Skip to main content
Journal of Sichuan University (Medical Sciences) logoLink to Journal of Sichuan University (Medical Sciences)
. 2023 May 20;54(3):692–698. [Article in Chinese] doi: 10.12182/20230560108

肝细胞癌免疫治疗的现状及发展

Status Quo and Development of Immunotherapy for Hepatocellular Carcinoma

焘 王 1,2, 文涛 王 1,Δ
PMCID: PMC10475433  PMID: 37248607

Abstract

肝癌是一种严重的全球健康问题,也是常见的癌症相关死亡原因。肝细胞癌(hepatocellular carcinoma, HCC)是肝癌常见的病理类型。早期HCC临床症状不明显,50%的HCC患者确诊时已处于晚期。系统全身治疗被推荐用于晚期HCC。随着分子靶向药物(索拉非尼、仑伐替尼)的发展,晚期HCC的系统全身治疗取得了一定进展,但对HCC患者生存获益仍然不大。近年来,免疫检查点抑制剂的出现改变了HCC治疗的格局,为HCC精准治疗提供了更多的可能性并展现出较好的效果。特别是阿替利珠单抗和贝伐珠单抗的联合疗法显著改善了HCC患者的生存预后,此外,过继性细胞疗法、肿瘤疫苗、溶瘤病毒和非特异性免疫治疗也已成为免疫治疗策略。本文就HCC免疫治疗的现状及发展进行概述。

Keywords: 肝细胞癌免疫治疗, 免疫检查点抑制剂, 过继性细胞疗法, 肿瘤疫苗, 溶瘤病毒


原发性肝癌是全球第六大常见癌症和第四大癌症死亡原因[1]。从2007年到2016年,肝癌发病率以每年2%~3%的速度递增,死亡率也快速上升,近年来逐渐趋于平稳[2],但肝癌仍然是5年生存率(18%)最低的恶性肿瘤之一[3],2020年原发性肝癌新发病例已超过900000例,死亡人数约为830000例[4]。据估计,到2025年后,全球每年肝癌患病人数将超过100万[5]。肝细胞癌(hepatocellular carcinoma, HCC)是原发性肝癌中最常见的病理类型。中国是HCC高发国家,新发病例数量占据全球的47%[6]。乙型肝炎病毒(hepatitis B virus, HBV)和丙型肝炎病毒(hepatitis C virus, HCV)引起的慢性肝病是诱发HCC最常见的病因,其次为过量饮酒、与代谢综合征相关的非酒精性脂肪肝病等[7]

HCC的治疗以肝切除术、肝移植、局部治疗〔消融、经动脉化疗栓塞(transcatheter arterial chemoembolization, TACE)、放疗等〕、系统全身治疗等为主[5]。HCC患者临床治疗方案的具体选择取决于临床分期。根据国际通用的巴塞罗那肝癌(BCLC)分期系统,HCC患者分为五个临床阶段[8]。肝切除术和肝移植是治疗早期HCC患者的主要方法,据报道早期HCC患者5年生存率可超过70%[5]。但由于早期HCC临床症状不明显,50%的HCC患者确诊时已处于晚期甚至是终末期,不符合手术治疗指征,远期预后极差,中位生存期仅为1~1.5年,系统全身治疗是唯一的选择[9]。在索拉非尼出现之前,晚期HCC的系统全身治疗仅限于细胞毒性药物,但多项大型的随机对照研究发现HCC对系统化疗的反应率低(<25%),系统化疗并未给患者带来真正的生存获益[10]。自索拉非尼作为提高HCC患者生存的全身治疗药物上市以来,HCC靶向治疗进入新的时代[11],随后仑伐替尼的获批进一步巩固了多靶点酪氨酸激酶抑制剂(tyrosine kinase inhibitor, TKI)类药物在晚期HCC一线治疗中的作用[12],仑伐替尼尽管反应率很高,但与索拉非尼相比,仅表现出非劣效性且生存期延长有限[12]。一项随机、双盲、安慰剂对照的Ⅲ期研究显示TKI药物瑞戈非尼可以为接受索拉非尼治疗后进展的HCC患者提供生存获益[13]。尽管TKI药物的出现是HCC治疗的一个重大突破,但HCC患者整体预后仍然很差,中位生存期仅延长2~3个月,因此,亟须开发新的治疗方案来改善HCC患者生存状况。

近年来,随着科学家对肿瘤免疫微环境的研究不断深入,免疫治疗为晚期HCC治疗打开了新的大门。HCC进展的典型特征是由病毒感染、脂肪变性等引起的肝脏慢性炎症,在这种炎症状态下,多种复杂的免疫抑制机制在HCC中被激活并导致肿瘤免疫逃避。目前的机制学说包括:白细胞介素(interleukin, IL)-10、转化生长因子-β(transforming growth factor-beta, TGF-β)和前列腺素E2(prostaglandin E2, PGE2)等免疫抑制细胞因子持续表达,免疫抑制细胞包括调节性T细胞(regulatory T cell, Treg)、髓源性抑制细胞(myeloid-derived suppressor cells, MDSC)、癌症相关成纤维细胞(cancer-associated fibroblasts, CAF)等在肝脏中积聚,T细胞耗竭或功能失调,造成肿瘤逃避机体的免疫监视及杀伤而出现肿瘤持续进展等[14]。这些机制映射了潜在的免疫治疗策略,即可通过重新启动和维持机体免疫反应来控制和消灭肿瘤。本文对近年来HCC免疫治疗的现状和进展进行总结。

