Abstract
目的
观察脓毒症对骨骼肌功能的影响,并探讨骨骼肌线粒体钙摄取蛋白1(mitochondrial calcium uptake protein 1, MICU1)的作用。
方法
选择SPF级健康雄性C57/BL 6J小鼠40只,随机分为4组:假手术组(Sham组,n=8);脓毒症建模6 h组(CLP-6 h组,n=10);脓毒症建模12 h组(CLP-12 h组,n=10);脓毒症建模24 h组(CLP-24 h组,n=12)。采用盲肠结扎穿孔术(cecal ligation and puncture, CLP)构建脓毒症模型,Sham组小鼠仅行开腹盲肠探查。另选取SPF级小鼠20只,一侧胫前肌空转染腺相关病毒(AAV)作为对照(AAV-C),另一侧胫前肌转染AAV提高MICU1表达(AAV-M)。小鼠随机分为2组:假手术组(AAV-C-Sham,AAV-M-Sham;n=8)和脓毒症建模24 h组(AAV-C-CLP,AAV-M-CLP;n=12)。于相应时间点检测小鼠抓力以及复合肌动作电位(compound muscle action potential, CMAP)。采用ELISA测定骨骼肌炎症因子肿瘤坏死因子α(tumor necrosis factor α, TNF-α)及白细胞介素6(interleukin 6, IL-6)表达水平。通过HE染色检测骨骼肌细胞形态变化,运用Western blot检测MICU1以及肌肉萎缩相关蛋白:肌肉环状指蛋白1(muscle RING-finger containing protein 1, MuRF1)和肌肉萎缩盒F蛋白(muscle atrophy Fbox protein, MAFbx)表达水平,RT-qPCR检测骨骼肌MICU1 mRNA表达水平。
结果
与Sham组相比,CLP组小鼠体质量下降(P<0.05),且随着CLP建模时间延长,小鼠抓力下降(P<0.05);CMAP幅值下降,持续时间和潜伏期延长(P<0.05);骨骼肌炎症因子TNF-α、IL-6表达水平逐渐增高(P<0.05);骨骼肌肌纤维直径及横截面积随建模时间延长逐渐下降(P<0.05);MuRF1、MAFbx蛋白表达水平逐渐增高(P<0.05);MICU1蛋白及mRNA表达水平逐渐下降(P<0.05)。AAV-M-Sham组与AAV-C-Sham组相比,各项指标差异均无统计学意义(P>0.05)。AAV-M-CLP组与AAV-C-CLP组比较,小鼠抓力增高(P<0.05);CMAP幅值增高,持续时间和潜伏期缩短(P<0.05);肌纤维直径及横截面积增加(P<0.05);MuRF1、MAFbx蛋白表达水平降低(P<0.05)。
结论
脓毒症导致骨骼肌功能障碍,与线粒体MICU1表达水平下降有关。
Keywords: 脓毒症, 骨骼肌, 肌萎缩, 线粒体, 线粒体钙摄取蛋白1
Abstract
Objective
To observe the effect of sepsis on skeletal muscle function and to explore the role of skeletal muscle mitochondrial calcium uptake protein 1 (MICU1).
Methods
A total of 40 specific-pathogen-free (SPF) healthy male C57BL/6J mice were randomly assigned to 4 groups, a sham operation group (Sham group, n=8), a sepsis modeling 6 h group (cecal ligation and puncture [CLP]-6 h group, n=10), a sepsis modeling 12 h group (CLP-12 h group, n=10), and a sepsis modeling 24 h group (CLP-24 h, n=12). The sepsis model was established by CLP. Mice in the Sham group only underwent laparotomic exploration of the cecum. Another 20 SPF mice were selected. The tibialis anterior muscle on one side was empty-transfected with adeno-associated virus (AAV) as controls (AAV-C), and the tibialis anterior muscle on the other side was transfected with AAV to enhance MICU1 expression (AAV-M). The mice were randomly assigned to two groups, a sham operation group (AAV-C-Sham and AAV-M-Sham, n=8) and a sepsis model 24 h group (AAV-C-CLP and AAV-M-CLP, n=12). The grip strength and compound muscle action potential (CMAP) of the tibialis anterior muscle were measured in each group at the corresponding time points. The levels of inflammatory factors, including tumor necrosis factor α (TNF-α) and interleukin 6 (IL-6), in the skeletal muscle were measured by ELISA. The morphological changes of skeletal muscle cells were observed through H&E staining. The expression levels of MICU1 and muscle atrophy-related proteins, including muscle RING-finger containing protein 1 (MuRF1) and muscle atrophy Fbox protein (MAFbx), were determined by Western blot. The expression levels of MICU1 mRNA in skeletal muscle were determined by RT-qPCR.
