Skip to main content
Journal of Sichuan University (Medical Sciences) logoLink to Journal of Sichuan University (Medical Sciences)
. 2023 May 20;54(3):510–516. [Article in Chinese] doi: 10.12182/20230560206

口腔鳞癌来源的游离DNA 通过诱导巨噬细胞极化调控口腔癌细胞系干性和迁移能力

Oral Squamous Cell Carcinoma-Derived Cell-Free DNA Modulates Stemness and Migration of Oral Squamous Cell Carcinoma Cell Line by Inducing M2 Macrophage Polarization

适泽 郑 1,2, 琳 孟 1,2, 飞龙 任 1,2, 春霞 任 2,3, 杏 李 1,2, 丹丹 王 1,2, 宏晨 孙 1,2,Δ
PMCID: PMC10475408  PMID: 37248576

Abstract

目的

研究口腔鳞状细胞癌细胞来源的游离DNA对巨噬细胞极化作用,以及极化的巨噬细胞对口腔鳞癌细胞系的干性和迁移能力调控作用。

方法

取病理确诊为口腔鳞状细胞癌的组织标本30例,异常增生的组织标本10例,正常口腔上皮组织标本10例。 通过免疫组化染色、免疫荧光染色检测M2型巨噬细胞在不同口腔组织中数量及位置。收集人舌鳞状细胞癌细胞系Cal-27细胞的条件培养基,纯化并提取游离DNA(cell free DNA, cfDNA)并进行鉴定。用cfDNA处理巨噬细胞,观察细胞形态学变化,RT-qPCR检测极化相关指标表达水平。用cfDNA 诱导后的巨噬细胞条件培养基处理 CAL-27 细胞,RT-qPCR检测其干性基因变化水平;并且通过划痕实验验证cfDNA诱导的巨噬细胞调控肿瘤细胞迁移的能力。

结果

与正常口腔上皮组织相比,异常增生的口腔上皮深层结缔组织和口腔鳞癌间质中M2型巨噬细胞数量较多(P<0.05)。CAL-27细胞分泌长度在 10000~15000 bp的cfDNA。CAL-27细胞分泌的cfDNA可诱导巨噬细胞高表达 M2 型巨噬细胞标记(P<0.05)。cfDNA 处理的巨噬细胞诱导肿瘤细胞高表达肿瘤干性基因(P<0.05) ,同时促进了肿瘤细胞迁移能力(P<0.05)。

结论

口腔鳞状细胞癌细胞来源的cfDNA通过诱导巨噬细胞向 M2 型极化促进口腔癌细胞系干性和迁移。

Keywords: 肿瘤相关巨噬细胞, 口腔鳞状细胞癌, 循环游离DNA, 极化, 干性


口腔鳞状细胞癌(oral squamous cell carcinoma, OSCC)占口腔癌的90%以上,是头颈部最常见的恶性肿瘤之一[1]。预计全球每年新诊断患者300 000例,30%~35%患者可能出现局部复发,其中20%的患者最终死于 OSCC[2-3]。由于其高复发率和转移率,患者五年生存率低于50%[4-5]。OSCC治疗方式包括手术治疗、化学药物治疗、放射治疗以及生物疗法等,但在过去20年中,总体生存率并没有显著提高,治疗OSCC仍然是一个亟待解决的临床问题。肿瘤微环境(tumor microenvironment, TME)包含异质的癌细胞、基质细胞和免疫细胞群,其中的免疫细胞已被证明在肿瘤发展中发挥重要作用。分析肿瘤微环境中浸润免疫细胞的变化过程有利于开发新的治疗策略。然而,TME高度异质且处于动态变化中,因此研究免疫细胞变化的影响因素对肿瘤治疗具有重要意义[6]。肿瘤相关巨噬细胞(tumor-associated macrophage, TAM)是肿瘤微环境中重要的免疫细胞,抗肿瘤M1型和促肿瘤 M2型TAM在肿瘤内共存,M1和M2细胞亚群对肿瘤的不同作用直接影响抗肿瘤免疫反应的治疗策略[7]

