tables 9 and 10. Since the spinlock amplitude is swept by varying the peak-to-peak voltage (V.p.p.) of our AWG, a calibration procedure was applied to report the spinlock amplitude in frequency units (MHz) (See inset of Supplementary Fig. 16).

CASR protocol

We applied a pulse sequence which was synchronized with the sensing RF signal and consisted of concatenated XY8-2 subsequences repeated so that the timing between them was an integer number of the RF period. For each XY8 sequence, we used 5 μs-long laser pulses and π-pulses of 8 ns for initialization/readout and MW manipulation, respectively. We sensed an RF frequency νRF ~ 18 MHz by setting the interpulse delay τ = 14 ns. To get a relative frequency Δν = 1000 Hz, the RF was shifted to νRF = 18.001 MHz. A total measurement time tm of 2 seconds was utilized. The detected time trace was then Fourier transformed and the magnitude plotted in Fig. 3i. The resulting peak in the frequency domain was fitted with a modified Lorentzian function to determine the full width half-maximum. The signal was the result of 1000 averages.

Supplementary information

Peer Review File (4.2MB, pdf)

Source data

Source Data (6.6MB, zip)

Acknowledgements

R.R. and D.B.B. would like to thank Dr. Steffen Glaser for stimulating discussions. R.R. thanks Nick Neuling for his help in the laboratory. This study was funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation)—412351169 within the Emmy Noether program. R.R. acknowledges support from the DFG Walter Benjamin Program (Project RI 3319/1-1) and the PNRR-PE “National Quantum Science and Technology Institute" (NQSTI), NextGenerationEU 2022-RTDA-4445. G.S. acknowledges the Marco Polo program of University of Bologna (grant 2022) for funding her stay abroad. J.J.F. and D.B.B. acknowledge support from the DFG under Germany’s Excellence Strategy-EXC 2089/1-390776260 and the EXC-2111 390814868 as well as by the Bayerisches Staatministerium für Wissenschaft und Kunst through project IQSense via the Munich Quantum Valley (MQV). Support by the Ion Beam Center (IBC) at HZDR is gratefully acknowledged.

Author contributions

R.R., M.S., and D.B.B. conceived the idea of RF sensing with VB in hBN. R.R. and D.B.B. designed the research. R.R. carried out the experiments and the simulations. M.S., C.Q., and P.J. prepared the sample and fabricated the microstructure for MW delivery. R.R. M.S. and S.M. built the ODMR setup. J.C.H. and J.P.L. helped in the optimization of the experimental setup, J.C.H. contributed to the theoretical derivations. F.B. programmed the pulse sequences. G.S. contributed to the experiments for sensitivity estimations. G.V.A., U.K., and M.H. were responsible for the ion implantation for the generation of the VB centers in the hBN substrate. A.V.S. and J.J.F. advised on several aspects of theory and experiments. R.R., M.S., and D.B.B. analyzed the data. R.R., J.C.H., and D.B.B. wrote and reviewed the manuscript with inputs from all authors.

Peer review

Peer review information

Nature Communications thanks Andrew Ramsay, and the other, anonymous, reviewers for their contribution to the peer review of this work. A peer review file is available.

Funding

Open Access funding enabled and organized by Projekt DEAL.

Data availability

Source data are provided with this paper77. The Source Data used in this study are available in the ZENODO database under accession code [https://zenodo.org/record/8135158]. All other data that support the findings of this study are available from the corresponding author upon reasonable request. Source data are provided with this paper.

Competing interests

All authors declare no competing interests.

Footnotes

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

These authors contributed equally: Roberto Rizzato and Martin Schalk.

Contributor Information

Roberto Rizzato, Email: roberto.rizzato@tum.de.

Dominik B. Bucher, Email: dominik.bucher@tum.de

Supplementary information

The online version contains supplementary material available at 10.1038/s41467-023-40473-w.