1. 免疫检查点抑制剂

免疫检查点抑制剂(immune checkpoint inhibitors, ICI)是近年迅速发展的一种免疫治疗手段,其通过解除机体免疫抑制,增强免疫应答,达到杀伤肿瘤细胞的作用。程序性死亡受体1(programmed death receptor 1, PD-1)属于免疫球蛋白超级家族,是一种跨膜共抑制受体,主要表达在活化的T细胞和NK细胞表面[15],PD-1的配体(PD-L1、PD-L2)在肿瘤细胞表面表达,一旦肿瘤细胞被T细胞检测到,来自肿瘤细胞的过表达PD-L1/2会与T细胞上的PD-1结合,免疫抑制途径将被激活,肿瘤细胞将逃避宿主免疫监视。多项研究发现, PD-1/PD-L1抑制剂已被证实可以阻断PD-1或PD-L1,从而消除共抑制信号,恢复正常的免疫系统功能,以有效地监测和清除肿瘤细胞,而肿瘤和免疫细胞中PD-1/PD-L1阳性表达率与肿瘤更高的客观缓解率(objective response rate, ORR)相关。

纳武利尤单抗是一种靶向PD-1的人源单抗,也是首个获批用于HCC的ICI药物,其可以选择性阻断PD-1和PD-L1连接,恢复T细胞对肿瘤细胞的免疫活性。基于CheckMate-040研究,纳武利尤单抗获批二线治疗HCC适应证,拉开了HCC免疫治疗的序幕[16]。随后KEYNOTE-224研究证实了帕博利珠单抗在治疗HCC中的疗效(ORR=17%,44%疾病稳定)[17]。尽管ICI取得了巨大进展,但是众多研究发现ICI免疫单药疗效并没有达到预期,患者总生存期(overall survival, OS)和无进展生存期(progression free survival, PFS)并没有达到指定标准的显著性差异[18-19]

在HCC治疗中,由于ICI单药(PD-1/PD-L1)使用并没有展现出理想的效果,亟须制定新的方案提高ICI药物的疗效。有研究发现ICI联合靶向药物可调节肿瘤免疫并增强肿瘤微环境中的抗肿瘤活性[20],因此越来越多的研究开始探索ICI单药与TKI、血管内皮生长因子(vascular endothelial growth factor, VEGF)抑制剂等联用对治疗HCC的效果。在2018年,美国临床肿瘤学会年会公布了帕博利珠单抗联合TKI类药物仑伐替尼(“可乐组合”)治疗不可切除HCC的Ⅰb期研究结果,ORR达到36.0%,中位OS达22个月[21]。ICI药物(PD-1/PD-L1)联合VEGF抑制剂疗效同样显著。来自IMbrave150研究发现,对于不可切除的HCC患者,与索拉非尼相比,阿替利珠单抗(PD-L1单抗)与贝伐珠单抗(VEGF单抗)联合疗法(T+A)能够使患者取得OS与PFS双终点获益。此外,除了总人群获得阳性结果外,在一般情况更差的中国亚组,T+A组主要终点OS和PFS同样获益显著。T+A组对比标准方案,3~4级治疗相关不良事件发生率更低,安全性更佳[22-23]。T+A治疗晚期HCC已被纳入《中国临床肿瘤学会原发性肝癌诊疗指南》和《美国国家综合癌症网络(NCCN)肝胆肿瘤指南》中并以1A类证据被推荐为晚期HCC一线治疗首选。2021年一项来自中国50多家临床中心参加的PD-1单抗(信迪利单抗,商品名达伯舒)联合VEGF单抗(贝伐珠单抗,商品名达攸同)治疗晚期以HBV相关HCC为主要人群的随机、开放、多中心Ⅲ期研究(ORIENT-32研究)[24]显示,达伯舒联合达攸同与索拉非尼单药治疗相比,死亡风险和疾病进展风险下降43%,OS、PFS改善显著,此外在其他相关亚组中,达伯舒+达攸同组的OS和PFS均优于索拉非尼,且安全性良好,“双达”组合为不可切除的乙肝相关HCC患者提供了一种新的治疗选择。来自中国药企自主研发的新药卡瑞利珠单抗(商品名艾瑞卡)联合血管内皮生长因子受体(vascular endothelial growth factor receptor, VEGFR)抑制剂阿帕替尼(商品名艾坦)(“双艾”方案)一线治疗晚期肝癌也取得了突破性的进展,研究发现ORR可达到34.3%,中位PFS为5.7个月,12个月的生存率为74.7%,尽管3级以上不良反应事件发生率为77.4%,但总体上安全可控[25]。2022年《中国临床肿瘤学会(CSCO)肝癌诊疗指南》也将“双艾”方案列为晚期肝癌一线标准治疗方案。

由于ICI联合疗法取得了可喜的效果,越来越多研究开展双免联合方案治疗晚期HCC。不同ICI的组合可通过靶向肿瘤逃避免疫反应的多种途径来克服对单药免疫疗法所造成的耐药性。两种ICI的组合不是简单叠加,而是两种药物在抗肿瘤中针对不同的靶点发挥协调作用,达到1+1>2的效果。来自全球多中心Ⅲ期HIMALAYA研究发现,PD-L1单抗(度伐利尤单抗)联合CTLA-4单抗(替西木单抗)(STRIDE方案)治疗不可切除的HCC可显著改善患者生存状况,3年生存率高达30.7%,而索拉非尼对照组仅为20%,且3~4级治疗相关不良事件发生率明显降低[26-27]。HIMALAYA研究具有重要的意义,STRIDE方案有望成为HCC新的一线标准治疗方案。晚期肝癌免疫治疗关键临床试验结果可见表1

表 1. Results of key clinical trials of immunotherapies for advanced hepatocellular carcinoma.

