Skip to main content
IUCrData logoLink to IUCrData
. 2023 Aug 4;8(Pt 8):x230647. doi: 10.1107/S2414314623006478

5,6-Di­hydro-1,4-dithiine-2,3-di­carb­oxy­lic anhydride

Olivia Bullock a, Sarah Rice a, Marcus R Bond a,*
Editor: W T A Harrisonb
PMCID: PMC10483538  PMID: 37693786

The heterocyclic fused ring geometry of the title com­pound coincides with the geometries of related mol­ecules but without directed inter­molecular contacts determining the crystal packing.

Keywords: crystal structure, fused ring, heterocycle, dithiine, anhydride

Abstract

In the title com­pound (systematic name: 2,3-di­hydro-1,4-dithiino[2,3-c]furan-5,7-dione), C6H4O3S2, the observed geometry agrees well with those of its phthalamide, thieno and hy­droxy analogs, and with a calculated geometry obtained by density functional theory (DFT) calculations. Specific structural features are an S—C—C—S torsion angle of −70.39 (17)° and S—C bonds to sp 2-hybridized C atoms approximately 0.1 Å shorter than those to sp 3-hybridized C atoms. Unlike the extended structures of the analogs, there are no directed inter­molecular inter­actions and the head-to-tail rows of mol­ecules that are a prominent structural motif of the packing can be rationalized in terms of optimized dipole–dipole inter­actions. graphic file with name x-08-x230647-scheme1-3D1.jpg

Structure description

The unit-cell parameters for the title com­pound have been reported previously [Grabowski, 1968; Cambridge Structural Database (CSD; Groom et al., 2016) refcode QQQDIA], but atomic coordinates are not available. Related com­pounds with reported three-dimensional atomic coordinates are the phthalamide (DTHPIM; Kirfel et al., 1975), the thieno (ZUHQUQ; Skabara et al., 2003) and the monohy­droxy (USUMOL; Kurbangalieva et al., 2010) analogs, all of which are reported to crystallize in the monoclinic space groups P21/c or P21/n. We report here the three-dimensional structure of 5,6-di­hydro-1,4-dithiine-2,3-di­carb­oxy­lic anhydride, which crystallizes in the triclinic space group P Inline graphic with unit-cell parameters in agreement with those reported by Grabowski.

The mol­ecule (Fig. 1) consists of furan­dione and di­hydro-1,4-dithiine rings fused by a common carbon–carbon double bond (atoms C3 and C4) and is largely planar (r.m.s. deviation of 0.044 Å from the mean plane for all atoms except the CH2 groups). The CH2 groups are twisted about the mol­ecular plane in order to reduce angle strain, with C1 0.323 (3) Å above and C2 0.528 (3) Å below, and an S1—C1—C2—S2 torsion angle of −70.39 (17)°. The S—C bond lengths are 0.096 (7) Å shorter for bonds to sp 2-hybridized C atoms than to those with sp 3-hybridization (Table 1). The inter­ior bond angles within the furan­dione ring are close to idealized values for a uniform penta­gon, ranging from 107.44 (17) to 108.36 (18)°. The O=C—O angles have expected values of 121–122° for an sp 2-hybridized center, while the external O=C—C angles average 130.2 (7)° in order to accommodate the geometry of the planar ring. These details agree well with the geometrical parameters for maleic anhydride [MLEICA (Marsh et al., 1962) and MLEICA01 (Lutz, 2001)].

Figure 1.

Figure 1

Displacement ellipsoid plot at the 50% probability level of the formula unit of the title com­pound, showing labels for non-H atoms.

Table 1. Selected geometric parameters (Å, °).

