Skip to main content

This is a preprint.

It has not yet been peer reviewed by a journal.

The National Library of Medicine is running a pilot to include preprints that result from research funded by NIH in PMC and PubMed.

bioRxiv logoLink to bioRxiv
[Preprint]. 2024 Jul 21:2023.08.18.553818. Originally published 2023 Aug 18. [Version 2] doi: 10.1101/2023.08.18.553818

Foothold selection during locomotion in uneven terrain: Results from the integration of eye tracking, motion capture, and photogrammetry

Karl S Muller, Dan Panfili, Stephanie Shields, Jonathan S Matthis, Kathryn Bonnen, Mary M Hayhoe
PMCID: PMC10462120  PMID: 37645862

Abstract

Relatively little is known about the way vision is used to guide locomotion in the natural world. What visual features are used to choose paths in natural complex terrain? To answer this question, we measured eye and body movements while participants walked in natural outdoor environments. We incorporated measurements of the 3D terrain structure into our analyses and reconstructed the terrain along the walker’s path, applying photogrammetry techniques to the eyetracker’s scene camera videos. Combining these reconstructions with the walker’s body movements, we demonstrate that walkers take terrain structure into account when selecting paths through an environment. We find that they change direction to avoid taking steeper steps that involve large height changes, instead of choosing more circuitous, relatively flat paths. Our data suggest walkers plan the location of individual footholds and plan ahead to select flatter paths. These results provide evidence that locomotor behavior in natural environments is controlled by decision mechanisms that account for multiple factors, including sensory and motor information, costs, and path planning.

Full Text Availability

The license terms selected by the author(s) for this preprint version do not permit archiving in PMC. The full text is available from the preprint server.


Articles from bioRxiv are provided here courtesy of Cold Spring Harbor Laboratory Preprints

RESOURCES