Results
Compared with mice in the Sham group, mice in the CLP group showed decreased body weight (P<0.05); their grip strength decreased with the prolongation of CLP modeling time (P<0.05); the amplitude of CMAP decreased, showing prolonged duration and latency (P<0.05); the expression levels of inflammatory factors, including TNF-α and IL-6, in skeletal muscle increased gradually (P<0.05); the fiber diameter and cross-sectional area of skeletal muscle decreased gradually with the prolongation of modeling time (P<0.05); the protein expression levels of MuRF1and MAFbx proteins increased gradually (P<0.05); the expression levels of MICU1 protein and mRNA decreased gradually (P<0.05). There was no significant difference in all indices between AAV-M-Sham and AAV-C-Sham groups (P>0.05). Compared with mice in the AAV-C-CLP group, mice in the AAV-M-CLP group showed increased grip strength (P<0.05); the amplitude of CMAP increased, showing shortened duration and latency (P<0.05); the fiber diameter and cross-sectional area of skeletal muscle increased (P<0.05); the expression levels of MuRF1and MAFbx decreased (P<0.05).
Conclusion
Sepsis leads to skeletal muscle dysfunction, which is related to the decrease in mitochondrial MICU1 expression.
Keywords: Sepsis, Skeletal muscles, Muscle weakness, Mitochondria, Mitochondrial calcium uptake protein 1
重症监护病房获得性肌无力(ICU-acquired weakness, ICU-AW)是患者在ICU住院治疗期间发生的全身骨骼肌无力的虚弱症状,发生率约为40%[1-2]。脓毒症是导致ICU-AW发生的主要原因,是ICU患者死亡率增高的独立危险因素[3]。ICU-AW的发生机制目前尚不清楚[4]。线粒体钙摄取蛋白1(mitochondrial calcium uptake protein 1, MICU1)是存在于线粒体内膜的钙离子通道蛋白,感受线粒体内外膜间隙钙离子浓度变化,调控线粒体内钙离子浓度[5-6]。研究发现,骨骼肌MICU1与骨骼肌功能密切相关[7]。本研究通过构建脓毒症小鼠模型,探讨MICU1在脓毒症导致骨骼肌功能障碍中的作用,为ICU-AW的治疗提供新的靶点。
1. 材料和方法
1.1. 实验动物及实验分组
SPF级健康雄性C57 BL/6J小鼠40只,体质量18~20 g,6~8周龄,购于北京华阜康生物科技股份有限公司。小鼠随机分为4组:假手术组(Sham组,n=8)、脓毒症建模6 h组(CLP-6 h 组,n=10)、脓毒症建模12 h组(CLP-12 h 组,n=10)、脓毒症建模24 h组(CLP-24 h,n=12)。另购买SPF级健康雄性小鼠20只用于腺相关病毒(AAV,上海汉恒生物科技有限公司)转染,各组小鼠一侧胫前肌空转染24 μL AAV作为对照(AAV-C),另一侧胫前肌转染同等剂量的AAV提高MICU1表达(AAV-M)。小鼠随机分为2组:假手术组(AAV-C-Sham,AAV-M-Sham;n=8)和脓毒症建模24 h组(AAV-C-CLP,AAV-M-CLP;n=12)。另购买SPF级健康雄性小鼠30只用于生存率及体质量变化分析(Sham组, n=10; CLP组,n=20)。本实验通过西南医科大学动物伦理委员会批准,批准号为:SWMU20220085,动物使用许可证号为SYXK(川)2018-065。动物实验过程遵循我国《实验动物福利伦理审查指南(GB/T35892-2018)》提出的原则和要求,并规范落实实验动物福利伦理。