近年来,游离DNA(cell-free DNA, cfDNA)进入了精准医学的研究领域并且受到学者们关注。cfDNA是指存在于细胞外的血浆、血清以及其他体液中的DNA片段。cfDNA作为一种微创、非侵入性标志物广泛应用于产前检查、肿瘤诊断和预后评估以及辅助诊断炎性疾病、创伤等。早在1948年MENDEL和METAIS首次在血液中发现了cfDNA,随后,cfDNA在多种恶性肿瘤中均有发现,并应用于临床早期癌症检测、分子诊断、预后追踪监控、耐药监控等[8]。也有多项研究报道cfDNA在肿瘤发生发展中的作用,如使正常细胞癌变、参与肿瘤的侵袭与转移、调节细胞增殖与凋亡、促进肿瘤患者血栓形成以及促进肿瘤发生耐药等[9-13]。然而cfDNA在肿瘤免疫中的作用却鲜有报道。因此,本文旨在研究cfDNA对TME中巨噬细胞与肿瘤细胞相互作用的影响,从而为针对cfDNA进行抗肿瘤治疗提供理论依据。

1. 材料与方法

1.1. 标本来源

2019–2021年经吉林大学口腔医院病理科确诊为口腔鳞状细胞癌的组织标本30例,异常增生的组织标本10例,正常口腔上皮组织标本10例。

1.2. 试验材料、试剂和仪器

CD163兔多克隆抗体(Proteintech);Dapi(索莱宝);Mag MAXTM游离DNA分离试剂盒(Thermo fisher);超滤管(密理博);Quant-iTTM PicoGreen® dsDNA Reagent and Kits(Invitrogen);qPCR SYBR Green Master Mix(YEASEN);即用型免疫组化超敏SP检测试剂盒(迈新);Cy3-conjugated Affinipure Goat Anti-Rabbit IgG(H+L)(Proteintech);佛波酯(索莱宝);CCK-8试剂(Invigentech);CAL27(南京医科大学刘来奎课题组赠送);人单核细胞白血病(THP-1),购自中国科学院生物化学与细胞生物学研究所);酶标仪(Biotek);荧光倒置显微镜(Olympus)。

1.3. 方法

1.3.1. 免疫组化和免疫荧光检测M2型巨噬细胞在口腔鳞癌组织中分布

CD163是M2型巨噬细胞标记物,表达于细胞质/细胞膜中。取3组石蜡组织切片,经烤片、脱蜡、抗原修复、孵育一抗CD163(1∶2000)、孵育二抗、滴加DAB显色液、苏木精复染、水洗、分化、返蓝、脱水、透明、中性树胶封片,然后在显微镜下观察、拍照。每张组织切片于显微镜下随机选取5个高倍视野,Image J软件分析CD163+细胞在组织中的密度。

石蜡组织切片经烤片、脱蜡、抗原修复、封闭、孵育一抗CD163(1∶200)、孵育荧光二抗、DAPI染色、防淬灭封片剂封片、荧光显微镜下观察、拍照。

1.3.2. cfDNA提取与鉴定

待CAL27细胞生长密度达80%~90%时,更换新鲜培养基继续培养72 h,收集CAL27细胞的条件培养基,4 ℃下6000×g离心10 min,收集上清,然后16000×g离心10 min,收集上清,使用超滤管(10000 MWCO)在4 ℃,5000×g条件下离心45 min,浓缩条件培养基,用Mag MAXTM游离DNA分离试剂盒采用磁珠吸附法提取浓缩液中的cfDNA,提取流程参考BRONKHORST、VANDEWOESTYNE等的文献[14-15]。利用琼脂糖凝胶电泳鉴定CAL-27细胞分泌的cfDNA,紫外灯下观察并拍照。

1.3.3. CCK-8法检测巨噬细胞活性

当THP-1密度达到约8×105细胞/mL时,用佛波酯(40 ng/mL)诱导细胞 24 h,观察细胞贴壁变为巨噬细胞,弃掉培养基。对照组加入1640培养基,实验组加入含有 1、5、10 μg/mL cfDNA的1640培养基培养24 h,空白组只加入1640培养基(不含细胞),每组设置3个复孔。每孔加入10 μL CCK-8试剂,在细胞培养箱中孵育30 min。用酶标仪测定450 nm处的吸光度,计算细胞活性。细胞活性(%)=(吸光度实验组−吸光度空白组)/(吸光度对照组−吸光度空白组)×100%。