S1—C1 1.805 (2) C3—C5 1.469 (3)
S1—C3 1.7136 (19) C4—C6 1.472 (3)
S2—C2 1.817 (2) O1—C5 1.193 (3)
S2—C4 1.7160 (19) O2—C5 1.376 (3)
C1—C2 1.510 (3) O2—C6 1.386 (3)
C3—C4 1.345 (3) O3—C6 1.186 (3)
       
C1—S1—C3 99.54 (10) C3—C4—C6 107.44 (17)
C2—S2—C4 98.30 (10) O1—C5—C3 129.7 (2)
S1—C1—C2 114.41 (15) O2—C5—C3 108.36 (18)
C1—C2—S2 115.01 (15) O1—C5—O2 121.98 (19)
S1—C3—C4 131.57 (14) O2—C6—C4 108.13 (18)
S1—C3—C5 120.60 (16) O3—C6—C4 130.7 (2)
C4—C3—C5 107.83 (17) O2—C6—O3 121.2 (2)
C3—C4—S2 129.27 (14) C5—O2—C6 108.14 (15)
C6—C4—S2 123.28 (16)    

The geometrical details for the related com­pounds listed above agree closely with those of the title com­pound. In particular, the S—C—C—S torsion-angle magnitudes range from 68.10 to 70.75° and the S—C bond lengths to sp 2-hybridized C atoms average 0.087 (14) Å shorter than those to sp 3-hybridized C atoms, with the phthalamide analog providing the closest agreement [average sp 3sp 2 bond length difference = 0.0995 (7) Å]. A DFT geometry optimization in vacuo [B3LYP functional, cc-pTVZ basis set; GAMESS (Schmidt et al., 1993)] yields similar results, with an S—C—C—S torsion angle of −69.6° and S—C bond lengths of 1.730 and 1.829 Å to sp 2- and sp 3-hybridized C atoms, respectively. An electrostatic potential plot with the optimized mol­ecule visible is presented in Fig. 2.

Figure 2.

Figure 2

Electrostatic potential plot of the title mol­ecule with the optimized geometry visible. Red represents the most negatively charged regions, while blue represents the most positively charged.

The unit-cell packing of the title com­pound consists of sheets of mol­ecules lying parallel to (11 Inline graphic ), with neighboring sheets related by inversion. The mol­ecular planes are approximately coplanar with the sheet, with mol­ecules forming head-to-tail rows parallel to [1 Inline graphic 0] within the sheet. Neighboring rows within the sheet have opposite orientations, while rows on neighboring sheets straddle each other. This packing differs from that of similar mol­ecules, where directed hydrogen bonding or short S⋯O contacts feature prominently, with the head-to-tail rows of mol­ecules in the title com­pound rationalized in terms of optimized dipole–dipole inter­actions. A ball-and-stick diagram of a sheet is presented in Fig. 3 and a unit-cell packing diagram viewed edge on to the sheets is presented in Fig. 4.

Figure 3.

Figure 3

Ball-and stick diagram of the sheet structure viewed perpendiciular to (11 Inline graphic ).

Figure 4.

Figure 4

Ball-and-stick packing diagram of a unit cell, with axis labels viewed along [1 Inline graphic 0], showing the stacking of four sheets to generate the three-dimensional structure.

Synthesis and crystallization

5,6-Di­hydro-1,4-dithiin-2,3-di­carb­oxy­lic anhydride (98+%) was purchased from Fisher Scientific and recrystalized by slow evaporation at room temperature from tetra­hydro­furan solution to yield yellow block-like crystals.

Refinement

Crystal data, data collection, and structure refinement details are listed in Table 2. The final structure refinement was carried out within the OLEX2 system via Hirshfeld atom refinement with nonspherical atomic form factors using NoSpherA2 (Kleemiss et al., 2021; Midgley et al., 2021) derived from electron density from DFT calculations using ORCA (B3LYP functional, def2-SVP basis set; Neese, 2022). All atoms were refined anisotropically.

Table 2. Experimental details.