1.2. 脓毒症模型构建
实验前将小鼠饲养在12 h明暗交替的恒温动物房中一周,建模前12 h禁食。脓毒症建模参照DRECHSLER等[8]方法,采用盲肠结扎穿孔术(cecal ligation and puncture, CLP)构建脓毒症模型。在小鼠腹腔注射1%戊巴比妥钠50 mg/kg后固定备皮,腹部正中线偏左处开口1 cm,探查盲肠。将盲肠结扎50%,并在其远端用21号针避开血管对穿并挤出粪便,然后将盲肠回纳并关闭腹腔。假手术组只进行盲肠探查而不进行其他操作[9]。
1.3. 抓力检测
各组小鼠在建模前后参照文献[10]用抓力测定仪(DS2-20N,北京众实迪创科技发展有限责任公司)测量小鼠四肢抓力。小鼠抓住连接在力传感器的水平金属棒上,由同一实验人员将小鼠的尾巴轻轻向后拉。当小鼠四肢松开横杆时,力传感器会自动记录峰值张力。在每个时间点进行5次抓力测量,取其平均值,分析建模前后抓力下降百分比。
1.4. 复合肌动作电位(compound muscle action potential, CMAP)检测
参照POLLARI等[11]方法,使用27G针电极测量小鼠后肢CMAP。小鼠麻醉后俯卧位放在保温毯上,并用胶带将后肢固定在操作台面上。将刺激电极放置于小鼠坐骨神经切迹两侧的皮下,将针垂直推入皮下5 mm,电极之间的距离约为2 cm。将记录电极置于腓肠肌的皮下,参比电极以30°方向插入跟腱皮下,并留出2~5 mm的针头。最后将接地电极以类似于刺激电极的方式放置在小鼠一侧的皮下。
1.5. 炎症因子检测
小鼠CLP建模后于相应时间点心脏取血后放于肝素管中,4 ℃,13000 r/min离心,15 min后取上清于1.5 mL无菌EP管中,按照生产厂家说明书,用酶联免疫吸附实验试剂盒(武汉酶免生物科技有限公司)检测炎症因子白细胞介素6(interleukin 6, IL-6)、肿瘤坏死因子α(tumor necrosis factor, TNF-α)的表达水平[12]。
1.6. 骨骼肌HE染色
小鼠腹腔注射大剂量戊巴比妥钠(60 mg/kg)处死后,取胫前肌置于体积分数为4%多聚甲醛固定。采用梯度乙醇溶液脱水、二甲苯透明、石蜡浸润2 h后包埋。采用Leica CM3050S切片机切片,厚度为4 μm,经过干燥、脱蜡、梯度乙醇脱二甲苯,苏木伊染液染细胞核10 min。伊红染液染细胞质2~5 min,梯度乙醇脱水、二甲苯透明、中性树胶封片[13]。用Image-Pro Plus进行骨骼肌肌纤维直径和面积的分析。
1.7. 蛋白质印迹分析
提取小鼠胫前肌总蛋白,定量后通过电泳分离后转膜。将膜用5%的脱脂牛奶室温下进行封闭2 h,洗膜后用相对应的一抗:MICU1抗体(ab-190114, Abcam,美国,1∶1000),肌肉环状指蛋白1(muscle RING-finger containing protein 1, MuRF1, sc-398608, Santa Cruz Biotechnology,美国,1∶ 1200)和肌肉萎缩盒F蛋白(muscle atrophy Fbox protein, MAFbx, sc-166806, Santa Cruz Biotechnology,美国,1∶ 1200);以GAPDH抗体(sc-32233, Santa Cruz Biotechnology,美国,1∶1000)作为内参,4 ℃孵育过夜。次日,用与一抗相匹配的二抗:辣根过氧化物酶标记山羊抗小鼠lgG(H+L)(A0216, beyotime,上海碧云天生物技术有限公司)、辣根过氧化物酶标记兔抗羊lgG(H+L)(AB_2864335, proteintech group,上海优宁维生物科技股份有限公司),室温孵育1 h后用ECL法显影。采用Image J进行灰度值分析,以目的蛋白灰度值与内参蛋白灰度值的比值反映目的蛋白的相对表达水平。
1.8. 实时荧光定量PCR
逆转录-聚合酶链反应的主要试剂均购自南京诺唯赞生物科技股份有限公司。MICU1的qPCR引物由北京擎科生物科技有限公司合成,其上游引物为5′-CTTGGAGAGTGTGGGCTCAT-3′,下游引物为5′-ATGTCTACCTCTCCGTCTCCA-3′,扩增产物片段128 bp。以GAPDH作为内参基因,上游引物为5′-ATGCACACTGGTGCAGAGAG-3′,下游引物为5′-TGTAAGCACACAGGCAGGTC-3′,扩增产物片段为168 bp。采用2−ΔΔCt方法分析MICU1 mRNA的表达水平。
