Skip to main content

This is a preprint.

It has not yet been peer reviewed by a journal.

The National Library of Medicine is running a pilot to include preprints that result from research funded by NIH in PMC and PubMed.

medRxiv logoLink to medRxiv
[Preprint]. 2023 Aug 15:2023.08.10.23293939. [Version 1] doi: 10.1101/2023.08.10.23293939

Development and validation of the pharmacological statin-associated muscle symptoms risk stratification (PSAMS-RS) score using real-world electronic health record data

Boguang Sun, Pui Ying Yew, Chih-Lin Chi, Meijia Song, Matt Loth, Yue Liang, Rui Zhang, Robert J Straka
PMCID: PMC10462208  PMID: 37645885

Abstract

Introduction

Statin-associated muscle symptoms (SAMS) contribute to the nonadherence to statin therapy. In a previous study, we successfully developed a pharmacological SAMS (PSAMS) phenotyping algorithm that distinguishes objective versus nocebo SAMS using structured and unstructured electronic health records (EHRs) data. Our aim in this paper was to develop a pharmacological SAMS risk stratification (PSAMS-RS) score using these same EHR data.

Method

Using our PSAMS phenotyping algorithm, SAMS cases and controls were identified using University of Minnesota (UMN) Fairview EHR data. The statin user cohort was temporally divided into derivation (1/1/2010 to 12/31/2018) and validation (1/1/2019 to 12/31/2020) cohorts. First, from a feature set of 38 variables, a Least Absolute Shrinkage and Selection Operator (LASSO) regression model was fitted to identify important features for PSAMS cases and their coefficients. A PSAMS-RS score was calculated by multiplying these coefficients by 100 and then adding together for individual integer scores. The clinical utility of PSAMS-RS in stratifying PSAMS risk was assessed by comparing the hazard ratio (HR) between 4th vs 1st score quartile.

Results

PSAMS cases were identified in 1.9% (310/16128) of the derivation and 1.5% (64/4182) of the validation cohort. After fitting LASSO regression, 16 out of 38 clinical features were determined to be significant predictors for PSAMS risk. These factors are male gender, chronic pulmonary disease, neurological disease, tobacco use, renal disease, alcohol use, ACE inhibitors, polypharmacy, cerebrovascular disease, hypothyroidism, lymphoma, peripheral vascular disease, coronary artery disease and concurrent uses of fibrates, beta blockers or ezetimibe. After adjusting for statin intensity, patients in the PSAMS score 4th quartile had an over seven-fold (derivation) (HR, 7.1; 95% CI, 4.03-12.45) and six-fold (validation) (HR, 6.1; 95% CI, 2.15-17.45) higher hazard of developing PSAMS versus those in 1st score quartile.

Conclusion

The PSAMS-RS score can be a simple tool to stratify patients’ risk of developing PSAMS after statin initiation which can facilitate clinician-guided preemptive measures that may prevent potential PSAMS-related statin non-adherence.

Full Text Availability

The license terms selected by the author(s) for this preprint version do not permit archiving in PMC. The full text is available from the preprint server.


Articles from medRxiv are provided here courtesy of Cold Spring Harbor Laboratory Preprints

RESOURCES