Abstract
目的
探讨肿瘤患者经外周静脉置入中心静脉导管(peripherally inserted central catheters, PICC)置管后2周内导管相关性血栓(PICC-related thrombosis, PICCRT)形成情况及其对置管静脉血流状态的动态影响,为实施血栓防控措施提供依据。
方法
2019年5月–2020年7月,前瞻性纳入四川大学华西医院PICC置管的实体肿瘤患者,用彩色多普勒超声仪检测患者置管后2周内PICCRT形成情况,根据是否发生PICCRT以及有无血栓相关症状和体征,分为无血栓组、非症状性血栓组和症状性血栓组。比较每个时点PICCRT患者检出情况,及其置管前1天和置管后2周内置管静脉的血管直径和血流速度。
结果
有173例患者完成试验,126例(72.8%)形成了PICCRT,且均发生在置管后1周内。其中非症状性血栓95例,症状性血栓31例。PICC置管前后,非症状性血栓组和症状性血栓组的血管直径均小于无血栓组,血流速度慢于无血栓组,且差异随着导管留置时间延长而持续增加,差异均有统计学意义。
结论
PICC置管时选择血管直径大、血流速度快的静脉穿刺置管,可能有助于降低PICCRT;置管后1周是预防PICCRT的重点干预时间。
Keywords: 经外周静脉置入中心静脉导管, 导管相关性血栓, 血管直径, 血流速度
Abstract
Objective
To investigate the clinical features of peripherally inserted central catheter (PICC)-related thrombosis (PICCRT) within 2 weeks after PICC placement in cancer patients and its dynamic influence on the blood flow status of veins inserted with catheter, and to provide support for implementing thrombosis prevention and control measures.
Methods
Between May 2019 and July 2020, patients who had solid tumors and who had PICC were prospectively enrolled at West China Hospital, Sichuan University. Scheduled color Doppler imaging was performed to examine the status of PICCRT formation at 8 points of time, with the first one conducted one day before the insertion of PICC and the other 7 completed within 2 weeks after the insertion of PICC. Then, based on whether patients had PICCRT, the patients were divided into two groups, a non-PICCRT group and a PICCRT group. The PICCRT group was further divided into two subgroups, an asymptomatic PICCRT group and a symptomatic PICCRT group, according to whether the patients had thrombosis-related symptoms and signs. Comparisons were made to study the incidence of PICCRT and the vascular diameter and the blood flow velocity in the veins inserted with catheters at different points of time in the patients of different groups.
Results
Among 173 cancer patients in the cohort, 126 (72.8%) developed PICCRT, all of which occurred within 1 week after PICC insertion. There were 95 cases of asymptomatic PICCRT and 31 cases of symptomatic PICCRT. Before and after PICC insertion, the vascular diameter of both the asymptomatic and symptomatic PICCRT groups was significantly smaller than that of the non-PICCRT group and the blood flow velocity was significantly slower than that of the non-PICCRT group, with the difference continuing to increase with the prolongation of catheter indwelling time.
Conclusion
Inserting catheters in veins with bigger vascular diameter and faster blood flow velocity may help reduce the incidence of PICCRT. The first week post catheter insertion is the key intervention period for the prevention of PICCRT.