晚期肝癌免疫治疗关键临床试验结果

Study Treatment options Clinical
trial stage
Outcome
ORR% mOS mPFS Other
 ORR: objective response rate; mPFS: median progression-free survival; mOS: median overall survival; OS: overall survival; mTTP: median time to progression; DCR: disease control rate; mDOR: median duration of response; mTTR: median response time.
CheckMate 040[16] Nivolumab Ⅰ/Ⅱ 20 15.6 4.0
KEYNOTE-224[19] Pembrolizumab 17 12.9 4.9
Richard, et al[21] Pembrolizumab + lenvatinib Ⅰb 36 22 8.6 mTTP 9.7 months
IMbrave 150[22] Atezolizumab + bevacizumab 30 19.2 6.9 DCR 74%, OS of 12 months 67%, OS of 18 months 52%
ORIENT-32[24] Sintilimab + bevacizumab Ⅱ/Ⅲ 25 4.6
RESCUE[25] Camrelizumab + Apatinib 34.3 5.7

OS of 9 months 86.7%, OS of 12 months 74.7%, OS of 18 months 58.1%, DCR 77.1%, mDOR 14.8 months

HIMALAYA[27] Durvalumab + tremelimumab 20.1 16.4 3.8 mDOR 22.34 months, mTTR 2.17 months,3-year survival rate 30.7%

此外,越来越多的研究探索免疫治疗联合化疗或局部治疗对HCC的有效性及安全性。有研究发现化疗药物可以通过激活树突状细胞、增强T细胞的交叉启动以及下调MDSC和Treg细胞来改善抗肿瘤免疫反应并诱导肿瘤细胞免疫原性死亡[28], HCC的局部治疗可以通过释放炎症因子和肿瘤特异性抗原杀死肿瘤细胞来提高抗肿瘤能力[29-32]。同时,TACE联合纳武利尤单抗、TACE联合贝伐珠单抗和德瓦鲁单抗以及根治性外科手术/消融治疗联合度伐利尤单抗及贝伐珠单抗的几项临床研究正在进行中[33-34],探索不同局部治疗及免疫治疗联合的方案,将进一步推动HCC的精准治疗。ICI其他潜在的靶点还包括T细胞免疫球蛋白及黏蛋白结构域分子3(T-cell immunoglobulin and mucin domain-containing molecule 3, TIM3)和淋巴细胞活化基因-3(lymphocyte-activation gene 3, LAG-3),它们与PD-1一样在T细胞上表达,并可导致T细胞受抑制及功能障碍。有研究发现当巨噬细胞中的TIM-3被耗竭时,会抑制HCC肿瘤的生长[35]。此外,LAG-3在包括HCC在内的多种恶性肿瘤中具有异常表达[36]。因此,针对TIM-3和LAG-3靶点的免疫治疗可能为HCC患者带来获益。PD-1联合LAG-3以及PD-1联合TIM-3的双重ICI阻断的Ⅱ期实验正在进行中[37-38]

迄今为止,基于ICI的晚期HCC免疫治疗应用虽取得了一定的效果,但仍存在许多局限性和挑战,例如仍有超过2/3的患者对免疫治疗反应性差,生存获益依然有限。现有的研究发现肿瘤基因组特征、肿瘤免疫检查点表达水平、肿瘤微环境组成、肠道菌群、肿瘤微卫星不稳定性、肿瘤突变负荷可以帮助进行ICI免疫治疗预后进行分层[39-42],但HCC发病机制复杂,单一的生物标志物并不能够准确预测HCC患者免疫治疗的预后,因此有必要进一步探索上述标志物的联合预测价值。

2. 过继性细胞疗法

在免疫治疗临床实践中,由于患者体内缺乏识别肿瘤特异性抗原的T细胞,部分患者在应用基于ICI的免疫治疗后仍无法依靠自身T细胞完全消灭肿瘤。因此,有人提出采用过继性细胞疗法,即从患者的肿瘤或外周血中提取免疫细胞在体外进行基因工程以增强细胞免疫功能,然后再输入体内,达到杀伤肿瘤细胞的作用[43]。过继性细胞疗法主要涉及到识别肿瘤细胞表达的相关抗原,并针对这些特异性肿瘤抗原激活和扩增自身幼稚的T细胞。目前过继性细胞疗法以嵌合抗原受体(chimeric antigen receptor, CAR)T细胞疗法(CAR-T)发展最为迅速。CAR-T细胞可以特异性靶向肿瘤特异性抗原并以不依赖主要组织相容性复合体(major histocompatibility complex, MHC)的方式特异性识别多种抗原,解决MHC分子下调引起的免疫逃逸[44]。CAR-T 细胞在清除肿瘤细胞的同时,也有可能错误地攻击正常组织细胞产生脱靶效应,使得CAR-T细胞疗法不能得到预期的治疗效果,因此选择合适的HCC抗原作为免疫治疗选择非常重要。磷脂酰肌醇蛋白聚糖3(glypican 3, GPC3)在HCC肿瘤细胞表面高表达,而在正常组织中不表达或低表达,因此其可作为免疫治疗的良好靶点[45]