1.9. 统计学方法
采用GraphPad Prism 9.0.0统计学软件分析,符合正态分布的计量资料以
表示,多组间比较采用One-way ANOVA单因素方差分析,组间两两比较采用LSD检验,α=0.05。
2. 结果
2.1. 小鼠生存情况和体质量变化
Sham组与CLP组小鼠建模后7 d观察生存率及体质量变化。结果发现,建模后7 d,CLP组小鼠死亡17只,死亡率为85%,体质量下降约25%,与Sham组比较差异有统计学意义(P<0.05)。
2.2. 抓力
见图1A。与Sham组相比,CLP组小鼠抓力下降,差异有统计学意义(P<0.05);与CLP-6 h组相比,CLP-12 h、CLP-24 h组抓力下降(P<0.05); 与CLP-12 h相比,CLP-24 h组抓力下降,差异有统计学意义(P<0.05)。
图 1.

Grip strength (A), CMAP (B), IL-6 and TNF-α (C), muscle fiber diameter and CSA quantification after H&E staining (×40) (D), expression of MuRF1 and MAFbx proteins (E), and MICU1 protein and mRNA (F)
各组小鼠抓力(A),CMAP检测结果(B),胫前肌炎症因子表达(C),HE染色(×40)、肌纤维直径及横截面积定量分析结果(D),萎缩相关蛋白(E)及MICU1蛋白表达和mRNA的表达(F)
CMAP: compound muscle action potential; IL-6: interleukin 6; CSA: cross-sectional area; MuRF1: muscle RING-finger containing protein 1; MAFbx: muscle atrophy Fbox protein; MICU1: mitochondrial calcium uptake protein 1. * P<0.05, ** P<0.01, *** P<0.001, **** P<0.0001, vs. Sham group; # P<0.05, ## P<0.01, ### P<0.001, ####P<0.0001, vs. CLP-6 h group; ▲ P<0.05, ▲▲ P<0.01, ▲▲▲ P<0.001, vs. CLP-12 h group.
2.3. CMAP
见图1B。与Sham组相比,CLP组小鼠CMAP峰值下降,持续时间延长,潜伏期延长,差异有统计学意义(P<0.05);与CLP-6 h组相比,CLP-24 h组小鼠CMAP峰值下降,潜伏期延长(P<0.05);与CLP-12 h组相比,CLP-24 h组小鼠CMAP潜伏期延长,差异有统计学意义(P<0.05)。
2.4. 炎症因子表达
见图1C。与Sham组相比,CLP组小鼠骨骼肌炎症因子IL-6、TNF-α表达水平增高,差异有统计学意义(P<0.05);与CLP-6 h组相比,CLP-24 h组小鼠骨骼肌炎症因子IL-6、TNF-α表达水平增高(P<0.05);与CLP-12 h组相比,CLP-24 h组小鼠骨骼肌炎症因子IL-6表达水平增高,差异有统计学意义(P<0.05)。
2.5. 骨骼肌细胞形态
见图1D。与Sham组相比,CLP-24 h组小鼠骨骼肌肌纤维直径和CLP-12 h组、CLP-24 h组小鼠骨骼肌肌纤维横截面积下降,差异有统计学意义(P<0.05)。CLP-6 h组、CLP-12 h组和CLP-24 h组间差异无统计学意义(P>0.05)。
2.6. 肌肉萎缩相关蛋白的表达水平
见图1E。与Sham组相比,CLP-12 h组和CLP-24 h组小鼠肌肉萎缩相关蛋白MuRF1、MAFbx表达水平升高,差异有统计学意义(P<0.05);与CLP-6 h组相比,CLP-12 h组和CLP-24 h组小鼠肌肉萎缩相关蛋白MuRF1表达水平升高,差异有统计学意义(P<0.05);与CLP-12 h组相比,CLP-24 h组小鼠肌肉萎缩相关蛋白MuRF1表达水平升高,差异有统计学意义(P<0.05)。
2.7. MICU1的表达水平
见图1F。 与Sham组相比,CLP-24 h组小鼠MICU1的蛋白表达水平及mRNA表达水平下降,差异有统计学意义(P<0.05)。 CLP-6 h组、CLP-12 h组和CLP-24 h组间差异无统计学意义(P>0.05)。
2.8. AAV干预后抓力
见图2A。与AAV-C-Sham组比较,AAV-M-Sham组小鼠各项指标差异无统计学意义(P>0.05)。与AAV-C-CLP组比较,AAV-M-CLP组小鼠骨骼肌抓力增高(P<0.05)。
图 2.

