Skip to main content
IUCrData logoLink to IUCrData
. 2023 Aug 4;8(Pt 8):x230665. doi: 10.1107/S241431462300665X

6,8-Di­chloro-3-(pyridin-2-yl)-2-[1-(pyridin-2-yl)eth­yl]-1,2-di­hydro­quinoxaline

Frederick P Malan a, Ahmed M Mansour b, Amanda-Lee E Manicum c,*
Editor: W T A Harrisond
PMCID: PMC10483544  PMID: 37693790

The synthesis and single-crystal X-ray structure of a substituted quinoxaline compound is described.

Keywords: crystal structure, quinoxaline derivative, chiral compound

Abstract

The crystal structure of the racemic title compound, C20H16Cl2N4 is described, where the formation of a di-substituted 6,8-di­chloro quinoxaline, containing two stereogenic centres, is confirmed. graphic file with name x-08-x230665-scheme1-3D1.jpg

Structure description

The family of functionalized quinoxaline compounds is an important class of heterocyclic compounds because of their synthetic utility and electroluminescent properties, as well as the different biological properties they have been found to exhibit (Pereira et al., 2015). The gradually expanding library of active compounds has lead to a growing inter­est into their solid- and solution-state characterization, including single-crystal X-ray diffraction. As part of our studies in this area, we now describe the synthesis and structure of the title compound, C20H16Cl2N4.

The compound crystallizes in the monoclinic space group P21/c with Z = 4. The asymmetric unit (Fig. 1) contains one mol­ecule, featuring the 6,8-di­chloro­quinoxaline-based skeleton with two pyridyl-based substituents attached to positions 2 and 3 (atoms C1 and C2, respectively). The compound contains two chiral centres, namely atoms C3 and C14: in the arbitrarily chosen asymmetric unit, these both have an R configuration, but crystal symmetry generates a racemic mixture. The quinoxalinyl ring system and the 2-pyridyl groups are close to co-planar [N3—C9—C1—N1 = −179.61 (14), C8—N1—C1—C9 = 175.17 (13)°], with the third picolyl-containing substituent more notably rotated out of plane [C1—C2—C14—C16 = −166.73 (12)°] with respect to the quinoxalinyl group. In the quinoxaline moiety, partial saturation on C2 (position 3) occurs and C2 is sp 3-hybridized with bond angles of 113.58 (12)° (N2—C2—C14), 108.58 (12)° (N2—C2—C1) and 112.34 (12)° (C1—C2—C14). This leads C2 to be displaced by 0.383 (3) Å from the quinoxalinyl mean plane. Bonds lengths supporting the partially saturated character include: 1.290 (2) Å (N1—C1), 1.522 (2) Å (C1—C2), 1.4586 (19) Å (C2—N2) and 1.550 (2) Å (C2—C14). The remaining C—C, C—Cl, and C—N bond lengths and angles agree well with similar pyridyl-containing quinoxaline systems (Wang et al., 2015). A weak bifurcated intra­molecular N—H⋯(N,Cl) hydrogen bond occurs (Table 1).

Figure 1.

Figure 1

Perspective view of the mol­ecular structure of the title compound showing displacement ellipsoids at the 50% probability level.

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯Cl1 0.88 2.64 2.9941 (13) 105
N2—H2⋯N4 0.88 2.50 2.815 (2) 102

In the crystal, the compound packs as layers that extend down the c-axis inter­linked by weak C—H⋯N hydrogen-bonding inter­actions (Fig. 2). No aromatic π–π stacking inter­actions were observed.

Figure 2.

Figure 2

Packing viewed along the a-axis direction. Hydrogen-bonding inter­actions are indicated by means of cyan lines.

Synthesis and crystallization

Picolyl­amine (1 mmol), 2-methyl-2-(2-pyrid­yl)ethyl­amine (1 mmol) and 3,5-di­chloro­cyclo­hexan-1,2-dione (1 mmol) were added to a round-bottom flask with methanol (20 ml). The resulting solution was carefully heated to 50°C for approximately 2 h. The yellow solution was left to crystallize, after which yellow crystals of the title compound (which in this case represents the major product) were obtained.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2. The highest calculated residual electron density is 0.62 e Å−3 at 0.91 Å from N2.

Table 2. Experimental details.