Keywords: Peripherally inserted central catheters, Peripherally inserted central catheter- related thrombosis, Vascular diameter, Blood flow velocity
经外周静脉置入中心静脉导管(peripherally inserted central catheters, PICC)引发的导管相关性血栓(PICC-related thrombosis, PICCRT)是置管患者最严重的并发症之一。肿瘤患者PICCRT发病率是非肿瘤患者的2.2~19.5倍,是导致非计划性拔管的首要原因,并增加了住院费用、延长了住院时间[1-3]。根据Virchow血栓三角理论[4],血流状态改变是引发血栓的三大因素之一。体外模拟实验已证实,不同管径大小的导管对置管静脉的血流状态存在较大干扰,临床研究也证实导管管径与PICCRT高度相关[4-6]。由于肿瘤患者明显高于其他病种的PICCRT发病特征,故上述混合病例临床样本的研究结论是否适用于肿瘤患者尚不明确。此外,从报道的数据采集时间看,已有研究结论均基于PICC置管后某单一时间点的静态测量结果或体外实验,而PICCRT高发于置管后1个月内,且发病高峰期为置管后2周内[2, 7-11]。因此,明确肿瘤患者PICCRT发病高峰期内置管静脉血流状态的动态变化,分析血管直径、血流速度与血栓发生率的关系,可以为PICCRT早期个体化预防和治疗提供理论依据,提升血栓防控效果。
1. 对象与方法
1.1. 研究设计
本研究为单中心、前瞻性队列研究,采用便利抽样法纳入患者,经四川大学华西医院生物医学伦理委员会批准(2019年审56号)后实施。
1.2. 研究对象
研究对象为来自四川大学华西医院PICC置管的肿瘤患者。纳入标准为:①意识清楚,能正常进行口头或书面表达和交流;②年龄18~80岁;③因抗肿瘤治疗原因需要安置PICC,且患者以前未安置过其他类型的中心静脉导管;④可自行或在家属陪同下,到医院接受7~8次彩超检测。排除标准为:①现患全身或局部PICC置管禁忌证;②置管后X射线胸片显示导管尖端位置位于上腔静脉以外的血管内;③现患对全身血流状态有明显影响的合并证。剔除标准为:①任何原因导致的置管后随访期未满但需要拔管的情况;②研究期间因病情加重、化疗后身体虚弱等原因无法配合完成试验。分组标准:根据患者PICC置管后2周内的7次(置管后第1天开始,每隔1 d检测1次)超声检查结果和患者有无出现血栓相关症状进行综合判断(具体见1.3),将患者分为3组。无血栓组:患者在随访期内的7次超声检查均未检出血栓;非症状性血栓组:超声检查检出血栓后,如果患者在随访期内一直无血栓相关症状,那么超声首次检出血栓日即为非症状性血栓发生时间;症状性血栓组:超声检查检出血栓后,如果患者在随访期内发生血栓相关症状,那么症状首次出现日即为症状性血栓发生时间。
1.3. 研究指标
研究指标包括以下3类:①患者的一般资料,包括年龄、性别、体质量指数、临床诊断和肿瘤分期以及置管信息等,由指定的静疗护士在置管前或置管当时收集并记录。②血流速度和血管直径:在置管前和置管后使用彩超测量穿刺点静脉的血管直径和血流速度,由1名专门的超声医师负责收集并记录,每隔1 d检测1次,随访时间共计2周;置管前记为d0,置管后根据彩超检测时间依次记为d1、d3至d13,分别表示置管后第1天、第3天至第13天。③PICCRT:由同一名超声医师使用彩超扫描置管静脉,同时采用横面和纵面扫描,彩超探测到置管血管内出现不可压缩的不均匀的低回声组织,血管内无血流信号或减弱的血流信号,挤压远端肢体仍然无血流信号或仅见减弱的血流信号;血流频谱失去期相性改变,血栓可附着于血管壁和导管壁、可位于血管腔内、可附着于血管壁与导管壁之间[12-14]。若患者置管侧上肢、腋部、颈部、肩部、胸部甚至颜面部出现水肿、疼痛、皮温升高、浅表静脉显露,上肢、肩部、颈部出现运动障碍、活动时不适、肢体红斑、肤色改变、或麻木感等表现,则判定为症状性PICCRT(症状性血栓);无症状性PICCRT(无症状性血栓)是指患者无任何血栓相关的主诉症状和体征,仅单纯的彩超影像检查发现置管静脉和(或)其侧支静脉内血栓形成[15-17]。
1.4. 统计学方法
一般资料采用频数、率、构成比、等表示,PICC置管前后血管直径和血流速度的变化特征采用重复测量方差分析进行统计推断,P<0.05为差异有统计学意义。
2. 结果
2.1. 研究总体情况
本研究持续时间为2019年5月–2020年7月。依据研究对象纳入和排除标准,本研究共计招募患者274人,招募阶段排除66人;共有208人接受了至少一次彩超检测,其中35人因各种原因未完成研究方案规定的检测次数,脱落率为16.83%;最终纳入分析的患者共计173人。