The grip strength (A), CMAP (B), tibialis anterior muscle fiber diameter and CSA quantification after HE staining (×40) (C), the expression of MICU1 protein (D) and mRNA MuRF1 and MAFbx proteins (E) after AAV intervention
AAV干预后,各组小鼠抓力(A)、CMAP检测结果(B)、小鼠胫前肌HE染色(×40)、肌纤维直径及横截面积定量分析结果(C)、MICU1蛋白和mRNA表达(D)和胫前肌萎缩相关蛋白表达(E)
AAV: adeno-associated virus; the other abbreviations are explained in the notes to Fig 1. * P<0.05, ** P<0.01, *** P<0.001, **** P<0.0001, vs. AAV-C-Sham group; ## P<0.01, #### P<0.0001, vs. AAV-M-Sham group; ▲ P<0.05, ▲▲ P<0.01, ▲▲▲▲ P<0.0001, vs. AAV-C-CLP group.
2.9. AAV干预后CMAP
见图2B。与AAV-C-Sham组比较,AAV-M-Sham组小鼠各项指标差异无统计学意义(P>0.05)。与AAV-C-CLP组比较,AAV-M-CLP组小鼠CMAP幅值增高,持续时间缩短,潜伏期缩短(P<0.05)。
2.10. AAV干预后骨骼肌细胞形态
见图2C。与AAV-C-Sham组比较,AAV-M-Sham组小鼠各项指标差异无统计学意义(P>0.05)。与AAV-C-CLP组比较,AAV-M-CLP组小鼠骨骼肌肌纤维直径和横截面积增高(P<0.05)。
2.11. AAV干预后胫前肌MICU1成功过表达
见图2D。与AAV-C组比较,AAV-M组小鼠MICU1的蛋白表达水平及mRNA表达水平增高,差异有统计学意义(P<0.05)。
2.12. AAV干预后肌肉萎缩相关蛋白表达水平
见图2E。与AAV-C-Sham组比较,AAV-M-Sham组小鼠各项指标差异无统计学意义(P>0.05)。与AAV-C-CLP组比较,AAV-M-CLP组小鼠肌肉萎缩相关蛋白MuRF1、MAFbx蛋白表达水平下降,差异有统计学意义(P<0.05)。
3. 讨论
本研究发现脓毒症导致了骨骼肌功能障碍,表现为小鼠抓力下降,CMAP幅值下降,潜伏期延长,持续时间延长。此外,骨骼肌肌纤维发生了萎缩,表现为肌纤维直径和横截面积下降,肌肉萎缩相关蛋白MuRF1、MAFbx表达水平增加。其机制可能与脓毒症导致的骨骼肌线粒体MICU1的表达下降有关。进一步通过在脓毒症小鼠胫前肌注射AAV提高MICU1的表达,发现小鼠抓力和神经肌肉接头的功能得以恢复,肌纤维萎缩的情况得以改善。
此外,本研究发现小鼠骨骼肌在CLP建模6 h时发生功能障碍,在CLP建模12 h时发生肌纤维萎缩。这与LEDUC-GAUDET等[14]和CAO等[15]的研究结果不同,他们分别发现小鼠骨骼肌在CLP建模48 h和CLP建模72 h时发生了功能障碍和肌纤维萎缩。此外,ZANDERS等[16]发现小鼠骨骼肌在CLP建模96 h发生了肌纤维的萎缩。这些结果的差异可能是由CLP造模的轻重以及实验观察时间点的不同造成的。
线粒体MICU1位于线粒体内膜,是线粒体钙内流的主要调节器[17]。MICU1作为线粒体钙摄取通道的“守门人”,控制静息状态下细胞质钙离子内流以防止线粒体发生钙超载[18-19]。本研究发现脓毒症导致了线粒体MICU1的表达下降,其可能通过降低线粒体钙离子内流的阈值,使线粒体在静息状态下发生钙超载,最终导致骨骼肌发生功能障碍和肌纤维的萎缩。DEBATTISTI等[20]发现,缺乏MICU1将导致线粒体钙摄取异常,患者和小鼠表现出肌肉无力。SINGH等[21]通过特异性地敲除小鼠神经元上的MICU1,发现这些小鼠表现出骨骼肌运动功能的异常。此外,GHOSH等[22]在小鼠成肌细胞巴斯综合征模型中,发现MICU1的丰度和稳定性下降。
综上所述,本研究发现脓毒症导致的小鼠骨骼肌功能障碍和肌纤维萎缩与线粒体MICU1蛋白表达下降有关,提高MICU1的表达可以改善脓毒症导致的骨骼肌功能障碍和肌纤维萎缩。但本研究只探讨了MICU1的表达与脓毒症小鼠骨骼肌功能障碍的关系,而两者之间的调控靶点和具体机制需进一步研究论证。在接下来的实验中,本课题组将进一步探究MICU1的表达下降通过何种机制导致了脓毒症小鼠骨骼肌功能障碍,并为临床上ICU-AW的治疗提供理论依据。
* * *
利益冲突 所有作者均声明不存在利益冲突
Funding Statement
国家自然科学基金面上项目(No. 81772128)、四川省科技计划联合创新重点项目(No. 2022YFS0632)资助