GAO等[46]首次构建了以GPC3为靶点的CAR-T细胞,并证明GPC3为靶点CAR-T细胞在体外和体内均可有效抑制HCC细胞的生长。另一项研究通过建立患者来源的异种移植小鼠(patient-derived tumor xenograft model, PDX)HCC模型,证明GPC3为靶点CAR-T细胞抑制了肿瘤生长,但由于肿瘤细胞上PD-L1的表达不同而具有不同的功效[47]。这表明CAR-T疗法和ICI的结合是一种可行的策略,并对PD-L1阳性HCC患者有着更佳的疗效。一项涉及13例中国难治性或复发性GPC3阳性HCC患者的Ⅰ期研究显示GPC3为靶点CAR-T是安全可行的,并具有良好的抗肿瘤潜力[48]。除GPC3外,针对其他肿瘤抗原,包括甲胎蛋白(alpha fetoprotein, AFP)、HBV表面抗原、自然杀伤细胞家族2成员D(natural killer group 2 member D, NKG2D)、细胞间质上皮转换因子(cellular-mesenchymal epithelial transition factor, c-MET)等的CAR-T细胞实验在基础研究中展现出不错的效果,但尚未在临床研究中进行测试[49-52],我们期待上述临床研究的结果。迄今为止,美国食品药品监督管理局已批准两种不同的CAR-T细胞疗法治疗血液系统恶性肿瘤[53-54]

然而,不同于血液系统恶性肿瘤,CAR-T可以直接靶向恶性细胞,在HCC实体肿瘤中,CAR-T需要运输到肿瘤病灶才能与其靶点结合,在这个过程中往往受到肿瘤微环境的限制:首先,肿瘤周边大量和异常的新生血管、细胞外基质等造成的物理屏障使CAR-T难以有效地达到肿瘤组织[55];其次,实体肿瘤形成的免疫微环境具有低氧、低营养、低pH、高渗透的特点,不利于CAR-T细胞的存活[56],肿瘤微环境中MDSC、CAF、肿瘤相关巨噬细胞(tumor-associated macrophages, TAMs)和Treg等免疫抑制细胞也会通过多种机制使T细胞失活;此外,实体恶性肿瘤通常也会分泌趋化因子以阻碍T细胞的迁移和渗透[57]。因此我们有必要进一步探索肿瘤微环境在CAR-T细胞治疗HCC中的作用,提高CAR-T细胞治疗的有效性。

3. 肿瘤疫苗和溶瘤病毒

肿瘤疫苗是通过使用人工设计的肿瘤抗原来激发细胞毒性T细胞帮助增强抗肿瘤免疫反应的策略[58]。目前关于HCC的肿瘤疫苗主要有多肽类疫苗、DNA疫苗、RNA疫苗、树突状细胞疫苗等。溶瘤病毒(oncolytic virus, OV)是天然存在的或经过工程改造的病毒,OV主要通过直接溶解肿瘤细胞和诱导机体产生抗肿瘤免疫反应发挥治疗作用,其特征在于优先感染、复制和裂解恶性肿瘤细胞,靶向杀伤肿瘤,同时不破坏正常组织;表达肿瘤特异性免疫激活蛋白,激发全身性抗肿瘤免疫反应。

在一项Ⅰ/Ⅱ期临床试验中(NCT03480152),在5例HCC患者身上测试了一种含有15种特异性新抗原的基于mRNA的个性化癌症疫苗,该研究最近已经完成,正在等待试验结果公布。基于AFP的肿瘤疫苗曾在早期试验中使用,并已扩展到其他肿瘤抗原例如GPC3和人端粒酶逆转录酶(human telomerase reverse transcriptase, hTERT)上[59],但上述肿瘤疫苗的治疗有效率并不高,这种不良结果的产生可能与肿瘤疫苗的抗原靶标范围不足和肝脏存在较强的免疫抑制微环境相关。但要明确其关联性,还需要进一步探索肿瘤疫苗与ICI以及其他分子靶向药物对肿瘤的治疗效果。目前,HCC的肿瘤疫苗开发已经进行了一系列的临床试验,以评估癌症疫苗在不同阶段的HCC患者中的安全性和效率,但是相关临床试验结果尚未公开。OV治疗是一种新兴的免疫疗法,许多临床前研究和临床研究已经证明其具有抗肿瘤功效。溶瘤牛痘病毒Pexa-Vec是HCC中研究最广泛的溶瘤病毒,在之前的研究中已显示出临床有效性和耐受性[60],但一项Ⅲ期临床试验(PHOCUS研究)显示尽管在治疗过程中Pexa-Vec联合索拉非尼效果好于单用索拉非尼组,但是中期分析结果表明其延长患者生存期的可能性不高,因此该试验被提前终止。在未来,我们需要更多的临床结果来验证溶瘤病毒在HCC治疗中的效果。