1.3.4. 检测巨噬细胞极化

先诱导THP-1变为巨噬细胞,从细胞形态学和mRNA水平检测cfDNA对巨噬细胞极化作用,然后收集巨噬细胞条件培养基。具体如下:①诱导THP-1变为巨噬细胞(如1.3.3所述),弃掉培养基,对照组加入1640培养基,实验组加入含有cfDNA(5 μg/mL)的1640培养基培养24 h,显微镜下观察巨噬细胞形态变化,该质量浓度参考文献[10]。②取2组培养的巨噬细胞,一部分用Trizol法提取RNA,然后将RNA逆转录为cDNA,以β-actin为内参,实时荧光定量PCR(RT-qPCR)检测极化指标CD86、TNF-αIL-6、CD163、CD204、Arg-1基因的表达。采用2−ΔΔCt法计算目的基因相对表达量,引物序列如表1所示。③取2组培养的巨噬细胞,另一部分用不含血清的1640培养基培养24 h,收集巨噬细胞条件培养基,4 ℃下5000×g离心10 min,对照组的标记为CTR-CM,实验组的标记为cfDNA-CM。

表 1. Gene primer sequences.

引物合成序列

Gene (human) Primer sequence (5′-3′) Primer
length/bp
 TNF-α: tumor necrosis factor alpha; IL-6: interleukin 6; Arg-1: arginase 1.
β-actin F: GGAGATTACTGCCCTGGCTCCTA 23
R GACTCATCGTACTCCTGCTTGCTG 22
CD86 F: TGCTCATCTATACACGGTTACC 22
R: TGCATAACACCATCATACTCGA 22
TNF-α F: TGGCGTGGAGCTGAGAGATAACC 23
R: CGATGCGGCTGATGGTGTGG 20
IL-6 F: CACTGGTCTTTTGGAGTTTGAG 22
R: GGACTTTTGTACTCATCTGCAC 22
CD163 F: ATCAACCCTGCATCTTTAGACA 22
R: CTTGTTGTCACATGTGATCCAG 22
CD204 F: GGACACTGATAGCTGCTCCGAATC 24
R: CACGAGGAGGTAAAGGGCAATCAG 24
Arg-1 F: GGACCTGCCCTTTGCTGACATC 22
R: TCTTCTTGACTTCTGCCACCTTGC 24

1.3.5. 检测口腔癌细胞系干性

将CAL-27细胞接种于12孔板,待细胞密度达到80%时加入条件培养基,对照组加入CTR-CM,实验组加入cfDNA-CM,培养24 h。以β-actin为内参,RT-qPCR检测干性相关指标OCT4和SOX2的mRNA表达水平。引物序列如表2所示。

表 2. RT-qPCR primer sequences.

RT-qPCR引物合成序列

Gene (human) Primer sequence (5′-3′) Primer length/bp
 SOX2: SRY-box transcription factor 2; OCT4: organic cation/carnitine transporter 4.
β-actin F: GGAGATTACTGCCCTGGCTCCTA 23
R: GACTCATCGTACTCCTGCTTGCTG 24
SOX2 F: GTGAGCGCCCTGCAGTACAA 20
R: GCGAGTAGGACATGCTGTAGGTG 23
OCT4 F: GCTGGATGTCAGGGCTCTTTG 21
R: TTCAAGAGATTTATCGAGCACCTTC 25

1.3.6. CCK-8法检测CAL-27细胞活性

按5000细胞/孔在96孔板中接种CAL27细胞,过夜后分别用CTR-CM和cfDNDA-CM培养24 h,每组设置3个复孔。每孔加入10 μL CCK-8试剂检测细胞活性方法同1.3.3。

