Skip to main content

This is a preprint.

It has not yet been peer reviewed by a journal.

The National Library of Medicine is running a pilot to include preprints that result from research funded by NIH in PMC and PubMed.

bioRxiv logoLink to bioRxiv
[Preprint]. 2023 Dec 2:2023.08.07.552299. [Version 8] doi: 10.1101/2023.08.07.552299

Profound seizure suppression and disease modification by targeting JAK1, a key driver of a pro-epileptogenic gene network.

Olivia R Hoffman, Anna Patterson, Emily Gohar, Emanuel Coleman, Jose Ezekial Clemente Espina, Barry Schoenike, Claudia Espinosa-Garcia, Felipe Paredes, Raymond Dingledine, Jamie Maguire, Avtar Roopra
PMCID: PMC10473616  PMID: 37662337

Abstract

Epilepsy is the 4th most prevalent neurological disorder with over 50 million cases worldwide. While a number of drugs exist to suppress seizures, approximately 1/3 of patients remain drug resistant, and no current treatments are disease modifying. Using network and systems-based approaches, we find that the histone methylase EZH2 suppresses epileptogenesis and slows disease progression, via repression of JAK1 and STAT3 signaling in hippocampal neurons. Pharmacological inhibition of JAK1 with the orally available, FDA-approved drug CP690550 (Tofacitinib) profoundly suppresses behavioral and electrographic seizures after the onset of epilepsy across preclinical rodent models of acquired epilepsy. This seizure suppression persists for weeks after drug withdrawal. Identification of an endogenous protective response to status epilepticus in the form of EZH2 induction has highlighted a critical role for the JAK1 kinase and STAT3 in both the initiation and propagation of epilepsy across preclinical rodent models and human disease. Overall, we find that STAT3 is transiently activated after insult, reactivates with spontaneous seizures, and remains targetable for disease modification in chronic epilepsy.

Full Text Availability

The license terms selected by the author(s) for this preprint version do not permit archiving in PMC. The full text is available from the preprint server.


Articles from bioRxiv are provided here courtesy of Cold Spring Harbor Laboratory Preprints

RESOURCES