References

  • 1.Weber JR, et al. Quantum computing with defects. Proc. Natl Acad. Sci. 2010;107:8513–8518. doi: 10.1073/pnas.1003052107. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 2.Awschalom DD, Bassett LC, Dzurak AS, Hu EL, Petta JR. Quantum spintronics: engineering and manipulating atom-like spins in semiconductors. Science. 2013;339:1174–1179. doi: 10.1126/science.1231364. [DOI] [PubMed] [Google Scholar]
  • 3.Degen CL, Reinhard F, Cappellaro P. Quantum sensing. Rev. Mod. Phys. 2017;89:035002. [Google Scholar]
  • 4.Wolfowicz G, et al. Quantum guidelines for solid-state spin defects. Nat. Rev. Mater. 2021;6:906–925. [Google Scholar]
  • 5.Heremans FJ, Yale C, Awschalom D. Control of spin defects in wide-bandgap semiconductors for quantum technologies. Proc. IEEE. 2016;104:2009–2023. [Google Scholar]
  • 6.Abdi M, Chou J-P, Gali A, Plenio MB. Color centers in hexagonal boron nitride monolayers: a group theory and ab initio analysis. ACS Photonics. 2018;5:1967–1976. [Google Scholar]
  • 7.Gottscholl A, et al. Initialization and read-out of intrinsic spin defects in a van der waals crystal at room temperature. Nat. Mater. 2020;19:540–545. doi: 10.1038/s41563-020-0619-6. [DOI] [PubMed] [Google Scholar]
  • 8.Geim AK, Grigorieva IV. Van der Waals heterostructures. Nature. 2013;499:419–425. doi: 10.1038/nature12385. [DOI] [PubMed] [Google Scholar]
  • 9.Novoselov KS, Mishchenko A, Carvalho A, Castro Neto AH. 2D materials and Van der Waals heterostructures. Science. 2016;353:9439. doi: 10.1126/science.aac9439. [DOI] [PubMed] [Google Scholar]
  • 10.Mamin HJ, et al. Nanoscale nuclear magnetic resonance with a nitrogen-vacancy spin sensor. Science. 2013;339:557–560. doi: 10.1126/science.1231540. [DOI] [PubMed] [Google Scholar]
  • 11.Barry JF, et al. Sensitivity optimization for NV-diamond magnetometry. Rev. Mod. Phys. 2020;92:015004. [Google Scholar]
  • 12.Tetienne J-P, et al. Prospects for nuclear spin hyperpolarization of molecular samples using nitrogen-vacancy centers in diamond. Phys. Rev. B. 2021;103:014434. [Google Scholar]
  • 13.Liang S-J, Cheng B, Cui X, Miao F. Van der Waals heterostructures for high-performance device applications: challenges and opportunities. Adv. Mater. 2020;32:1903800. doi: 10.1002/adma.201903800. [DOI] [PubMed] [Google Scholar]
  • 14.Lemme MC, Akinwande D, Huyghebaert C, Stampfer C. 2D materials for future heterogeneous electronics. Nat. Commun. 2022;13:1392. doi: 10.1038/s41467-022-29001-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 15.Li Y, Yang B, Xu S, Huang B, Duan W. Emergent phenomena in magnetic two-dimensional materials and van der waals heterostructures. ACS Appl. Electron. Mater. 2022;4:3278–3302. [Google Scholar]
  • 16.Kianinia M, White S, Fröch JE, Bradac C, Aharonovich I. Generation of spin defects in hexagonal boron nitride. ACS photonics. 2020;7:2147–2152. [Google Scholar]
  • 17.Gao X, et al. Femtosecond laser writing of spin defects in hexagonal boron nitride. ACS Photonics. 2021;8:994–1000. [Google Scholar]
  • 18.Gottscholl A, et al. Room temperature coherent control of spin defects in hexagonal boron nitride. Sci. Adv. 2021;7:3630. doi: 10.1126/sciadv.abf3630. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 19.Baber S, et al. Excited state spectroscopy of boron vacancy defects in hexagonal boron nitride using time-resolved optically detected magnetic resonance. Nano Lett. 2022;22:461–467. doi: 10.1021/acs.nanolett.1c04366. [DOI] [PubMed] [Google Scholar]
  • 20.Murzakhanov FF, et al. Electron-nuclear coherent coupling and nuclear spin readout through optically polarized VB spin states in hBN. Nano Lett. 2022;22:2718–2724. doi: 10.1021/acs.nanolett.1c04610. [DOI] [PubMed] [Google Scholar]