1.3.7. 检测CAL-27细胞迁移能力

按200000细胞/孔密度在6孔板中接种CAL27细胞,过夜后用200 μL枪头划线,对照组加入CTR-CM,实验组加入 cfDNA-CM,并在每个孔中加入1%血清,然后按0、6、12 h取样,拍照。使用Image J软件分析图像并计算6 h和12 h迁移百分比,计算迁移率。迁移率(%)=(划痕面积0 h−划痕面积t)/划痕面积0 h×100%。式中t取6 h、12 h。

1.3.8. 统计学方法

实验结果以 Inline graphic表示。进行独立样本t检验。P<0.05为差异有统计学意义。

2. 结果

2.1. M2型巨噬细胞在口腔鳞癌组织中分布

图1。口腔鳞癌间质、异常增生的口腔上皮和正常口腔上皮中CD163+细胞密度分别为453、338和68细胞/mm2。说明口腔鳞癌间质和异常增生的口腔上皮组织中M2型巨噬细胞数量显著高于正常口腔上皮(P<0.05)。

图 1.

图 1

Distribution of M2 macrophages in different types of oral tissues

M2型巨噬细胞在不同口腔组织中的分布

A: IHC staining of CD163 (scale bar=200 μm [top], 50 μm [bottom]); B: IF staining of CD163 (scale bar=20 μm).

2.2. cfDNA鉴定

琼脂糖凝胶电泳示CAL-27分泌的cfDNA长度在10000~15000 bp之间。见图2

图 2.

图 2

Determination of cfDNA

鉴定cfDNA

2.3. cfDNA对巨噬细胞活性影响

图3。与对照组相比,各浓度的cfDNA对巨噬细胞均有抑制细胞活性的作用(P<0.01或P<0.001)。

图 3.

图 3

Effect of cfDNA on macrophage activity

cfDNA对巨噬细胞活性作用

** P <0.01,*** P <0.001, vs. control group.

2.4. cfDNA对巨噬细胞极化作用

图4。用佛波酯诱导THP-1细胞24 h,显微镜下观察到细胞由悬浮状态变为贴壁状态,证明THP-1成功诱导为巨噬细胞。显微镜下观察,与单纯的巨噬细胞相比,cfDNA处理后部分巨噬细胞伸出长伪足,说明部分巨噬细胞发生极化。与对照组相比,实验组M2型巨噬细胞指标CD163、Arg-1、CD204 mRNA水平明显升高(P<0.05),M1型巨噬细胞指标IL-6、TNF-α mRNA水平没有明显变化,说明cfDNA诱导巨噬细胞向M2型极化。

图 4.

图 4

Effect of cfDNA on gene expression of related cytokines in M1 and M2 macrophages

cfDNA 对巨噬细胞的极化作用

A: microscopic image (the yellow arrows are pointed at polarized macrophages); B: the mRNA levels were determined by qPCR. ** P<0.01, *** P<0.001, vs. CTR-CM group, n=3. CTR-CM: control-conditioned medium; cfDNA-CM: conditioned medium of macrophages after induction by cfDNA.

2.5. cfDNA诱导的巨噬细胞调控CAL-27细胞干性

图5A。与用CTR-CM处理的CAL-27 细胞相比, cfDNA-CM促进CAL-27细胞高表达干性基因OCT4和SOX2(P<0.05),说明cfDNA诱导的巨噬细胞可以增强肿瘤细胞干性。

图 5.

图 5

Effect of cfDNA-induced macrophages on the expression of stemness-related genes in CAL-27 cells (A) and on the migration ability of CAL-27 cells (B)

cfDNA诱导的巨噬细胞对CAL-27细胞干性基因表达(A)和CAL-27细胞迁移能力(B)的影响

* P <0.05, * * * P <0.001, vs. CTR-CM group, n=3. CTR-CM: control-conditioned medium; cfDNA-CM: conditioned medium of macrophages after induction by cfDNA.

