Skip to main content
IUCrData logoLink to IUCrData
. 2023 Aug 30;8(Pt 8):x230745. doi: 10.1107/S2414314623007459

Poly[[μ-1,4-bis­(pyridin-4-ylmeth­yl)piperazine]bis­[μ3-4-(2-carboxyl­atoeth­yl)benzoato]dicopper(II)]

Jason Jia a, Robert L LaDuca a,*
Editor: M Weilb
PMCID: PMC10483545  PMID: 37693782

The title com­pound is a diperiodic slab copper(II) coordination polymer held together via longer-range C—H⋯O attractive inter­actions.

Keywords: crystal structure, copper(II), Jahn–Teller distortion, coordination polymer

Abstract

In the title coordination polymer, [Cu2(C9H6O4)2(C16H20N4)] n , the CuII atoms in {NO4} square-pyramidal coordination environments are conjoined into diperiodic coordination polymer slabs by the full span of the bridging 1,4-bis­(pyridin-4-ylmeth­yl)piperazine (bpmp) and 4-(carboxyl­eth­yl)benzoate (ceb) ligands. The slab motifs are expanded into the full crystal structure by means of longer-range C—H⋯O attractive inter­actions. graphic file with name x-08-x230745-scheme1-3D1.jpg

Structure description

Our group has reported several divalent metal coordination polymers with intriguing topologies based on the dipodal pyridyl ligand 1,4-bis­(pyridin-4-ylmeth­yl)piperazine (bpmp) in the presence of di­carboxyl­ate co-ligands. For example, using the di­carboxyl­ate ligand oxy(bis­benzoate) (oba) afforded the highly entangled self-penetrated phase [Co3(oba)3(bpmp)2] (Martin et al., 2008). The title com­pound was obtained by hydro­thermal reaction of copper nitrate, 4-(carboxyl­eth­yl)benzoic acid (cebH2), and bpmp under basic conditions.

The asymmetric unit of the title com­pound consists of a CuII atom, a ceb ligand, and half of a bpmp ligand whose central piperazine ring is situated on a crystallographic inversion center. The CuII atom is coordinated in a {NO4} square-pyramidal arrangement (Fig. 1) with ‘longer’ arm ceb carboxyl­ate O-atom donors in trans positions in the basal plane. A carboxyl­ate group from the ‘shorter’ arm ceb terminus bridges a basal position and the Jahn–Teller elongated apical position. The remaining coordination site in the basal plane is taken up by a pyridyl N-atom donor from a bpmp ligand. A modest deviation from idealized square-pyramidal coordination is indicated by the trigonality factor τ of 0.11 (Addison et al., 1984). Bond lengths and angles within the coordination sphere are listed in Table 1.

Figure 1.

Figure 1

The copper coordination environment in the title com­pound with full ceb and bpmp ligands. Displacement ellipsoids are drawn at the 50% probability level. Color code: Cu dark blue, O red, N light blue, C black, and H pink. The symmetry codes are as listed in Table 1.

Table 1. Selected geometric parameters (Å, °).

Cu1—O1 1.969 (2) Cu1—O4ii 1.985 (2)
Cu1—O2i 1.968 (2) Cu1—N1 1.979 (3)
Cu1—O3ii 2.299 (2)    
       
O1—Cu1—O3ii 101.92 (9) O2i—Cu1—O4ii 90.56 (10)
O1—Cu1—O4ii 92.30 (10) O2i—Cu1—N1 93.02 (11)
O1—Cu1—N1 89.47 (11) O4ii—Cu1—O3ii 61.65 (9)
O2i—Cu1—O1 157.53 (10) N1—Cu1—O3ii 104.62 (10)
O2i—Cu1—O3ii 99.04 (9) N1—Cu1—O4ii 166.22 (11)

Symmetry codes: (i) Inline graphic ; (ii) Inline graphic .

The carboxyl­ate groups of the longer arms of the ceb ligands bridge two CuII atoms in a synsyn fashion to construct [Cu2(OCO)2] dimeric groups with a Cu⋯Cu distance of 2.8992 (8) Å. These are connected by chelating carboxyl­ate groups belonging to the shorter ceb termini, to form [Cu2(ceb)2] monoperiodic coordination polymer ribbons oriented along the c axis (Fig. 2). These [Cu2(ceb)2] ribbon motifs are pillared by dipodal bpmp ligands to form [Cu2(ceb)2(bpmp)] n coordination polymer slabs that are oriented parallel to (1 Inline graphic 0) (Fig. 3). Longer-range C—H⋯O attractive forces between parallel adjacent slab motifs construct the full three-dimensional crystal structure of the title com­pound (Fig. 4). The slabs stack in an AAA repeating pattern along the a crystal direction.