4. 非特异性免疫治疗

目前用于HCC治疗的非特异免疫治疗主要包括胸腺肽、干扰素(interferon, IFN)、IL-2等,其具有改善机体免疫力,促进T细胞增殖分化,增强T细胞对肿瘤抗原反应,刺激NK细胞增殖,增强NK细胞杀伤活性等作用。一项研究发现对于不可切除的晚期HCC,采用TACE联合胸腺肽治疗与单独使用TACE相比,有更高的肿瘤反应率并可延长患者生存时间[61]。一项大样本的回顾性研究分析也证实针对小HCC患者手术切除术后联合使用胸腺肽治疗可改善患者的预后[62]。IFN-α作为HCC手术切除后的辅助治疗药物已得到广泛研究,其不仅可调节宿主免疫功能,还可以抑制HBV的复制。一项研究发现IFN-α治疗可以改善HBV相关HCC患者根治性肝切除术后的长期生存期[63]。IL-2也已被用于治疗晚期HCC,有研究发现对于晚期失去手术机会的HCC患者,使用IL-2治疗后,患者的生存率得到提高[64]。但是上述细胞因子治疗毒副作用较大,总体的疗效也需要大样本量、多中心参与的随机对照临床试验去证实。

5. 小结与展望

综上,现有的免疫治疗研究证据为HCC治疗提供了更多的可能性,多种免疫治疗方案表现出潜在的临床获益,但目前仍存在一些瓶颈,例如HCC内部具有显著的异质性,不同的肿瘤细胞在形态学、分子遗传学和免疫学等方面存在显著差异,不同的分子亚型会导致HCC对免疫治疗的反应差异很大,因此,需要开发更加精准的治疗方案。此外,HCC免疫微环境中免疫抑制细胞、肿瘤细胞分泌的免疫抑制分子等会导致HCC对免疫治疗的反应减弱。为了克服免疫治疗在HCC治疗中的限制,在未来,需要继续探索免疫治疗联合手术、靶向药物、消融、放疗、介入等多种治疗模式,增强HCC对免疫治疗的反应。同时需要确定HCC分子亚型,以更好地预测治疗反应,从而整体提高HCC免疫治疗的效果。

*    *    *

利益冲突 所有作者均声明不存在利益冲突

Funding Statement

国家自然科学基金面上项目(No. 82170543)、四川省自然科学基金面上项目(No. 2023NSFSC0612)、四川省科技计划重点研发项目(No. 2023YFS0229)和四川大学专职博士后研发基金项目(No. 2023SCU12056)资助

Contributor Information

焘 王 (Tao WANG), Email: wangshoutao1219@163.com.

文涛 王 (Wen-tao WANG), Email: wwtdoctor02@126.com.