2.6. cfDNA 诱导的巨噬细胞调控CAL-27细胞系迁移能力

图5B。分别用cfDNA-CM和CTR-CM处理CAL-27细胞,CCK8结果显示CTR-CM对肿瘤细胞增殖无明显影响。与对照组相比,cfDNA-CM处理的肿瘤细胞迁移速度更快,划痕迁移率更高(P<0.05)。证明 cfDNA 诱导的巨噬细胞可以增强肿瘤细胞迁移能力。

3. 讨论

近年来cfDNA作为肿瘤液体活检标志物受到广泛关注。探讨口腔鳞状细胞癌来源的循环游离DNA对巨噬细胞的影响,明确肿瘤微环境中影响巨噬细胞动态变化过程的因素以及探究巨噬细胞与肿瘤细胞相互作用可以为口腔癌的免疫治疗找到新靶点,增强肿瘤治疗效果。

多种生物体液均含有cfDNA,如血液、尿液、脑脊液等[16-17]。人体内代谢活跃的组织中cfDNA浓度也较高,如造血组织和肿瘤组织等[18]。STROUN等[19]研究表明造血细胞和细胞系可分泌新合成的cfDNA。然而活细胞分泌cfDNA的机制尚不明确,研究表明活细胞分泌的cfDNA可能封装在外泌体中,也可能与自噬时生成的自噬内涵体有关[20]。本实验使用MagMAXTM Cell-Free DNA Isolation Kit试剂盒,从CAL-27条件培养基提取cfDNA,并利用Picogreen试剂盒精确定量cfDNA样品中双链DNA浓度,作为后续实验的定量标准。本实验证明CAL-27细胞分泌的cfDNA中含有大量的双链DNA,且长度在10000~15000 bp之间。与MOROZKIN等[21]的实验结果类似,其结果也显示表皮样癌细胞和宫颈癌细胞分泌的cfDNA片段长度为400~10000 bp,较凋亡来源的cfDNA更长。在AUCAMP、BRONKHORST等[22-23]的实验中发现体外条件下培养细胞产生的cfDNA长度集中在35 bp和10000 bp左右,而本实验未发现小分子量cfDNA,可能是由于在浓缩培养基过程中cfDNA透过过滤孔丢失。

已有多项研究证实了癌细胞来源的cfDNA对肿瘤细胞的作用,但是肿瘤细胞来源的cfDNA对免疫细胞的作用鲜有报道。WALDVOGEL ABRAMOWSKI等[24]从健康人血浆中提取细胞外游离核酸(cell-free nucleic acids, cfNA),后证实主要成分为循环游离双链DNA,用cfNA处理外周血单个核细胞,观察到其先天免疫相关基因上调,包括趋化因子(CXCL-9、CXCL-11、CCL-18、CXCL-10和CCL-8)、甘露糖受体C1 (MRC1)和基质金属蛋白酶MMP9。用cfNA处理巨噬细胞,观察到CXCL-8、IL-8及其他炎症相关基因(CSF1RLY9、TRIB3和CD55)表达上调,抗炎基因IL1-Ra表达下调,而IL-6、TNF-αMIP-1表达没有明显变化。KORABECNA等[25]利用健康人血液中提取的cfDNA处理THP-1细胞,观察到DIDT3和抑炎基因SESN2表达上调,同时notch通路激活,而TNF-α表达无明显变化。与前人研究结果相符合,本研究利用口腔鳞癌细胞来源的cfDNA处理佛波酯诱导的THP-1细胞,观察到M1型巨噬细胞标志TNF-αIL-6、CD86表达没有发生显著变化或变化较小,而M2型巨噬细胞标志CD163、Arg-1、CD204表达明显上调。说明了cfDNA起到了促进巨噬细胞向M2型极化的作用,证实了cfDNA对肿瘤微环境起到的重要作用。肿瘤微环境中其他条件如低pH、缺氧、细胞外基质成分(serpinE2)、细胞因子(IL-4)等均可诱导巨噬细胞向M2型极化[26-28]IL-4可通过激活mTORC1、JNK等信号通路诱导巨噬细胞极化为M2型[27, 29]。核转录因子PPARγ也在促巨噬细胞向M2型极化发挥重要作用[28]。而本实验未探究cfDNA诱导巨噬细胞极化的机制,需要在接下来的实验中进一步验证。