2.2. 患者一般资料
纳入分析的173例患者中,女性118人(68.2%)、男性55人(31.8%);年龄23~80岁,平均年龄(51.13±11.32)岁;体质量指数16.42~32.30 kg/m2,平均体质量指数(23.32±2.98) kg/m2;81例为乳腺癌(46.8%),59例为消化道肿瘤(34.1%),其余为胸部肿瘤和鼻咽癌、淋巴瘤等;左侧上臂置管104例(60.1%),右侧上臂置管69例(39.9%);贵要静脉置管146例(84.4%),其余患者为肱静脉和头静脉置管。
2.3. PICCRT检出情况
173例肿瘤患者PICC置管后2周内,126例(72.8%)发生了PICCRT,其中非症状性血栓95例,症状性血栓31例。PICCRT均发生在置管后1周内,其中置管后第1天有64例,检出率为37.0%,占所有血栓病例的50.8%;置管后第3天有49例发生PICCRT,检出率为28.3%,占所有血栓病例的38.9%。整体新增PICCRT、非症状性血栓和症状性血栓的检出人数均随时间下降,非症状性血栓较症状性血栓常见。肿瘤患者血栓检出情况见图1。
图 1.
Incidence of PICCRT within 2 weeks after catheter placement
肿瘤患者PICC置管后2周内血栓的检出情况
2.4. PICC置管前后血流速度变化趋势
见表1和图2。肿瘤患者PICC置管前,无血栓组、非症状性血栓组和症状性血栓组患者的血流速度差异有统计学意义(F=48.613, P<0.001),症状性和无症状血栓组的血流速度显著慢于无血栓组;且在置管后的每一个检测时间点,血栓组的血流速度均慢于非血栓患者,当这种差距趋势持续累积至置管后第13天,症状性和无症状性血栓组的血流速度与无血栓组相比,其差值分别为−16.33 cm/s和−14.13 cm/s。重复测量方差分析显示,置管后随导管留置时间延长,无血栓组、无症状性和症状性血栓组的血流速度均呈现变慢趋势,且3组间比较差异有统计学意义(P<0.001),这种下降趋势在症状性血栓组最为明显。
表 1. Blood flow velocity before and after PICC placement.
PICC置管前后血流速度
Time | Non-PICCRT group (n=47, ![]() |
Asymptomatic PICCRT (n=95, ![]() |
Symptomatic PICCRT (n=31, ![]() |
F * | P |
Unit of blood flow velocity: cm/s. * Comparison among three groups: Non-PICCRT, asymptomatic PICCRT, and symptomatic PICCRT. Non-PICCRT vs. asymptomatic PICCRT, Fintergroup*time=15.368, P<0.001; symptomatic PICCRT vs. asymptomatic PICCRT, Fintergroup*time=25.664, P<0.001; symptomatic PICCRT vs. non-PICCRT, Fintergroup*time=4.564, P<0.001. | |||||
d0 | 21.77±4.59 | 13.25±5.32 | 11.48±6.58 | 48.613 | <0.001 |
d1 | 21.19±5.31 | 10.24±5.87 | 8.27±7.14 | 63.935 | <0.001 |
d3 | 20.95±5.37 | 9.34±6.11 | 8.09±7.65 | 63.216 | <0.001 |
d5 | 21.20±5.44 | 8.99±6.66 | 7.04±6.95 | 68.366 | <0.001 |
d7 | 21.19±5.20 | 7.91±6.61 | 5.73±6.51 | 85.372 | <0.001 |
d9 | 20.51±4.81 | 7.38±6.70 | 5.24±6.19 | 85.769 | <0.001 |
d11 | 20.44±5.82 | 7.11±6.83 | 5.33±6.26 | 78.362 | <0.001 |
d13 | 20.34±7.01 | 6.21±6.81 | 4.01±5.02 | 86.106 | <0.001 |
F=1.717 P<0.001 |
F=18.643 P<0.001 |
F=7.486 P<0.001 |
图 2.