Crystal data
Chemical formula C20H16Cl2N4
M r 383.27
Crystal system, space group Monoclinic, P21/c
Temperature (K) 150
a, b, c (Å) 8.4245 (3), 20.7040 (6), 10.2055 (3)
β (°) 96.448 (3)
V3) 1768.79 (10)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.38
Crystal size (mm) 0.27 × 0.19 × 0.09
 
Data collection
Diffractometer XtaLAB Synergy R, DW system, HyPix
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2019)
T min, T max 0.576, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 29036, 4742, 3981
R int 0.112
(sin θ/λ)max−1) 0.719
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.047, 0.137, 1.10
No. of reflections 4742
No. of parameters 236
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.62, −0.58

Computer programs: CrysAlis PRO (Rigaku OD, 2023), SHELXT (Sheldrick, 2015a ), SHELXL (Sheldrick, 2015b ) and OLEX2 (Dolomanov et al., 2009).

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S241431462300665X/hb4436sup1.cif

x-08-x230665-sup1.cif (972.3KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S241431462300665X/hb4436Isup2.hkl

x-08-x230665-Isup2.hkl (377.6KB, hkl)

Supporting information file. DOI: 10.1107/S241431462300665X/hb4436Isup3.cdx

Supporting information file. DOI: 10.1107/S241431462300665X/hb4436Isup4.cml

CCDC reference: 2285764

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

We would like to acknowledge the National Research Foundation, University of Pretoria and the Tshwane University of Technology for funding and institutional support provided.

full crystallographic data

Crystal data

C20H16Cl2N4 F(000) = 792
Mr = 383.27 Dx = 1.439 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
a = 8.4245 (3) Å Cell parameters from 18589 reflections
b = 20.7040 (6) Å θ = 2.6–31.0°
c = 10.2055 (3) Å µ = 0.38 mm1
β = 96.448 (3)° T = 150 K
V = 1768.79 (10) Å3 Blade, yellow
Z = 4 0.27 × 0.19 × 0.09 mm

Data collection

XtaLAB Synergy R, DW system, HyPix diffractometer 4742 independent reflections
Radiation source: Rotating-anode X-ray tube, Rigaku (Mo) X-ray Source 3981 reflections with I > 2σ(I)
Mirror monochromator Rint = 0.112
Detector resolution: 10.0000 pixels mm-1 θmax = 30.8°, θmin = 2.4°
ω scans h = −12→10
Absorption correction: multi-scan (CrysalisPro; Rigaku OD, 2019) k = −28→26
Tmin = 0.576, Tmax = 1.000 l = −14→13
29036 measured reflections

Refinement

Refinement on F2 Primary atom site location: dual
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.047 H-atom parameters constrained
wR(F2) = 0.137 w = 1/[σ2(Fo2) + (0.0676P)2 + 0.7299P] where P = (Fo2 + 2Fc2)/3
S = 1.10 (Δ/σ)max = 0.001
4742 reflections Δρmax = 0.62 e Å3
236 parameters Δρmin = −0.58 e Å3
0 restraints