Crystal data
Chemical formula C6H4O3S2
M r 188.23
Crystal system, space group Triclinic, P Inline graphic
Temperature (K) 295
a, b, c (Å) 5.398 (1), 7.5537 (15), 9.2566 (18)
α, β, γ (°) 89.273 (6), 87.361 (6), 75.701 (5)
V3) 365.36 (12)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.68
Crystal size (mm) 0.42 × 0.38 × 0.17
 
Data collection
Diffractometer Bruker D8 Quest Eco
Absorption correction Multi-scan (SADABS; Bruker, 2016)
T min, T max 0.648, 0.746
No. of measured, independent and observed [I ≥ 2u(I)] reflections 16978, 1669, 1338
R int 0.046
(sin θ/λ)max−1) 0.651
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.033, 0.074, 1.11
No. of reflections 1669
No. of parameters 136
H-atom treatment All H-atom parameters refined
Δρmax, Δρmin (e Å−3) 0.45, −0.25

Computer programs: APEX3 and SAINT (Bruker, 2018), SHELXT2014 (Sheldrick, 2015a ), SHELXL2016 (Sheldrick, 2015b ), olex2.refine (Bourhis et al., 2015), OLEX2 (Dolomanov et al., 2009), Mercury (Macrae et al., 2020), WebMO (Schmidt & Polik, 2016), and publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S2414314623006478/hb4438sup1.cif

x-08-x230647-sup1.cif (15.1KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2414314623006478/hb4438Isup2.hkl

x-08-x230647-Isup2.hkl (80.8KB, hkl)

Supporting information file. DOI: 10.1107/S2414314623006478/hb4438Isup3.cml

CCDC reference: 2284875

Additional supporting information: crystallographic information; 3D view; checkCIF report

full crystallographic data

Crystal data

C6H4O3S2 Z = 2
Mr = 188.23 F(000) = 192.603
Triclinic, P1 Dx = 1.711 Mg m3
a = 5.398 (1) Å Mo Kα radiation, λ = 0.71073 Å
b = 7.5537 (15) Å Cell parameters from 7641 reflections
c = 9.2566 (18) Å θ = 2.8–27.4°
α = 89.273 (6)° µ = 0.68 mm1
β = 87.361 (6)° T = 295 K
γ = 75.701 (5)° Plate, yellow
V = 365.36 (12) Å3 0.42 × 0.38 × 0.17 mm

Data collection

Bruker D8 Quest Eco diffractometer 1338 reflections with I≥ 2u(I)
φ and ω scans Rint = 0.046
Absorption correction: multi-scan (SADABS; Bruker, 2016) θmax = 27.6°, θmin = 3.6°
Tmin = 0.648, Tmax = 0.746 h = −7→7
16978 measured reflections k = −9→9
1669 independent reflections l = −12→12

Refinement

Refinement on F2 0 constraints
Least-squares matrix: full Primary atom site location: dual
R[F2 > 2σ(F2)] = 0.033 All H-atom parameters refined
wR(F2) = 0.074 w = 1/[σ2(Fo2) + (0.0229P)2 + 0.1706P] where P = (Fo2 + 2Fc2)/3
S = 1.11 (Δ/σ)max = 0.0002
1669 reflections Δρmax = 0.45 e Å3
136 parameters Δρmin = −0.25 e Å3
0 restraints