The trend of change in blood flow velocity before and after PICC placement
PICC置管前后血流速度及其变化趋势
All patients: n=173; non-PICCRT: n=47; asymptomatic PICCRT: n=95; symptomatic PICCRT: n=31.
2.5. PICC置管前后血管直径变化趋势
见表2和图3。肿瘤患者PICC置管前,无血栓组、非症状性血栓组和症状性血栓组患者的血管直径差异有统计学意义(F=57.055,P<0.001),症状性和无症状血栓组的血管直径显著小于无血栓组;且在置管后的每一个检测时间点,血栓组的血管直径均显著小于非血栓患者,当这种差距趋势持续累积至置管后第13天,症状性和无症状性血栓组的血管直径与无血栓组相比,其差值分别为−2.11 mm和−1.85 mm。重复测量方差分析显示,置管后随导管留置时间延长,3组的血管直径均呈显著变小趋势,且3组间比较差异有统计学意义(P<0.001),这种下降趋势在症状性血栓组最为明显。
表 2. Vascular diameter before and after PICC placement.
PICC置管前后血管直径
Time | Non-PICCRT group (n=47, ![]() |
Asymptomatic PICCRT (n=95, ![]() |
Symptomatic PICCRT (n=31, ![]() |
F * | P |
Unit of vascular diameter: mm.*Comparison among three groups: Non-PICCRT, asymptomatic PICCRT, and symptomatic PICCRT. Non-PICCRT vs. asymptomatic PICCRT, Fintergroup*time=16.627, P<0.001; symptomatic PICCRT vs. asymptomatic PICCRT, Fintergroup*time=20.155, P<0.001; symptomatic PICCRT vs. Non-PICCRT, Fintergroup*time=8.142, P<0.001. | |||||
d0 | 5.69±0.65 | 4.27±0.80 | 4.19±0.92 | 57.055 | <0.001 |
d1 | 5.65±0.64 | 4.19±0.82 | 4.03±0.77 | 66.250 | <0.001 |
d3 | 5.58±0,66 | 3.97±0.78 | 3.71±0.87 | 83.542 | <0.001 |
d5 | 5.54±0.71 | 3.82±0.98 | 3.54±1.16 | 61.109 | <0.001 |
d7 | 5.48±0.80 | 3.75±0.99 | 3.47±1,13 | 59.251 | <0.001 |
d9 | 5.40±0.71 | 3.60±1.09 | 3.35±1.09 | 59.904 | <0.001 |
d11 | 5.40±0.67 | 3.54±1.08 | 3.33±1.09 | 64.507 | <0.001 |
d13 | 5.35±0.71 | 3.50±1.08 | 3.24±1.20 | 60.723 | <0.001 |
F=3.622 P=0.004 |
F=15.144 P<0.001 |
F=6.566 P<0.001 |
图 3.
Trend of change in vascular diameter before and after PICC placement
PICC置管前后血管直径及其变化趋势
All patients: n=173; non-PICCRT: n=47; asymptomatic PICCRT: n=95; symptomatic PICCRT: n=31.