  • 21.Yu P, et al. Excited-state spectroscopy of spin defects in hexagonal boron nitride. Nano Lett. 2022;22:3545–3549. doi: 10.1021/acs.nanolett.1c04841. [DOI] [PubMed] [Google Scholar]
  • 22.Gottscholl A, et al. Spin defects in hBN as promising temperature, pressure and magnetic field quantum sensors. Nat. Commun. 2021;12:4480. doi: 10.1038/s41467-021-24725-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 23.Healey, A.J. et al. Quantum microscopy with Van der Waals heterostructures. Nat. Phys.19, 87–91 (2023). 10.1038/s41567-022-01815-5.
  • 24.Huang M, et al. Wide field imaging of Van der Waals ferromagnet Fe3GeTe2 by spin defects in hexagonal boron nitride. Nat. Commun. 2022;13:5369. doi: 10.1038/s41467-022-33016-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 25.Gao X, et al. High-contrast plasmonic-enhanced shallow spin defects in hexagonal boron nitride for quantum sensing. Nano Lett. 2021;21:7708–7714. doi: 10.1021/acs.nanolett.1c02495. [DOI] [PubMed] [Google Scholar]
  • 26.Gao X, et al. Nuclear spin polarization and control in hexagonal boron nitride. Nat. Mater. 2022;21:1024–1028. doi: 10.1038/s41563-022-01329-8. [DOI] [PubMed] [Google Scholar]
  • 27.Haykal A, et al. Decoherence of VB spin defects in monoisotopic hexagonal boron nitride. Nat. Commun. 2022;13:4347. doi: 10.1038/s41467-022-31743-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 28.Liu W, et al. Coherent dynamics of multi-spin VB center in hexagonal boron nitride. Nat. Commun. 2022;13:5713. doi: 10.1038/s41467-022-33399-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 29.Ramsay AJ, et al. Coherence protection of spin qubits in hexagonal boron nitride. Nat. Commun. 2023;14:461. doi: 10.1038/s41467-023-36196-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 30.Meiboom S, Gill D. Modified spin echo method for measuring nuclear relaxation times. Rev. Sci. Instrum. 1958;29:688–691. [Google Scholar]
  • 31.Cai J, et al. Robust dynamical decoupling with concatenated continuous driving. N. J. Phys. 2012;14:113023. [Google Scholar]
  • 32.Stark A, et al. Narrow-bandwidth sensing of high-frequency fields with continuous dynamical decoupling. Nat. Commun. 2017;8:1105. doi: 10.1038/s41467-017-01159-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 33.Wang G, Liu Y-X, Cappellaro P. Coherence protection and decay mechanism in qubit ensembles under concatenated continuous driving. N. J. Phys. 2020;22:123045. [Google Scholar]
  • 34.Ivady V, et al. Ab initio theory of the negatively charged boron vacancy qubit in hexagonal boron nitride. npj Computational Mater. 2020;6:41. [Google Scholar]
  • 35.Qian C, et al. Unveiling the zero-phonon line of the boron vacancy center by cavity-enhanced emission. Nano Lett. 2022;22:5137–5142. doi: 10.1021/acs.nanolett.2c00739. [DOI] [PubMed] [Google Scholar]
  • 36.Qian, C. et al. Emitter-optomechanical interaction in high-Q hBN nanocavities. 10.48550/ARXIV.2210.00150.
  • 37.Sajid A, Ford MJ, Reimers JR. Single-photon emitters in hexagonal boron nitride: a review of progress. Rep. Prog. Phys. 2020;83:044501. doi: 10.1088/1361-6633/ab6310. [DOI] [PubMed] [Google Scholar]
  • 38.Gong, R. et al. Coherent dynamics of strongly interacting electronic spin defects in hexagonal boron nitride. arXiv10.48550/arXiv.2210.11485 (2022). [DOI] [PMC free article] [PubMed]
  • 39.Bar-Gill N, et al. Suppression of spin-bath dynamics for improved coherence of multi-spin-qubit systems. Nat. Commun. 2012;3:858. doi: 10.1038/ncomms1856. [DOI] [PubMed] [Google Scholar]