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. All H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Cl2 1.12383 (5) 0.09926 (2) 0.40380 (4) 0.02882 (13)
Cl1 0.83348 (6) 0.03634 (2) 0.83287 (5) 0.03650 (15)
N1 0.81871 (15) 0.26674 (6) 0.64452 (13) 0.0189 (3)
N2 0.73638 (16) 0.17552 (6) 0.82624 (13) 0.0201 (3)
H2 0.7411 0.1527 0.8994 0.024*
N3 0.59274 (18) 0.36766 (7) 0.83720 (15) 0.0261 (3)
N4 0.45284 (17) 0.14108 (7) 0.93078 (16) 0.0279 (3)
C16 0.37494 (18) 0.18777 (7) 0.85957 (15) 0.0179 (3)
C8 0.85917 (17) 0.20116 (7) 0.63224 (15) 0.0181 (3)
C3 0.81853 (18) 0.15560 (7) 0.72517 (15) 0.0187 (3)
C9 0.69244 (18) 0.35242 (7) 0.74782 (15) 0.0189 (3)
C1 0.72267 (17) 0.28236 (7) 0.72928 (15) 0.0175 (3)
C2 0.64108 (17) 0.23446 (7) 0.81296 (14) 0.0169 (3)
H2A 0.6423 0.2536 0.9030 0.020*
C6 1.00485 (19) 0.12035 (8) 0.52627 (16) 0.0215 (3)
C14 0.46394 (18) 0.22276 (7) 0.75909 (15) 0.0190 (3)
H14 0.4123 0.2659 0.7422 0.023*
C7 0.95056 (18) 0.18329 (8) 0.53247 (15) 0.0205 (3)
H7 0.9755 0.2141 0.4690 0.025*
C10 0.76783 (19) 0.39916 (8) 0.67700 (17) 0.0224 (3)
H10 0.8372 0.3868 0.6142 0.027*
C5 0.96985 (19) 0.07447 (8) 0.61717 (16) 0.0236 (3)
H5 1.0082 0.0315 0.6126 0.028*
C4 0.8772 (2) 0.09267 (8) 0.71550 (17) 0.0230 (3)
C17 0.2167 (2) 0.20287 (8) 0.87252 (19) 0.0271 (4)
H17 0.1635 0.2360 0.8203 0.033*
C19 0.2179 (2) 0.12117 (8) 1.03820 (18) 0.0263 (3)
H19 0.1672 0.0977 1.1018 0.032*
C20 0.3742 (2) 0.10886 (9) 1.01806 (19) 0.0300 (4)
H20 0.4295 0.0757 1.0688 0.036*
C11 0.7391 (2) 0.46377 (8) 0.70050 (19) 0.0288 (4)
H11 0.7886 0.4965 0.6541 0.035*
C12 0.6367 (2) 0.47994 (9) 0.7931 (2) 0.0325 (4)
H12 0.6154 0.5238 0.8118 0.039*
C13 0.5664 (2) 0.43017 (9) 0.8576 (2) 0.0330 (4)
H13 0.4954 0.4414 0.9199 0.040*
C18 0.1374 (2) 0.16896 (9) 0.9625 (2) 0.0305 (4)
H18 0.0290 0.1784 0.9722 0.037*
C15 0.4450 (2) 0.18517 (10) 0.62926 (16) 0.0290 (4)
H15A 0.4889 0.1416 0.6441 0.044*
H15B 0.5026 0.2076 0.5644 0.044*
H15C 0.3315 0.1822 0.5961 0.044*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cl2 0.0285 (2) 0.0321 (2) 0.0284 (2) 0.00069 (15) 0.01460 (17) −0.00866 (15)
Cl1 0.0531 (3) 0.0222 (2) 0.0386 (3) 0.00890 (18) 0.0247 (2) 0.00922 (17)
N1 0.0183 (6) 0.0205 (6) 0.0189 (6) 0.0000 (5) 0.0063 (5) 0.0003 (5)
N2 0.0214 (6) 0.0216 (6) 0.0188 (6) 0.0054 (5) 0.0087 (5) 0.0045 (5)
N3 0.0305 (7) 0.0215 (7) 0.0287 (7) 0.0010 (5) 0.0135 (6) −0.0030 (5)
N4 0.0194 (7) 0.0333 (8) 0.0324 (8) 0.0030 (6) 0.0085 (6) 0.0137 (6)
C16 0.0175 (7) 0.0186 (7) 0.0182 (7) −0.0023 (5) 0.0043 (5) 0.0000 (5)
C8 0.0163 (7) 0.0203 (7) 0.0184 (7) 0.0002 (5) 0.0054 (5) −0.0002 (5)
C3 0.0170 (7) 0.0207 (7) 0.0192 (7) 0.0010 (5) 0.0054 (6) 0.0005 (5)
C9 0.0180 (7) 0.0188 (7) 0.0205 (7) −0.0004 (5) 0.0044 (6) −0.0006 (5)
C1 0.0159 (7) 0.0192 (7) 0.0179 (7) −0.0007 (5) 0.0040 (5) 0.0012 (5)
C2 0.0168 (7) 0.0176 (7) 0.0172 (7) 0.0008 (5) 0.0056 (5) 0.0006 (5)
C6 0.0195 (7) 0.0256 (8) 0.0206 (7) 0.0008 (6) 0.0074 (6) −0.0066 (6)
C14 0.0163 (7) 0.0217 (7) 0.0196 (7) 0.0002 (5) 0.0047 (5) 0.0053 (6)
C7 0.0209 (7) 0.0226 (8) 0.0190 (7) −0.0017 (6) 0.0071 (6) −0.0016 (6)
C10 0.0205 (7) 0.0220 (8) 0.0254 (8) −0.0009 (6) 0.0062 (6) 0.0017 (6)
C5 0.0241 (8) 0.0208 (8) 0.0266 (8) 0.0031 (6) 0.0059 (6) −0.0035 (6)
C4 0.0249 (8) 0.0204 (7) 0.0248 (8) 0.0014 (6) 0.0085 (6) 0.0018 (6)
C17 0.0213 (8) 0.0252 (8) 0.0368 (9) 0.0047 (6) 0.0116 (7) 0.0079 (7)
C19 0.0277 (8) 0.0256 (8) 0.0276 (8) −0.0060 (6) 0.0120 (7) 0.0010 (6)
C20 0.0239 (8) 0.0332 (9) 0.0337 (9) 0.0010 (7) 0.0068 (7) 0.0146 (7)
C11 0.0287 (9) 0.0221 (8) 0.0361 (9) −0.0044 (6) 0.0056 (7) 0.0010 (7)
C12 0.0383 (10) 0.0196 (8) 0.0407 (10) 0.0001 (7) 0.0093 (8) −0.0041 (7)
C13 0.0409 (10) 0.0247 (9) 0.0363 (10) 0.0023 (7) 0.0177 (8) −0.0053 (7)
C18 0.0231 (8) 0.0275 (9) 0.0442 (10) 0.0020 (6) 0.0176 (7) 0.0059 (7)
C15 0.0264 (8) 0.0428 (10) 0.0181 (7) −0.0098 (7) 0.0033 (6) −0.0003 (7)