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
S1 0.87227 (9) 0.35661 (7) 0.38382 (6) 0.04127 (16)
S2 0.45568 (10) 0.23942 (8) 0.13318 (6) 0.04824 (17)
C1 0.8444 (5) 0.1333 (3) 0.3315 (2) 0.0440 (5)
H1a 1.028 (5) 0.039 (4) 0.347 (3) 0.091 (10)
H1b 0.700 (5) 0.098 (3) 0.400 (3) 0.072 (8)
C2 0.7794 (4) 0.1195 (3) 0.1758 (2) 0.0440 (5)
H2a 0.793 (6) −0.019 (4) 0.152 (3) 0.086 (9)
H2b 0.909 (5) 0.169 (4) 0.102 (3) 0.064 (8)
C3 0.6129 (3) 0.4890 (2) 0.3010 (2) 0.0338 (4)
C4 0.4505 (3) 0.4463 (2) 0.2093 (2) 0.0347 (4)
C5 0.5328 (4) 0.6869 (3) 0.3268 (2) 0.0457 (5)
C6 0.2545 (4) 0.6150 (3) 0.1802 (2) 0.0478 (5)
O1 0.6268 (4) 0.7808 (2) 0.3987 (2) 0.0682 (5)
O2 0.3162 (3) 0.75751 (18) 0.25156 (17) 0.0558 (4)
O3 0.0695 (3) 0.6399 (2) 0.11090 (19) 0.0695 (5)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S1 0.0364 (3) 0.0389 (3) 0.0489 (3) −0.0100 (2) −0.0021 (2) −0.0005 (2)
S2 0.0401 (3) 0.0441 (3) 0.0610 (4) −0.0107 (2) −0.0014 (2) −0.0144 (3)
C1 0.0523 (14) 0.0263 (10) 0.0484 (13) −0.0007 (10) 0.0016 (11) 0.0030 (9)
H1a 0.08 (2) 0.057 (19) 0.10 (2) 0.045 (17) −0.031 (18) 0.019 (17)
H1b 0.09 (2) 0.033 (15) 0.10 (2) −0.030 (15) 0.015 (18) −0.009 (15)
C2 0.0464 (12) 0.0299 (11) 0.0496 (13) 0.0014 (9) 0.0061 (10) −0.0076 (10)
H2a 0.13 (3) 0.038 (16) 0.09 (2) −0.012 (17) 0.007 (18) −0.021 (15)
H2b 0.053 (17) 0.076 (19) 0.060 (17) −0.013 (15) 0.022 (13) 0.014 (15)
C3 0.0335 (9) 0.0236 (9) 0.0427 (10) −0.0055 (7) 0.0074 (8) −0.0008 (8)
C4 0.0306 (9) 0.0281 (9) 0.0415 (10) −0.0011 (7) 0.0060 (8) 0.0003 (8)
C5 0.0551 (13) 0.0245 (10) 0.0556 (13) −0.0096 (9) 0.0171 (10) −0.0021 (9)
C6 0.0370 (11) 0.0442 (12) 0.0528 (12) 0.0054 (9) 0.0076 (10) 0.0118 (10)
O1 0.0867 (13) 0.0358 (9) 0.0862 (12) −0.0262 (9) 0.0178 (10) −0.0185 (9)
O2 0.0611 (10) 0.0270 (7) 0.0673 (10) 0.0084 (7) 0.0161 (8) 0.0070 (7)
O3 0.0467 (9) 0.0712 (12) 0.0784 (12) 0.0086 (8) −0.0076 (9) 0.0218 (10)

Geometric parameters (Å, º)

S1—C1 1.805 (2) C2—H2b 1.08 (2)
S1—C3 1.7136 (19) C3—C4 1.345 (3)
S2—C2 1.817 (2) C3—C5 1.469 (3)
S2—C4 1.7160 (19) C4—C6 1.472 (3)
C1—H1a 1.08 (2) O1—C5 1.193 (3)
C1—H1b 1.06 (2) O2—C5 1.376 (3)
C1—C2 1.510 (3) O2—C6 1.386 (3)
C2—H2a 1.06 (2) O3—C6 1.186 (3)
C1—S1—C3 99.54 (10) S1—C3—C4 131.57 (14)
C2—S2—C4 98.30 (10) S1—C3—C5 120.60 (16)
S1—C1—H1a 107.2 (15) C4—C3—C5 107.83 (17)
S1—C1—H1b 108.1 (12) C3—C4—S2 129.27 (14)
H1a—C1—H1b 110 (2) C6—C4—S2 123.28 (16)
S1—C1—C2 114.41 (15) C3—C4—C6 107.44 (17)
C2—C1—H1a 107.8 (16) O1—C5—C3 129.7 (2)
C2—C1—H1b 108.9 (15) O2—C5—C3 108.36 (18)
C1—C2—S2 115.01 (15) O1—C5—O2 121.98 (19)
S2—C2—H2a 105.1 (17) O2—C6—C4 108.13 (18)
S2—C2—H2b 107.5 (13) O3—C6—C4 130.7 (2)
C1—C2—H2a 108.8 (16) O2—C6—O3 121.2 (2)
C1—C2—H2b 111.8 (14) C5—O2—C6 108.14 (15)
H2a—C2—H2b 108 (2)
S1—C1—C2—S2 −70.39 (17) S2—C4—C6—O3 4.1 (2)
S1—C3—C4—S2 −3.9 (2) C3—C4—C6—O2 3.05 (16)
S1—C3—C4—C6 176.69 (19) C3—C4—C6—O3 −176.50 (17)
S1—C3—C5—O1 1.95 (19) C3—C5—O2—C6 0.24 (18)
S1—C3—C5—O2 −177.86 (15) C4—C6—O2—C5 −1.95 (18)
S2—C4—C3—C5 176.57 (18) C5—O2—C6—O3 177.65 (17)
S2—C4—C6—O2 −176.39 (17)