3. 讨论
肿瘤患者PICCRT是临床医护人员关注的重点,临床研究和系统评价均报道,肿瘤患者PICCRT检出率高,从6.0%~71.9%不等,检出率差异悬殊的主要在于患者疾病特征、研究设计、导管类型、血栓诊断方式和诊断标准、检测频率以及随访终点时间的不同等[10-11, 15, 18-23]。本研究在肿瘤患者PICC置管后2周内,每隔1天使用彩超主动检测PICC置管静脉,研究显示173例患者中有126例发生了PICCRT,检出率为72.8%,高于绝大多数同类研究。由于本研究纳入研究对象均是肿瘤患者,患者在随访期内全部完成了一周期的化疗,可定义为“活动性癌症”患者,患者的疾病特质是本研究PICCRT检出率高的重要原因。ITKIN[23]报告肿瘤患者的PICCRT检出率为71.9%,其PICCRT的诊断标准与本研究相似,检出率也非常接近,但其随访时间是本研究的2倍。因此,若延长随访时间,本组患者PICCRT的实际发生率可能将高于目前报道,这表明多数的临床研究由于随访期的缘故,可能低估了肿瘤患者PICCRT的存在。
血液正常流动时为层流状态,层流状态下血液各成分在血管中的特定分布和一定的血液流速及血流量,是生理情况下抗血栓形成的血流动力学基础[17]。PICC可从多方面干扰置管静脉局部正常的血流状态,包括破坏血液层流、引发血管直径变化、降低血流速度和减少血流量等[4-6, 10-11, 13, 24-25],从而引发血栓形成。本研究结果显示,PICC置管后2周内,无论患者是否发生血栓或血栓是否出现症状,置管静脉血流速度均呈现减慢趋势;结合血流速度变化趋势图,可见症状性血栓组血流速度减慢最快,其次依次为无症状性血栓组和无血栓组。NIFONG等[4]的体外模拟实验显示,PICC对置管静脉的血流状态有着巨大的干扰效应,且这种干扰效应随着血管直径的缩小或导管外径的增加呈指数级别的增加。当导管占据血管管腔的1/4和1/2时,血流量分别为置管前血管正常血流量的60%和25%,当导管占据血管管腔的3/5时置管静脉的血流几乎完全停滞。崔其亮等[24]使用彩超对PICC置管静脉的血流速度进行单一时间点检测,研究结果显示PICC会降低置管静脉42%的收缩期流速和39%的舒张期流速,并分析这是由于导管对静脉血流的直接阻碍所致。笔者认为PICC置管后血流速度的减慢,除上述崔其亮等[24]分析的原因外,也与置管后血管直径持续缩小有关。本研究对肿瘤患者PICC置管后的血管直径进行了持续2周的动态检测,研究结果显示置管后无论是否发生PICCRT,置管静脉的血管直径均会呈现缩小趋势,其中尤其以血栓组(含症状性和非症状性)血管直径缩小更为明显。笔者认为这种现象的原因在于,血栓组患者血管直径在置管前即显著小于非血栓患者,而血栓形成后,尤其是血管附壁血栓形成后,会导致血管内膜炎症和内膜增厚,使血管直径进一步缩小,继而增大血流阻力和减慢血流速度,由此导致PICC置管前血管直径和血流速度的组间差异,随着导管留置时间的延长进一步增大。
综上所述,肿瘤患者PICCRT检出率高、检出时间早;血栓组与非血栓组患者相比,置管前血流速度更慢、血管直径更小,且导管置入后会对置管静脉血流状态造成巨大干扰,导致PICC留置期间血流速度和血管直径持续而显著地减慢和缩小。上述研究结果提示,PICC置管时选择血管直径大、血流速度快的静脉穿刺置管,可能有助于降低PICCRT;此外,就PICCRT干预时间而言,置管后1周是预防PICCRT的重点时间。
* * *
利益冲突 所有作者均声明不存在利益冲突
Funding Statement
四川省科学技术厅重点研发项目(No. 2019YFS0382)资助
Contributor Information
辉琼 许 (Hui-qiong XU), Email: xuhuiqiong@wchscu.cn.