  • 40.Bar-Gill N, Pham LM, Jarmola A, Budker D, Walsworth RL. Solid-state electronic spin coherence time approaching One Second. Nat. Commun. 2013;4:1743. doi: 10.1038/ncomms2771. [DOI] [PubMed] [Google Scholar]
  • 41.Carr HY, Purcell EM. Effects of diffusion on free precession in nuclear magnetic resonance experiments. Phys. Rev. 1954;94:630–638. [Google Scholar]
  • 42.Ryan CA, Hodges JS, Cory DG. Robust decoupling techniques to extend quantum coherence in diamond. Phys. Rev. Lett. 2010;105:200402. doi: 10.1103/PhysRevLett.105.200402. [DOI] [PubMed] [Google Scholar]
  • 43.De Lange G, Wang Z-H, Riste D, Dobrovitski V, Hanson R. Universal dynamical decoupling of a single solid-state spin from a spin bath. Science. 2010;330:60–63. doi: 10.1126/science.1192739. [DOI] [PubMed] [Google Scholar]
  • 44.Naydenov B, et al. Dynamical decoupling of a single-electron spin at room temperature. Phys. Rev. B. 2011;83:081201. [Google Scholar]
  • 45.Pham LM, et al. Enhanced solid-state multispin metrology using dynamical decoupling. Phys. Rev. B. 2012;86:045214. [Google Scholar]
  • 46.Abobeih MH, et al. One-second coherence for a single electron spin coupled to a multi-qubit nuclear-spin environment. Nat. Commun. 2018;9:2552. doi: 10.1038/s41467-018-04916-z. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 47.Anderson CP, et al. Five-second coherence of a single spin with single-shot readout in silicon carbide. Sci. Adv. 2022;8:eabm5912. doi: 10.1126/sciadv.abm5912. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 48.de Sousa, R.: Electron spin as a spectrometer of nuclear-spin noise and other fluctuations, pp. 183–220. Springer, Berlin, Heidelberg 10.1007/978-3-540-79365-6_10 (2009).
  • 49.Ye M, Seo H, Galli G. Spin coherence in two-dimensional materials. npj Comput. Mater. 2019;5:1–6. [Google Scholar]
  • 50.Slichter, C.P.: Principles of Magnetic Resonance. Springer, Berlin, Heidelberg 10.1007/978-3-662-09441-9 (2013).
  • 51.Simin D, et al. Locking of electron spin coherence above 20 ms in natural silicon carbide. Phys. Rev. B. 2017;95:161201. [Google Scholar]
  • 52.Schweiger, A., Jeschke, G. Principles of pulse electron paramagnetic resonance. Oxford University Press, New York (2001).
  • 53.London P, et al. Detecting and polarizing nuclear spins with double resonance on a single electron spin. Phys. Rev. Lett. 2013;111:067601. doi: 10.1103/PhysRevLett.111.067601. [DOI] [PubMed] [Google Scholar]
  • 54.Lang JE, et al. Nonvanishing effect of detuning errors in dynamical-decoupling-based quantum sensing experiments. Phys. Rev. A. 2019;99:012110. [Google Scholar]
  • 55.Souza AM, Álvarez GA, Suter D. Robust dynamical decoupling. Philos. Trans. R. Soc. A: Math., Phys. Eng. Sci. 2012;370:4748–4769. doi: 10.1098/rsta.2011.0355. [DOI] [PubMed] [Google Scholar]
  • 56.Farfurnik D, et al. Optimizing a dynamical decoupling protocol for solid-state electronic spin ensembles in diamond. Phys. Rev. B. 2015;92:060301. [Google Scholar]
  • 57.Loretz M, Rosskopf T, Degen CL. Radio-frequency magnetometry using a single electron spin. Phys. Rev. Lett. 2013;110:017602. doi: 10.1103/PhysRevLett.110.017602. [DOI] [PubMed] [Google Scholar]
  • 58.Hirose M, Aiello CD, Cappellaro P. Continuous dynamical decoupling magnetometry. Phys. Rev. A. 2012;86:062320. [Google Scholar]
  • 59.Wang G, Liu Y-X, Zhu Y, Cappellaro P. Nanoscale vector AC magnetometry with a single nitrogen-vacancy center in diamond. Nano Lett. 2021;21:5143–5150. doi: 10.1021/acs.nanolett.1c01165. [DOI] [PubMed] [Google Scholar]