前文提到cfDNA通过促进肿瘤细胞分泌IL-8或CXCL-8促进肿瘤侵袭和转移[24],其对调节肿瘤相关巨噬细胞的作用未见报道。本实验首先证实了cfDNA促进巨噬细胞M2型极化的作用,然后进一步探究了cfDNA诱导的巨噬细胞对口腔癌细胞的作用,观察到其促进肿瘤干细胞标记OCT4和SOX2表达,同时也促进肿瘤细胞迁移能力。然而如何以cfDNA为治疗靶点抑制肿瘤进展仍需进一步研究。NAQVI等[30]利用第三代聚酰胺胺树枝状大分子(the 3rd generation polyamidoamine dendrimer, PAMAM-G3)与循环游离核酸及微囊泡结合,从而抑制胰腺癌侵袭和肝转移。PAMAM-G3是一种核酸结合复合物(nucleic acid binding polymers, NABP),其具有结合细胞外游离核酸及核酸-蛋白质复合物的能力,从而抑制游离核酸的作用,继而抑制TLR活化,达到抑制胰腺癌侵袭和转移的作用。DNase Ⅰ是一种存在于血液和其他体液中的核酸酶,具有高效切割双链DNA的能力,在预防免疫性疾病发生和抑制肿瘤进展中发挥重要作用[31]。上述研究中证实PAMAM-G3和DNase I可高效降解cfDNA,因此我们认为对人体低毒副作用的生物材料和DNA酶可能是未来以cfDNA为靶点抑制肿瘤进展的治疗策略。

综上所述,本研究探究了cfDNA 对 肿瘤微环境中巨噬细胞与肿瘤细胞相互作用的影响,证实其通过诱导巨噬细胞向 M2 型极化促进口腔癌细胞系干性和迁移,从而为针对 cfDNA 进行抗肿瘤治疗提供理论依据。

*    *    *

利益冲突 所有作者均声明不存在利益冲突

Biography

graphic file with name scdxxbyxb-54-3-510-SUNHongchen.gif

孙宏晨,吉林大学“唐敖庆学者”卓越教授A岗,主任医师,博士生导师,国家级领军人才,“长白山学者”特聘教授,中华口腔医学会口腔病理学专业委员会主任委员。主要从事牙和骨发育生物学与修复再生研究。作为首席科学家主持国家重点研发专项1项,作为负责人承担包括重点项目和重点国际合作项目在内的国家自然科学基金项目9项。发表国际期刊论文140余篇,H因子45。获国家发明专利授权10件,获得省部级科技进步一等奖1项,二等奖2项。主讲国家《口腔组织病理学》精品课程、精品资源共享课和线下金课,获省级教学成果一等奖2项

Funding Statement

国家自然科学基金重点国际(地区)合作研究项目(No. 81920108012)和吉林大学研究生创新研究计划项目(No. 101832020CX304)资助

Contributor Information

适泽 郑 (Shi-ze ZHENG), Email: zhengsz22@mails.jlu.edu.cn.

宏晨 孙 (Hong-chen SUN), Email: hcsun@mail.jlu.edu.cn.