晓霞 张 (Xiao-xia ZHANG), Email: zhangxiaoxia@scu.edu.cn.
References
- 1.BERTOGLIO S, FACCINI B, LALLI L, et al Peripherally inserted central catheters (PICCs) in cancer patients under chemotherapy: a prospective study on the incidence of complications and overall failures. J Surg Oncol. 2016;113(6):708–714. doi: 10.1002/jso.24220. [DOI] [PubMed] [Google Scholar]
- 2.WALSHE L J, MALAK S F, EAGAN J, et al Complication rates among cancer patients with peripherally inserted central catheters. J Clin Oncol. 2002;20(15):3276–3281. doi: 10.1200/JCO.2002.11.135. [DOI] [PubMed] [Google Scholar]
- 3.TREROTOLA S O, STAVROPOULOS S W, MONDSCHEIN J I, et al Triple-lumen peripherally inserted central catheter in patients in the critical care unit: prospective evaluation. Radiology. 2010;256(1):312–320. doi: 10.1148/radiol.10091860. [DOI] [PubMed] [Google Scholar]
- 4.NIFONG T P, MCDEVITT T J The effect of catheter to vein ratio on blood flow rates in a simulated model of peripherally inserted central venous catheters. Chest. 2011;140(1):48–53. doi: 10.1378/chest.10-2637. [DOI] [PubMed] [Google Scholar]
- 5.宋燕伶, 何金爱, 刘胤佃, 等 PICC导管/静脉直径比最佳临界值的研究. 中国护理管理. 2017;17(6):737–742. doi: 10.3969/j.issn.1672-1756.2017.06.005. [DOI] [Google Scholar]
- 6.SHARP R, CUMMINGS M, FIELDER A, et al The catheter to vein ratio and rates of symptomatic venous thromboembolism in patients with a peripherally inserted central catheter (PICC): a prospective cohort study. Int J Nurs Stud. 2015;52(3):677–685. doi: 10.1016/j.ijnurstu. [DOI] [PubMed] [Google Scholar]
- 7.TREZZA C, CALIFANO C, IOVINO V, et al Incidence of fibroblastic sleeve and of catheter-related venous thrombosis in peripherally inserted central catheters: a prospective study on oncological and hematological patients. J Vasc Access. 2021;22(3):444–449. doi: 10.1177/1129729820949411. [DOI] [PubMed] [Google Scholar]
- 8.CHOPRA V, FALLOUH N, MCGUIRK H, et al Patterns, risk factors and treatment associated with PICC-DVT in hospitalized adults: a nested case-control study. Thromb Res. 2015;135(5):829–834. doi: 10.1016/j.thromres.2015.02.012. [DOI] [PubMed] [Google Scholar]
- 9.YI XL, CHEN J, LI J, et al Risk factors associated with PICC-related upper extremity venous thrombosis in cancer patients. J Clin Nurs. 2014;23(5/6):837–843. doi: 10.1111/jocn.12227. [DOI] [PubMed] [Google Scholar]
- 10.LIU Y, GAO Y, WEI L, et al Peripherally inserted central catheter thrombosis incidence and risk factors in cancer patients: a double-center prospective investigation. Ther Clin Risk Manag. 2015;11:153–160. doi: 10.2147/TCRM.S73379. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 11.WANG G, LU Y, WU C, et al The clinical features and related factors of PICC-related upper extremity asymptomatic venous thrombosis in cancer patients: a prospective study. Medicine (Baltimore) 2020;99(12):e19409. doi: 10.1097/MD.0000000000019409. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 12.RAJASEKHAR A, STREIFF M B How I treat central venous access device-related upper extremity deep vein thrombosis. Blood. 2017;129(20):2727–2736. doi: 10.1182/blood-2016-08-693671. [DOI] [PubMed] [Google Scholar]