Contributor Information
学欣 李 (Xue-xin LI), Email: 3331349895@qq.com.
力 刘 (Li LIU), Email: niuniudoctor@swmu.edu.cn.
References
- 1.HABERECHT-MÜLLER S, KRÜGER E, FIELITZ J Out of control: the role of the ubiquitin proteasome system in skeletal muscle during inflammation. Biomolecules. 2021;11(9):1327. doi: 10.3390/biom11091327. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 2.VANKRUNKELSVEN W, DERDE S, GUNST J, et al Obesity attenuates inflammation, protein catabolism, dyslipidaemia, and muscle weakness during sepsis, independent of leptin. J Cachexia Sarcopenia Muscle. 2022;13(1):418–433. doi: 10.1002/jcsm.12904. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 3.WITTEVEEN E, WIESKE L, MANDERS E, et al Muscle weakness in a S. pneumoniae sepsis mouse model. Ann Transl Med. 2019;7(1):9. doi: 10.21037/atm.2018.12.45. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 4.SCHEFOLD J C, WOLLERSHEIM T, GRUNOW J J, et al Muscular weakness and muscle wasting in the critically ill. J Cachexia Sarcopenia Muscle. 2020;11(6):1399–1412. doi: 10.1002/jcsm.12620. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 5.VECELLIO REANE D, CERQUA C, SACCONI S, et al The splicing of the mitochondrial calcium uniporter genuine activator MICU1 is driven by RBFOX2 splicing factor during myogenic differentiation. Int J Mol Sci. 2022;23(5):2517. doi: 10.3390/ijms23052517. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 6.ALEVRIADOU B R, PATEL A, NOBLE M, et al Molecular nature and physiological role of the mitochondrial calcium uniporter channel. Am J Physiol Cell Physiol. 2021;320(4):C465–C482. doi: 10.1152/ajpcell.00502.2020. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 7.TSAI C W, RODRIGUEZ M X, Van KEUREN A M, et al Mechanisms and significance of tissue-specific MICU regulation of the mitochondrial calcium uniporter complex. Mol Cell. 2022;82(19):3661–3676.e8. doi: 10.1016/j.molcel.2022.09.006. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 8.DRECHSLER S, OSUCHOWSKI M. Cecal ligation and puncture. Sepsis: 2321. New York, NY: Springer US, 2021: 1−8.