Geometric parameters (Å, º)

Cl2—C6 1.7432 (16) C9—C1 1.488 (2)
Cl1—C4 1.7406 (17) C9—C10 1.402 (2)
N1—C8 1.409 (2) C1—C2 1.522 (2)
N1—C1 1.290 (2) C2—C14 1.550 (2)
N2—C3 1.3687 (19) C6—C7 1.385 (2)
N2—C2 1.4586 (19) C6—C5 1.382 (2)
N3—C9 1.345 (2) C14—C15 1.529 (2)
N3—C13 1.333 (2) C10—C11 1.385 (2)
N4—C16 1.336 (2) C5—C4 1.391 (2)
N4—C20 1.346 (2) C17—C18 1.385 (2)
C16—C14 1.520 (2) C19—C20 1.379 (2)
C16—C17 1.390 (2) C19—C18 1.385 (3)
C8—C3 1.407 (2) C11—C12 1.390 (3)
C8—C7 1.394 (2) C12—C13 1.391 (3)
C3—C4 1.401 (2)
C1—N1—C8 118.51 (13) C1—C2—C14 112.34 (12)
C3—N2—C2 120.11 (13) C7—C6—Cl2 119.20 (13)
C13—N3—C9 117.45 (15) C5—C6—Cl2 119.49 (12)
C16—N4—C20 118.06 (14) C5—C6—C7 121.29 (14)
N4—C16—C14 117.53 (13) C16—C14—C2 111.30 (12)
N4—C16—C17 121.91 (15) C16—C14—C15 109.31 (13)
C17—C16—C14 120.53 (14) C15—C14—C2 112.90 (13)
C3—C8—N1 120.43 (13) C6—C7—C8 119.71 (15)
C7—C8—N1 118.68 (14) C11—C10—C9 118.64 (16)
C7—C8—C3 120.70 (14) C6—C5—C4 118.51 (15)
N2—C3—C8 119.20 (14) C3—C4—Cl1 118.10 (12)
N2—C3—C4 123.06 (14) C5—C4—Cl1 119.63 (12)
C4—C3—C8 117.49 (14) C5—C4—C3 122.26 (15)
N3—C9—C1 116.33 (14) C18—C17—C16 119.20 (15)
N3—C9—C10 122.77 (15) C20—C19—C18 117.70 (16)
C10—C9—C1 120.88 (14) N4—C20—C19 123.81 (16)
N1—C1—C9 117.29 (14) C10—C11—C12 118.95 (17)
N1—C1—C2 124.72 (13) C11—C12—C13 118.25 (17)
C9—C1—C2 117.98 (13) N3—C13—C12 123.93 (17)
N2—C2—C1 108.58 (12) C19—C18—C17 119.30 (16)
N2—C2—C14 113.58 (12)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N2—H2···Cl1 0.88 2.64 2.9941 (13) 105
N2—H2···N4 0.88 2.50 2.815 (2) 102

Funding Statement

Funding for this research was provided by: National Research Foundation (grant No. 138280 to FPM; grant No. 129468 to ALEM).

References

  1. Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
  2. Pereira, J. A., Pessoa, A. M., Cordeiro, M. N. D. S., Fernandes, R., Prudêncio, C., Noronha, J. P. & Vieira, M. (2015). Eur. J. Med. Chem. 97, 664–672. [DOI] [PubMed]
  3. Rigaku OD (2023). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.
  4. Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.
  5. Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.
  6. Wang, X.-M., Chen, S. R.-Q., Fan, R. Q., Zhang, F.-Q. & Yang, Y.-L. (2015). Dalton Trans. 44, 8107–8125. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S241431462300665X/hb4436sup1.cif

x-08-x230665-sup1.cif (972.3KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S241431462300665X/hb4436Isup2.hkl

x-08-x230665-Isup2.hkl (377.6KB, hkl)

Supporting information file. DOI: 10.1107/S241431462300665X/hb4436Isup3.cdx

Supporting information file. DOI: 10.1107/S241431462300665X/hb4436Isup4.cml

CCDC reference: 2285764

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from IUCrData are provided here courtesy of International Union of Crystallography

RESOURCES