Skip to main content

This is a preprint.

It has not yet been peer reviewed by a journal.

The National Library of Medicine is running a pilot to include preprints that result from research funded by NIH in PMC and PubMed.

bioRxiv logoLink to bioRxiv
[Preprint]. 2023 Aug 22:2023.08.21.554174. [Version 1] doi: 10.1101/2023.08.21.554174

Spatiotemporal molecular dynamics of the developing human thalamus

Chang N Kim, David Shin, Albert Wang, Tomasz J Nowakowski
PMCID: PMC10473600  PMID: 37662287

Abstract

The thalamus plays a central coordinating role in the brain. Thalamic neurons are organized into spatially-distinct nuclei, but the molecular architecture of thalamic development is poorly understood, especially in humans. To begin to delineate the molecular trajectories of cell fate specification and organization in the developing human thalamus, we used single cell and multiplexed spatial transcriptomics. Here we show that molecularly-defined thalamic neurons differentiate in the second trimester of human development, and that these neurons organize into spatially and molecularly distinct nuclei. We identify major subtypes of glutamatergic neuron subtypes that are differentially enriched in anatomically distinct nuclei. In addition, we identify six subtypes of GABAergic neurons that are shared and distinct across thalamic nuclei.

One-Sentence Summary

Single cell and spatial profiling of the developing thalamus in the first and second trimester yields molecular mechanisms of thalamic nuclei development.

Full Text Availability

The license terms selected by the author(s) for this preprint version do not permit archiving in PMC. The full text is available from the preprint server.


Articles from bioRxiv are provided here courtesy of Cold Spring Harbor Laboratory Preprints

RESOURCES