- 9.ALVERDY J C, KESKEY R, THEWISSEN R. Can the cecal ligation and puncture model be repurposed to better inform therapy in human sepsis? Infect Immun, 2020, 88(9): e00942−19. doi: 10.1128/IAI.00942-19.
- 10.FUJINAMI Y, INOUE S, ONO Y, et al Sepsis induces physical and mental impairments in a mouse model of post-intensive care syndrome. J Clin Med. 2021;10(8):1593. doi: 10.3390/jcm10081593. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 11.POLLARI E, PRIOR R, ROBBERECHT W, et al In Vivo electrophysiological measurement of compound muscle action potential from the forelimbs in mouse models of motor neuron degeneration. J Vis Exp. 2018;(136):57741. doi: 10.3791/57741. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 12.WANG J, WANG Y, XIE J, et al Upregulated PD-L1 delays human neutrophil apoptosis and promotes lung injury in an experimental mouse model of sepsis. Blood. 2021;138(9):806–810. doi: 10.1182/blood.2020009417. [DOI] [PubMed] [Google Scholar]
- 13.FANG W, TSENG Y, LEE T, et al Triptolide prevents LPS-induced skeletal muscle atrophy via inhibiting NF-κB/TNF-α and regulating protein synthesis/degradation pathway. Br J Pharmacol. 2021;178(15):2998–3016. doi: 10.1111/bph.15472. [DOI] [PubMed] [Google Scholar]
- 14.LEDUC-GAUDET J P, MAYAKI D, REYNAUD O, et al Parkin overexpression attenuates sepsis-induced muscle wasting. Cells. 2020;9(6):1454. doi: 10.3390/cells9061454. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 15.CAO Y, WANG Z, YU T, et al Sepsis induces muscle atrophy by inhibiting proliferation and promoting apoptosis via PLK1-AKT signalling. J Cell Mol Med. 2021;25(20):9724–9739. doi: 10.1111/jcmm.16921. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 16.ZANDERS L, KNY M, HAHN A, et al Sepsis induces interleukin 6, gp130/JAK2/STAT3, and muscle wasting. J Cachexia Sarcopenia Muscle. 2022;13(1):713–727. doi: 10.1002/jcsm.12867. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 17.WU W, ZHENG J, JIA Z Structural characterization of the mitochondrial Ca2+ uniporter provides insights into Ca2+ uptake and regulation. iScience. 2021;24(8):102895. doi: 10.1016/j.isci.2021.102895. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 18.FAN M, ZHANG J, TSAI C W, et al Structure and mechanism of the mitochondrial Ca2+ uniporter holocomplex. Nature. 2020;582(7810):129–133. doi: 10.1038/s41586-020-2309-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 19.ALI M, ZHANG X, LACANNA R, et al MICU1-dependent mitochondrial calcium uptake regulates lung alveolar type 2 cell plasticity and lung regeneration. JCI Insight. 2022;7(4):e154447. doi: 10.1172/jci.insight.154447. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 20.DEBATTISTI V, HORN A, SINGH R, et al Dysregulation of mitochondrial Ca2+ uptake and sarcolemma repair underlie muscle weakness and wasting in patients and mice lacking MICU1. Cell Rep. 2019;29(5):1274–1286.e6. doi: 10.1016/j.celrep.2019.09.063. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 21.SINGH R, BARTOK A, PAILLARD M, et al Uncontrolled mitochondrial calcium uptake underlies the pathogenesis of neurodegeneration in MICU1-deficient mice and patients. Sci Adv. 2022;8(11):eabj4716. doi: 10.1126/sciadv.abj4716. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 22.GHOSH S, ZULKIFLI M, JOSHI A, et al MCU-complex-mediated mitochondrial calcium signaling is impaired in Barth syndrome. Hum Mol Genet. 2022;31(3):376–385. doi: 10.1093/hmg/ddab254. [DOI] [PMC free article] [PubMed] [Google Scholar]