  • 60.Jeschke G. Coherent superposition of dressed spin states and pulse dressed electron spin resonance. Chem. Phys. Lett. 1999;301:524–530. [Google Scholar]
  • 61.Cai J, Retzker A, Jelezko F, Plenio MB. A large-scale quantum simulator on a diamond surface at room temperature. Nat. Phys. 2013;9:168–173. [Google Scholar]
  • 62.Ruskuc A, Wu C-J, Rochman J, Choi J, Faraon A. Nuclear spin-wave quantum register for a solid-state qubit. Nature. 2022;602:408–413. doi: 10.1038/s41586-021-04293-6. [DOI] [PubMed] [Google Scholar]
  • 63.Liu X, Hersam MC. 2D materials for quantum information science. Nat. Rev. Mater. 2019;4:669–684. [Google Scholar]
  • 64.Tadokoro M, et al. Designs for a two-dimensional si quantum dot array with spin qubit addressability. Sci. Rep. 2021;11:19406. doi: 10.1038/s41598-021-98212-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 65.Bradley CE, et al. A ten-qubit solid-state spin register with quantum memory up to one minute. Phys. Rev. X. 2019;9:031045. [Google Scholar]
  • 66.Glenn DR, et al. High-resolution magnetic resonance spectroscopy using a solid-state spin sensor. Nature. 2018;555:351–354. doi: 10.1038/nature25781. [DOI] [PubMed] [Google Scholar]
  • 67.Boss JM, Cujia KS, Zopes J, Degen CL. Quantum sensing with arbitrary frequency resolution. Science. 2017;356:837–840. doi: 10.1126/science.aam7009. [DOI] [PubMed] [Google Scholar]
  • 68.Schmitt S, et al. Submillihertz magnetic spectroscopy performed with a nanoscale quantum sensor. Science. 2017;356:832–837. doi: 10.1126/science.aam5532. [DOI] [PubMed] [Google Scholar]
  • 69.Levine EV, et al. Principles and techniques of the quantum diamond microscope. Nanophotonics. 2019;8:1945–1973. [Google Scholar]
  • 70.Liu KS, et al. Surface NMR using quantum sensors in diamond. Proc. Natl Acad. Sci. 2022;119:e2111607119. doi: 10.1073/pnas.2111607119. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 71.Henshaw J, et al. Mitigation of nitrogen vacancy photoluminescence quenching from material integration for quantum sensing. Mater. Quantum Technol. 2023;3:035001. [Google Scholar]
  • 72.Liu W, et al. Spin-active defects in hexagonal boron nitride. Mater. Quantum Technol. 2022;2:032002. [Google Scholar]
  • 73.Osterkamp C, et al. Benchmark for synthesized diamond sensors based on isotopically engineered nitrogen-vacancy spin ensembles for magnetometry applications. Adv. Quantum Technol. 2020;3:2000074. [Google Scholar]
  • 74.Durand, A. et al. Optically-active spin defects in few-layer thick hexagonal boron nitride. 10.48550/arXiv.2304.12071 (2023). [DOI] [PubMed]
  • 75.Staudenmaier N, et al. Power-law scaling of correlations in statistically polarised nano-NMR. npj Quantum Inf. 2022;8:120. [Google Scholar]
  • 76.Bucher DB, et al. Quantum diamond spectrometer for nanoscale NMR and ESR spectroscopy. Nat. Protoc. 2019;14:2707–2747. doi: 10.1038/s41596-019-0201-3. [DOI] [PubMed] [Google Scholar]
  • 77.Roberto, R. et al. Extending the coherence of spin defects in hBN enables advanced qubit control and quantum sensing. Zenodo10.5281/zenodo.8135158 (2023). [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Peer Review File (4.2MB, pdf)
Source Data (6.6MB, zip)

Data Availability Statement

Source data are provided with this paper77. The Source Data used in this study are available in the ZENODO database under accession code [https://zenodo.org/record/8135158]. All other data that support the findings of this study are available from the corresponding author upon reasonable request. Source data are provided with this paper.


Articles from Nature Communications are provided here courtesy of Nature Publishing Group

RESOURCES