References

  1. Bourhis, L. J., Dolomanov, O. V., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2015). Acta Cryst. A71, 59–75. [DOI] [PMC free article] [PubMed]
  2. Bruker (2016). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Bruker (2018). APEX3 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
  5. Grabowski, M. (1968). Soc. Sci. Lodz. Acta Chim. 13, 43.
  6. Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
  7. Kirfel, A., Will, G. & Fickentscher, K. (1975). Acta Cryst. B31, 1973–1975.
  8. Kleemiss, F., Dolomanov, O. V., Bodensteiner, M., Peyerimhoff, N., Midgley, M., Bourhis, L. J., Genoni, A., Malaspina, L. A., Jayatilaka, D., Spencer, J. L., White, F., Grundkötter-Stock, B., Steinhauer, S., Lentz, D., Puschmann, H. & Grabowsky, S. (2021). Chem. Sci. 12, 1675–1692. [DOI] [PMC free article] [PubMed]
  9. Kurbangalieva, A. R., Lodochnikova, O. A., Devyatova, N. F., Berdnikov, E. A., Gnezdilov, O. I., Litvinov, I. A. & Chmutova, G. A. (2010). Tetrahedron, 66, 9945–9953.
  10. Lutz, M. (2001). Acta Cryst. E57, o1136–o1138.
  11. Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235. [DOI] [PMC free article] [PubMed]
  12. Marsh, R. E., Ubell, E. & Wilcox, H. E. (1962). Acta Cryst. 15, 35–41.
  13. Midgley, L., Bourhis, L. J., Dolomanov, O. V., Grabowsky, S., Kleemiss, F., Puschmann, H. & Peyerimhoff, N. (2021). Acta Cryst. A77, 519–533. [DOI] [PubMed]
  14. Neese, F. (2022). WIREs Comput. Mol. Sci. 12, e1606.
  15. Schmidt, J. R. & Polik, W. F. (2016). WebMO Enterprise. Version 20.0.011e. WebMO LLC, Holland, MI, USA.
  16. Schmidt, M. W., Baldridge, K. K., Boatz, J. A., Elbert, S. T., Gordon, M. S., Jensen, J. H., Koseki, S., Matsunaga, N., Nguyen, K. A., Su, S., Windus, T. L., Dupuis, M. & Montgomery, J. A. (1993). J. Comput. Chem. 14, 1347–1363.
  17. Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.
  18. Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.
  19. Skabara, P. J., Coles, S. J. & Hursthouse, M. B. (2003). CCDC deposition No. 1057366. CCDC, Cambridge, UK.
  20. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S2414314623006478/hb4438sup1.cif

x-08-x230647-sup1.cif (15.1KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2414314623006478/hb4438Isup2.hkl

x-08-x230647-Isup2.hkl (80.8KB, hkl)

Supporting information file. DOI: 10.1107/S2414314623006478/hb4438Isup3.cml

CCDC reference: 2284875

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from IUCrData are provided here courtesy of International Union of Crystallography

RESOURCES