- 13.宋燕伶, 何金爱, 刘胤佃, 等 置管静脉/导管直径比例对PICC相关性静脉血栓的影响. 护理研究. 2017;31(12):1470–1473. doi: 10.3969/j.issn.1009-6493.2017.12.019. [DOI] [Google Scholar]
- 14.陈江琼, 张杰, 康楠, 等 超声造影在经外周静脉穿刺中心静脉置管相关性血栓诊断中的应用价值. 中华血管外科杂志. 2017;2(2):122–126. doi: 10.3760/cma.j.issn.2096-1863.2017.02.011. [DOI] [Google Scholar]
- 15.SONG X, LU H, CHEN F, et al A longitudinal observational retrospective study on risk factors and predictive model of PICC associated thrombosis in cancer patients. Sci Rep. 2020;10(1):10090. doi: 10.1038/s41598-020-67038-x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 16.傅麒宁, 吴洲鹏, 孙文彦, 等 《输液导管相关静脉血栓形成中国专家共识》临床实践推荐. 中国普外基础与临床杂志. 2020;27(4):412–418. doi: 10.7507/1007-9424.202001030. [DOI] [Google Scholar]
- 17.WALL C, MOORE J, THACHIL J Catheter-related thrombosis: a practical approach. J Intensive Care Soc. 2016;17(2):160–167. doi: 10.1177/1751143715618683. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 18.CHEN Y, CHEN H, YANG J, et al Patterns and risk factors of peripherally inserted central venous catheter-related symptomatic thrombosis events in patients with malignant tumors receiving chemotherapy. J Vasc Surg Venous Lymphat Disord. 2020;8(6):919–929. doi: 10.1016/j.jvsv.2020.01.010. [DOI] [PubMed] [Google Scholar]
- 19.AHN D H, ILLUM H B, WANG D H, et al Upper extremity venous thrombosis in patients with cancer with peripherally inserted central venous catheters: a retrospective analysis of risk factors. J Oncol Pract. 2013;9(1):e8–e12. doi: 10.1200/JOP.2012.000595. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 20.Al-ASADI O, ALMUSARHED M, ELDEEB H Predictive risk factors of venous thromboembolism (VTE) associated with peripherally inserted central catheters (PICC) in ambulant solid cancer patients: retrospective single Centre cohort study. Thromb J. 2019;17:2. doi: 10.1186/s12959-019-0191-y. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 21.JONES D, WISMAYER K, BOZAS G, et al The risk of venous thromboembolism associated with peripherally inserted central catheters in ambulant cancer patients. Thromb J. 2017;15:25. doi: 10.1186/s12959-017-0148-y. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 22.KANG J R, LONG L H, YAN S W, et al Peripherally inserted central catheter-related vein thrombosis in patients with lung cancer. Clin Appl Thromb Hemost. 2017;23(2):181–186. doi: 10.1177/1076029615595880. [DOI] [PubMed] [Google Scholar]
- 23.ITKIN M, MONDSHEIN J I, STAVIOPOULOS S W, et al Peripherally inserted central catheter thrombosis-reverse tapered versus nontapered catheters: a randomized controlled study. J Vasc Interv Radiol. 2014;25(1):85–91.e81. doi: 10.1016/j.jvir.2013.10.009. [DOI] [PubMed] [Google Scholar]
- 24.崔其亮, 谢亦农, 梁伟翔, 等 彩色多普勒检测新生儿外周穿刺置入中心静脉导管对血流动力学的影响. 中国实用儿科杂志. 2004;19(10):599–601. doi: 10.3969/j.issn.1005-2224.2004.10.008. [DOI] [Google Scholar]
- 25.NITESCU P, LARSSON N, ERIKSSON E, et al Disturbances of blood-flow velocity in the dorsal veins of the hand after vein cannulation and cannula fixation in the anaesthetised patient. Acta Anaesthesiol Scand. 1990;34(2):120–125. doi: 10.1111/j.1399-6576.1990.tb03055.x. [DOI] [PubMed] [Google Scholar]