References

  • 1.YANG J D, HAINAUT P, GORES G J, et al A global view of hepatocellular carcinoma: trends, risk, prevention and management. Nat Rev Gastroenterol Hepatol. 2019;16(10):589–604. doi: 10.1038/s41575-019-0186-y. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 2.SIEGEL R L, MILLER K D, FUCHS H E, et al Cancer statistics, 2022. CA Cancer J Clin. 2022;72(1):7–33. doi: 10.3322/caac.21708. [DOI] [PubMed] [Google Scholar]
  • 3.STORANDT M H, MAHIPAL A, TELLA S H, et al Systemic therapy in advanced hepatocellular carcinoma: patient selection and key considerations. J Hepatocell Carcinoma. 2022;9:1187–1200. doi: 10.2147/jhc.S365002. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 4.SUNG H, FERLAY J, SIEGEL R L, et al Global cancer statistics 2020: GLOBOCAN Estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021;71(3):209–249. doi: 10.3322/caac.21660. [DOI] [PubMed] [Google Scholar]
  • 5.LLOVET J M, KELLEY R K, VILLANUEVA A, et al Hepatocellular carcinoma. Nat Rev Dis Primers. 2021;7(1):6. doi: 10.1038/s41572-020-00240-3. [DOI] [PubMed] [Google Scholar]
  • 6.FERLAY J, COLOMBET M, SOERJOMATARAM I, et al Estimating the global cancer incidence and mortality in 2018: GLOBOCAN sources and methods. Int J Cancer. 2019;144(8):1941–1953. doi: 10.1002/ijc.31937. [DOI] [PubMed] [Google Scholar]
  • 7.SINGAL A G, LAMPERTICO P, NAHON P Epidemiology and surveillance for hepatocellular carcinoma: new trends. J Hepatol. 2020;72(2):250–261. doi: 10.1016/j.jhep.2019.08.025. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 8.REIG M, FORNER A, RIMOLA J, et al BCLC strategy for prognosis prediction and treatment recommendation: the 2022 update. J Hepatol. 2022;76(3):681–693. doi: 10.1016/j.jhep.2021.11.018. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 9.YANG C, ZHANG H, ZHANG L, et al Evolving therapeutic landscape of advanced hepatocellular carcinoma. Nat Rev Gastroenterol Hepatol. 2023;20(4):203–222. doi: 10.1038/s41575-022-00704-9. [DOI] [PubMed] [Google Scholar]
  • 10.THOMAS M B, O'BEIRNE J P, FURUSE J, et al Systemic therapy for hepatocellular carcinoma: cytotoxic chemotherapy, targeted therapy and immunotherapy. Ann Surg Oncol. 2008;15(4):1008–1014. doi: 10.1245/s10434-007-9705-0. [DOI] [PubMed] [Google Scholar]
  • 11.LLOVET J M, RICCI S, MAZZAFERRO V, et al Sorafenib in advanced hepatocellular carcinoma. N Engl J Med. 2008;359(4):378–390. doi: 10.1056/NEJMoa0708857. [DOI] [PubMed] [Google Scholar]
  • 12.KUDO M, FINN R S, QIN S, et al Lenvatinib versus sorafenib in first-line treatment of patients with unresectable hepatocellular carcinoma: a randomised phase 3 non-inferiority trial. Lancet. 2018;391(10126):1163–1173. doi: 10.1016/s0140-6736(18)30207-1. [DOI] [PubMed] [Google Scholar]
  • 13.BRUIX J, QIN S, MERLE P, et al Regorafenib for patients with hepatocellular carcinoma who progressed on sorafenib treatment (RESORCE): a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet. 2017;389(10064):56–66. doi: 10.1016/s0140-6736(16)32453-9. [DOI] [PubMed] [Google Scholar]
  • 14.PRIETO J, MELERO I, SANGRO B Immunological landscape and immunotherapy of hepatocellular carcinoma. Nat Rev Gastroenterol Hepatol. 2015;12(12):681–700. doi: 10.1038/nrgastro.2015.173. [DOI] [PubMed] [Google Scholar]
  • 15.HUANG S L, WANG Y M, WANG Q Y, et al Mechanisms and clinical trials of hepatocellular carcinoma immunotherapy. Front Genet. 2021;12:691391. doi: 10.3389/fgene.2021.691391. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 16.El-KHOUEIRY A B, SANGRO B, YAU T, et al Nivolumab in patients with advanced hepatocellular carcinoma (CheckMate 040): an open-label, non-comparative, phase 1/2 dose escalation and expansion trial. Lancet. 2017;389(10088):2492–2502. doi: 10.1016/s0140-6736(17)31046-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 17.ZHU A X, FINN R S, EDELINE J, et al Pembrolizumab in patients with advanced hepatocellular carcinoma previously treated with sorafenib (KEYNOTE-224): a non-randomised, open-label phase 2 trial. Lancet Oncol. 2018;19(7):940–952. doi: 10.1016/s1470-2045(18)30351-6. [DOI] [PubMed] [Google Scholar]
  • 18.YAU T, PARK J W, FINN R S, et al Nivolumab versus sorafenib in advanced hepatocellular carcinoma (CheckMate 459): a randomised, multicentre, open-label, phase 3 trial. Lancet Oncol. 2022;23(1):77–90. doi: 10.1016/s1470-2045(21)00604-5. [DOI] [PubMed] [Google Scholar]
  • 19.FINN R S, RYOO B Y, MERLE P, et al Pembrolizumab as second-line therapy in patients with advanced hepatocellular carcinoma in KEYNOTE-240: a randomized, double-blind, phase Ⅲ trial. J Clin Oncol. 2020;38(3):193–202. doi: 10.1200/jco.19.01307. [DOI] [PubMed] [Google Scholar]
  • 20.KATO Y, TABATA K, KIMURA T, et al Lenvatinib plus anti-PD-1 antibody combination treatment activates CD8+ T cells through reduction of tumor-associated macrophage and activation of the interferon pathway. PLoS One. 2019;14(2):e0212513. doi: 10.1371/journal.pone.0212513. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 21.FINN R S, IKEDA M, ZHU A X, et al Phase Ⅰb study of lenvatinib plus pembrolizumab in patients with unresectable hepatocellular carcinoma. J Clin Oncol. 2020;38(26):2960–2970. doi: 10.1200/jco.20.00808. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 22.GALLE P R, FINN R S, QIN S, et al Patient-reported outcomes with atezolizumab plus bevacizumab versus sorafenib in patients with unresectable hepatocellular carcinoma (IMbrave150): an open-label, randomised, phase 3 trial. Lancet Oncol. 2021;22(7):991–1001. doi: 10.1016/s1470-2045(21)00151-0. [DOI] [PubMed] [Google Scholar]