References

  • 1.SUN L P, XU K, CUI J, et al Cancerassociated fibroblastderived exosomal miR3825p promotes the migration and invasion of oral squamous cell carcinoma. Oncol Rep. 2019;42(4):1319–1328. doi: 10.3892/or.2019.7255. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 2.IVALDI E, Di MARIO D, PADERNO A, et al Postoperative radiotherapy (PORT) for early oral cavity cancer (pT1-2, N0-1): a review. Crit Rev Oncol Hematol. 2019;143:67–75. doi: 10.1016/j.critrevonc.2019.08.003. [DOI] [PubMed] [Google Scholar]
  • 3.LINDEMANN A, TAKAHASHI H, PATEL A A, et al Targeting the DNA damage response in OSCC with TP53 mutations. J Dent Res. 2018;97(6):635–644. doi: 10.1177/0022034518759068. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 4.DAN H, LIU S, LIU J, et al RACK1 promotes cancer progression by increasing the M2/M1 macrophage ratio via the NF-kappaB pathway in oral squamous cell carcinoma. Mol Oncol. 2020;14(4):795–807. doi: 10.1002/1878-0261.12644. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 5.FREITAS R D, DIAS R B, VIDAL M T A, et al Inhibition of CAL27 oral squamous carcinoma cell by targeting hedgehog pathway with vismodegib or itraconazole. Front Oncol. 2020;10:563838. doi: 10.3389/fonc.2020.563838. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 6.ZHANG Y Y, ZHANG Z M The history and advances in cancer immunotherapy: understanding the characteristics of tumor-infiltrating immune cells and their therapeutic implications. Cell Mol Immunol. 2020;17(8):807–821. doi: 10.1038/s41423-020-0488-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 7.ANDERSON N M, SIMON M C The tumor microenvironment. Current Biol. 2020;30(16):R921–R925. doi: 10.1016/j.cub.2020.06.081. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 8.MANDEL P, METAIS P Nuclear acids in human blood plasma. C R Seances Soc Biol Fil. 1948;142(3/4):241–243. [PubMed] [Google Scholar]
  • 9.MITTRA I, KHARE N K, RAGHURAM G V, et al Circulating nucleic acids damage DNA of healthy cells by integrating into their genomes. J Biosciences. 2015;40(1):91–111. doi: 10.1007/s12038-015-9508-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 10.NIU Z C, TANG W T, LIU T Y, et al Cell-free DNA derived from cancer cells facilitates tumor malignancy through Toll-like receptor 9 signaling-triggered interleukin-8 secretion in colorectal cancer. Acta Bioch Bioph Sin. 2018;50(10):1007–1017. doi: 10.1093/abbs/gmy104. [DOI] [PubMed] [Google Scholar]
  • 11.KIRIKOVICH S S, TARANOV O S, OMIGOV V V, et al Ultrastructural analysis of the Krebs-2 ascites cancer cells treated with extracellular double-stranded DNA preparation. Ultrastruct Pathol. 2019;43(1):56–65. doi: 10.1080/01913123.2019.1575499. [DOI] [PubMed] [Google Scholar]
  • 12.GOULD T J, LYSOV Z, LIAW P C Extracellular DNA and histones: double-edged swords in immunothrombosis. J Thromb Haemost. 2015;13:S82–S91. doi: 10.1111/jth.12977. [DOI] [PubMed] [Google Scholar]
  • 13.ANUNOBI R, BOONE B A, CHEH N, et al Extracellular DNA promotes colorectal tumor cell survival after cytotoxic chemotherapy. J Surg Res. 2018;226:181–191. doi: 10.1016/j.jss.2018.02.042. [DOI] [PubMed] [Google Scholar]
  • 14.BRONKHORST A J, UNGERER V, HOLDENRIEDER S Comparison of methods for the quantification of cell-free DNA isolated from cell culture supernatant. Tumour Biol. 2019;41(8):1010428319866369. doi: 10.1177/1010428319866369. [DOI] [PubMed] [Google Scholar]
  • 15.VANDEWOESTYNE M, Van HOOFSTAT D, FRANSSEN A, et al Presence and potential of cell free DNA in different types of forensic samples. Forensic Sci Int Genet. 2013;7(2):316–320. doi: 10.1016/j.fsigen.2012.12.005. [DOI] [PubMed] [Google Scholar]
  • 16.MERKER J D, OXNARD G R, COMPTON C, et al Circulating tumor DNA analysis in patients with cancer: American Society of Clinical Oncology and College of American Pathologists Joint Review. J Clin Oncol. 2018;36:1631–1641. doi: 10.1200/JCO.2017.76.8671. [DOI] [PubMed] [Google Scholar]
  • 17.WANG J , BETTEGOWDA C Applications of DNA-based liquid biopsy for central nervous system neoplasms. J Mol Diagn. 2017;19(1):24–34. doi: 10.1016/j.jmoldx.2016.08.007. [DOI] [PubMed] [Google Scholar]
  • 18.HU Z, CHEN H, LONG Y, et al The main sources of circulating cell-free DNA: apoptosis, necrosis and active secretion. Crit Rev Oncol Hematol. 2021;157:103166. doi: 10.1016/j.critrevonc.2020.103166. [DOI] [PubMed] [Google Scholar]
  • 19.STROUN M, LYAUTEY J, LEDERREY C, et al About the possible origin and mechanism of circulating DNA apoptosis and active DNA release. Clin Chim Acta. 2001;313(1/2):139–142. doi: 10.1016/s0009-8981(01)00665-9. [DOI] [PubMed] [Google Scholar]
  • 20.THAKUR B K, ZHANG H, BECKER A, et al Double-stranded DNA in exosomes: a novel biomarker in cancer detection. Cell Res. 2014;24(6):766–769. doi: 10.1038/cr.2014.44. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 21.MOROZKIN E S, LAKTIONOV P P, RYKOVA E Y, et al Release of nucleic acids by eukaryotic cells in tissue culture. Nucleosides Nucleotides Nucleic Acids. 2004;23(6/7):927–930. doi: 10.1081/NCN-200026042. [DOI] [PubMed] [Google Scholar]
  • 22.BRONKHORST A J, WENTZEL J F, AUCAMP J, et al Characterization of the cell-free DNA released by cultured cancer cells. Biochim Biophys Acta. 2016;1863(1):157–165. doi: 10.1016/j.bbamcr.2015.10.022. [DOI] [PubMed] [Google Scholar]
  • 23.AUCAMP J, BRONKHORST A J, PETERS D L, et al Kinetic analysis, size profiling, and bioenergetic association of DNA released by selected cell lines in vitro. Cell Mol Life Sci. 2017;74(14):2689–2707. doi: 10.1007/s00018-017-2495-z. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 24.WALDVOGEL ABRAMOWSKI S, TIREFORT D, LAU P, et al 24 are present in blood products and regulate genes of innate immune response. Transfusion. 2018;58(7):1671–1681. doi: 10.1111/trf.14613. [DOI] [PubMed] [Google Scholar]
  • 25.KORABECNA M, ZINKOVA A, BRYNYCHOVA I, et al Cell-free DNA in plasma as an essential immune system regulator. Sci Rep. 2020;10(1):17478. doi: 10.1038/s41598-020-74288-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 26.SMIRNOVA T, BONAPACE L, MACDONALD G, et al Serpin E2 promotes breast cancer metastasis by remodeling the tumor matrix and polarizing tumor associated macrophages. Oncotarget. 2016;7(50):82289–82304. doi: 10.18632/oncotarget.12927. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 27.YUNNA C, MENGRU H, LEI W, et al Macrophage M1/M2 polarization. Eur J Pharmacol. 2020;877:173090. doi: 10.1016/j.ejphar.2020.173090. [DOI] [PubMed] [Google Scholar]
  • 28.KANG S, NAKANISHI Y, KIOI Y, et al Semaphorin 6D reverse signaling controls macrophage lipid metabolism and anti-inflammatory polarization. Nat Immunol. 2018;19(6):561–570. doi: 10.1038/s41590-018-0108-0. [DOI] [PubMed] [Google Scholar]
  • 29.GUO M, HARTLOVA A, GIERLINSKI M, et al Triggering MSR1 promotes JNK-mediated inflammation in IL-4-activated macrophages. EMBO J. 2019;38:e100299. doi: 10.15252/embj.2018100299. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 30.NAQVI I, GUNARATNE R, MCDADE J E, et al Polymer-mediated inhibition of pro-invasive nucleic acid DAMPs and microvesicles limits pancreatic cancer metastasis. Mol Ther. 2018;26(4):1020–1031. doi: 10.1016/j.ymthe.2018.02.018. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 31.LAUKOVA L, KONECNA B, JANOVICOVA L, et al Deoxyribonucleases and their applications in biomedicine. Biomolecules. 2020;10(7):1036. doi: 10.3390/biom10071036. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Sichuan University (Medical Sciences) are provided here courtesy of Editorial Board of Journal of Sichuan University (Medical Sciences)

RESOURCES