  • 23.QIN S, REN Z, FENG Y H, et al Atezolizumab plus bevacizumab versus sorafenib in the Chinese subpopulation with unresectable hepatocellular carcinoma: phase 3 randomized, open-label IMbrave150 study. Liver Cancer. 2021;10(4):296–308. doi: 10.1159/000513486. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 24.REN Z, XU J, BAI Y, et al Sintilimab plus a bevacizumab biosimilar (IBI305) versus sorafenib in unresectable hepatocellular carcinoma (ORIENT-32): a randomised, open-label, phase 2-3 study. Lancet Oncol. 2021;22(7):977–990. doi: 10.1016/s1470-2045(21)00252-7. [DOI] [PubMed] [Google Scholar]
  • 25.XU J, SHEN J, GU S, et al Camrelizumab in combination with apatinib in patients with advanced hepatocellular carcinoma (RESCUE): a nonrandomized, open-label, phase Ⅱ trial. Clin Cancer Res. 2021;27(4):1003–1011. doi: 10.1158/1078-0432.Ccr-20-2571. [DOI] [PubMed] [Google Scholar]
  • 26.Dual Immunotherapy Makes Strides against HCC. Cancer Discov. 2022;12(4):OF1. doi: 10.1158/2159-8290.Cd-nb2022-0008. [DOI] [PubMed] [Google Scholar]
  • 27.KUDO M Durvalumab plus tremelimumab in unresectable hepatocellular carcinoma. Hepatobiliary Surg Nutr. 2022;11(4):592–596. doi: 10.21037/hbsn-22-143. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 28.ZHENG Y, DOU Y, DUAN L, et al Using chemo-drugs or irradiation to break immune tolerance and facilitate immunotherapy in solid cancer. Cell Immunol. 2015;294(1):54–59. doi: 10.1016/j.cellimm.2015.02.003. [DOI] [PubMed] [Google Scholar]
  • 29.NOBUOKA D, MOTOMURA Y, SHIRAKAWA H, et al Radiofrequency ablation for hepatocellular carcinoma induces glypican-3 peptide-specific cytotoxic T lymphocytes. Int J Oncol. 2012;40(1):63–70. doi: 10.3892/ijo.2011.1202. [DOI] [PubMed] [Google Scholar]
  • 30.A trial of SHR-1210 (an Anti-PD-1 Inhibitor) in combination with FOLFOX4 in subjects with advanced HCC who have never received prior systemic treatment. (2022-02-10) [2022-12-10]. https://clinicaltrials.gov/ct2/show/study/NCT03605706.
  • 31.HARDING J J, YARMOHAMMADI H, REISS K A, et al Nivolumab (NIVO) and drug eluting bead transarterial chemoembolization (deb-TACE): preliminary results from a phase I study of patients (pts) with liver limited hepatocellular carcinoma (HCC) J Clin Oncol. 2020;38(4_suppl):525. doi: 10.1200/JCO.2020.38.4_suppl.525. [DOI] [Google Scholar]
  • 32.TAI W M D, LOKE K S H, GOGNA A, et al A phase Ⅱ open-label, single-center, nonrandomized trial of Y90-radioembolization in combination with nivolumab in Asian patients with advanced hepatocellular carcinoma: CA 209-678. J Clin Oncol. 2020;38(15_suppl):4590. doi: 10.1200/JCO.2020.38.15_suppl.4590. [DOI] [Google Scholar]
  • 33.Nivolumab in combination with TACE/TAE for patients with intermediate stage HCC (TACE-3)// ClinicalTrials. gov Identifier: NCT04268888. (2020-06-16) [2022-12-10]. https://clinicaltrials.gov/ct2/show/NCT04268888.
  • 34.Assess efficacy and safety of durvalumab alone or combined with bevacizumab in high risk of recurrence HCC patients after curative treatment (EMERALD-2). (2023-02-21) [2023-03-10]. https://clinicaltrials.gov/ct2/show/NCT03847428.
  • 35.YAN W, LIU X, MA H, et al Tim-3 fosters HCC development by enhancing TGF-β-mediated alternative activation of macrophages. Gut. 2015;64(10):1593–1604. doi: 10.1136/gutjnl-2014-307671. [DOI] [PubMed] [Google Scholar]
  • 36.LONG L, ZHANG X, CHEN F, et al The promising immune checkpoint LAG-3: from tumor microenvironment to cancer immunotherapy. Genes Cancer. 2018;9(5/6):176–189. doi: 10.18632/genesandcancer.180. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 37.A study of relatlimab in combination with nivolumab in participants with advanced liver cancer who have never been treated with immuno-oncology therapy after prior treatment with tyrosine kinase inhibitors. (2023-02-27) [2023-03-10]. https://clinicaltrials.gov/ct2/show/NCT04567615.
  • 38.TSR-022 (anti-TIM-3 antibody) and TSR-042 (anti-PD-1 antibody) in patients with liver cancer. (2022-10-25) [2022-12-10]. https://clinicaltrials.gov/ct2/show/NCT03680508.
  • 39.MAO J, WANG D, LONG J, et al Gut microbiome is associated with the clinical response to anti-PD-1 based immunotherapy in hepatobiliary cancers. J Immunother Cancer. 2021;9(12):e003334. doi: 10.1136/jitc-2021-003334. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 40.SANGRO B, MELERO I, WADHAWAN S, et al Association of inflammatory biomarkers with clinical outcomes in nivolumab-treated patients with advanced hepatocellular carcinoma. J Hepatol. 2020;73(6):1460–1469. doi: 10.1016/j.jhep.2020.07.026. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 41.ESO Y, SHIMIZU T, TAKEDA H, et al Microsatellite instability and immune checkpoint inhibitors: toward precision medicine against gastrointestinal and hepatobiliary cancers. J Gastroenterol. 2020;55(1):15–26. doi: 10.1007/s00535-019-01620-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 42.MARABELLE A, FAKIH M, LOPEZ J, et al Association of tumour mutational burden with outcomes in patients with advanced solid tumours treated with pembrolizumab: prospective biomarker analysis of the multicohort, open-label, phase 2 KEYNOTE-158 study. Lancet Oncol. 2020;21(10):1353–1365. doi: 10.1016/s1470-2045(20)30445-9. [DOI] [PubMed] [Google Scholar]
  • 43.ROSENBERG S A, RESTIFO N P Adoptive cell transfer as personalized immunotherapy for human cancer. Science. 2015;348(6230):62–68. doi: 10.1126/science.aaa4967. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 44.JUNE C H, O'CONNOR R S, KAWALEKAR O U, et al CAR T cell immunotherapy for human cancer. Science. 2018;359(6382):1361–1365. doi: 10.1126/science.aar6711. [DOI] [PubMed] [Google Scholar]
  • 45.ZHOU F, SHANG W, YU X, et al Glypican-3: a promising biomarker for hepatocellular carcinoma diagnosis and treatment. Med Res Rev. 2018;38(2):741–767. doi: 10.1002/med.21455. [DOI] [PubMed] [Google Scholar]
  • 46.GAO H, LI K, TU H, et al Development of T cells redirected to glypican-3 for the treatment of hepatocellular carcinoma. Clin Cancer Res. 2014;20(24):6418–6428. doi: 10.1158/1078-0432.Ccr-14-1170. [DOI] [PubMed] [Google Scholar]
  • 47.JIANG Z, JIANG X, CHEN S, et al Anti-GPC3-CAR T cells suppress the growth of tumor cells in patient-derived xenografts of hepatocellular carcinoma. Front Immunol. 2016;7:690. doi: 10.3389/fimmu.2016.00690. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 48.ZHAI B, SHI D, GAO H, et al A phase Ⅰ study of anti-GPC3 chimeric antigen receptor modified T cells (GPC3 CAR-T) in Chinese patients with refractory or relapsed GPC3+ hepatocellular carcinoma (r/r GPC3+ HCC) J Clin Oncol. 2017;35(15_suppl):3049. doi: 10.1200/JCO.2017.35.15_suppl.3049. [DOI] [Google Scholar]
  • 49.LIU H, XU Y, XIANG J, et al Targeting alpha-fetoprotein (AFP)-MHC complex with CAR T-cell therapy for liver cancer. Clin Cancer Res. 2017;23(2):478–488. doi: 10.1158/1078-0432.Ccr-16-1203. [DOI] [PubMed] [Google Scholar]
  • 50.ZOU F, TAN J, LIU T, et al The CD39(+) HBV surface protein-targeted CAR-T and personalized tumor-reactive CD8(+) T cells exhibit potent anti-HCC activity. Mol Ther. 2021;29(5):1794–1807. doi: 10.1016/j.ymthe.2021.01.021. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 51.HUANG X, GUO J, LI T, et al c-Met-targeted chimeric antigen receptor T cells inhibit hepatocellular carcinoma cells in vitro and in vivo. J Biomed Res. 2021;36(1):10–21. doi: 10.7555/jbr.35.20200207. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 52.SUN B, YANG D, DAI H, et al Eradication of hepatocellular carcinoma by NKG2D-based CAR-T cells. Cancer Immunol Res. 2019;7(11):1813–1823. doi: 10.1158/2326-6066.Cir-19-0026. [DOI] [PubMed] [Google Scholar]
  • 53.ANDERSON L D, Jr Idecabtagene vicleucel (ide-cel) CAR T-cell therapy for relapsed and refractory multiple myeloma. Future Oncol. 2022;18(3):277–289. doi: 10.2217/fon-2021-1090. [DOI] [PubMed] [Google Scholar]
  • 54.RAFIQ S, HACKETT C S, BRENTJENS R J Engineering strategies to overcome the current roadblocks in CAR T cell therapy. Nat Rev Clin Oncol. 2020;17(3):147–167. doi: 10.1038/s41571-019-0297-y. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 55.ZHANG G Z, LI T F, HAN S Y Mesothelin-targeted CAR-T cells for adoptive cell therapy of solid tumors. Arch Med Sci. 2021;17(5):1213–1220. doi: 10.5114/aoms.2019.84888. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 56.DAL BO M, De MATTIA E, BABOCI L, et al New insights into the pharmacological, immunological, and CAR-T-cell approaches in the treatment of hepatocellular carcinoma. Drug Resist Updat. 2020;51:100702. doi: 10.1016/j.drup.2020.100702. [DOI] [PubMed] [Google Scholar]
  • 57.KORBECKI J, KOJDER K, KAPCZUK P, et al The effect of hypoxia on the expression of CXC chemokines and CXC chemokine receptors--a review of literature. Int J Mol Sci. 2021;22(2):843. doi: 10.3390/ijms22020843. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 58.KANG S M, KHALIL L, El-RAYES B F, et al Rapidly evolving landscape and future horizons in hepatocellular carcinoma in the era of immuno-oncology. Front Oncol. 2022;12:821903. doi: 10.3389/fonc.2022.821903. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 59.JOHNSTON M P, KHAKOO S I Immunotherapy for hepatocellular carcinoma: current and future. World J Gastroenterol. 2019;25(24):2977–2989. doi: 10.3748/wjg.v25.i24.2977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 60.HEO J, BREITBACH C, CHO M, et al A phase Ⅱ trial of JX-594, a targeted multimechanistic oncolytic vaccinia virus, followed by sorafenib in patients with advanced hepatocellular carcinoma (HCC) J Clin Oncol. 2012;30(15_suppl):e14566. doi: 10.1200/jco.2012.30.15_suppl.e14566. [DOI] [Google Scholar]
  • 61.GISH R G, GORDON S C, NELSON D, et al A randomized controlled trial of thymalfasin plus transarterial chemoembolization for unresectable hepatocellular carcinoma. Hepatol Int. 2009;3(3):480–489. doi: 10.1007/s12072-009-9132-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 62.HE C, PENG W, LI C, et al Thymalfasin, a promising adjuvant therapy in small hepatocellular carcinoma after liver resection. Medicine (Baltimore) 2017;96(16):e6606. doi: 10.1097/md.0000000000006606. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 63.SUN H C, TANG Z Y, WANG L, et al Postoperative interferon alpha treatment postponed recurrence and improved overall survival in patients after curative resection of HBV-related hepatocellular carcinoma: a randomized clinical trial. J Cancer Res Clin Oncol. 2006;132(7):458–465. doi: 10.1007/s00432-006-0091-y. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 64.BERTELLI R, NERI F, TSIVIAN M, et al Endolymphatic immunotherapy in inoperable hepatocellular carcinoma. Transplant Proc. 2008;40(6):1913–1915. doi: 10.1016/j.transproceed.2008.05.049. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Sichuan University (Medical Sciences) are provided here courtesy of Editorial Board of Journal of Sichuan University (Medical Sciences)

RESOURCES