Figure 2.

Figure 2

The [Cu2(ceb)2] n coordination polymer chain in the title com­pound.

Figure 3.

Figure 3

The [Cu2(ceb)2(bpmp)] n coordination polymer slab in the title com­pound. The [Cu2(ceb)2] n chain motifs are drawn in red.

Figure 4.

Figure 4

The AAA stacking of the [Cu2(ceb)2(bpmp)] n coordination polymer slabs in the title com­pound.

Synthesis and crystallization

Cu(NO3)2·2.5H2O (86 mg, 0.37 mmol), 4-(carb­oxy­meth­yl)benzoic acid (cmbH2) (67 mg, 0.37 mmol), 1,4-bis­(pyridin-4-ylmeth­yl)piperazine (bpmp) (99 mg, 0.37 mmol), and 0.75 ml of a 1.0 M NaOH solution were placed in 10 ml distilled water in a Teflon-lined acid digestion bomb. The bomb was sealed and heated in an oven at 393 K for 48 h, and then cooled slowly to 273 K. Green crystals of the title com­plex were obtained in 51% yield.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2. The greatest remaining electron density of 1.53 e Å−3 is situated 1.45 Å from the Cu1 atom.

Table 2. Experimental details.

Crystal data
Chemical formula [Cu2(C9H6O4)2(C16H20N4)]
M r 751.71
Crystal system, space group Triclinic, P Inline graphic
Temperature (K) 173
a, b, c (Å) 8.5431 (8), 9.7391 (9), 9.9667 (9)
α, β, γ (°) 104.523 (1), 93.049 (1), 99.966 (1)
V3) 786.57 (13)
Z 1
Radiation type Mo Kα
μ (mm−1) 1.41
Crystal size (mm) 0.20 × 0.11 × 0.07
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2014)
T min, T max 0.693, 0.745
No. of measured, independent and observed [I > 2σ(I)] reflections 10964, 2883, 2459
R int 0.042
(sin θ/λ)max−1) 0.602
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.044, 0.114, 1.12
No. of reflections 2883
No. of parameters 217
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 1.53, −0.32

Computer programs: COSMO (Bruker 2009), SAINT (Bruker, 2014), SHELXT (Sheldrick, 2015a ), SHELXL (Sheldrick, 2015b ), CrystalMakerX (Palmer, 2020), and OLEX2 (Dolomanov et al., 2009).

Supplementary Material

Crystal structure: contains datablock(s) I, 1R. DOI: 10.1107/S2414314623007459/wm4195sup1.cif

x-08-x230745-sup1.cif (336.8KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2414314623007459/wm4195Isup2.hkl

x-08-x230745-Isup2.hkl (158.4KB, hkl)

res file. DOI: 10.1107/S2414314623007459/wm4195sup3.txt

x-08-x230745-sup3.txt (6.3KB, txt)

CCDC reference: 1976250

Additional supporting information: crystallographic information; 3D view; checkCIF report

full crystallographic data

Crystal data

[Cu2(C9H6O4)2(C16H20N4)] Z = 1
Mr = 751.71 F(000) = 386
Triclinic, P1 Dx = 1.587 Mg m3
a = 8.5431 (8) Å Mo Kα radiation, λ = 0.71073 Å
b = 9.7391 (9) Å Cell parameters from 5378 reflections
c = 9.9667 (9) Å θ = 2.2–25.3°
α = 104.523 (1)° µ = 1.41 mm1
β = 93.049 (1)° T = 173 K
γ = 99.966 (1)° Plate, green
V = 786.57 (13) Å3 0.20 × 0.11 × 0.07 mm

Data collection

Bruker APEXII CCD diffractometer 2883 independent reflections
Radiation source: sealed tube 2459 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.042
Detector resolution: 8.36 pixels mm-1 θmax = 25.3°, θmin = 2.1°
ω scans h = −10→10
Absorption correction: multi-scan (SADABS; Bruker, 2014) k = −11→11
Tmin = 0.693, Tmax = 0.745 l = −11→11
10964 measured reflections

Refinement

Refinement on F2 Primary atom site location: dual
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.044 H-atom parameters constrained
wR(F2) = 0.114 w = 1/[σ2(Fo2) + (0.0559P)2 + 0.6812P] where P = (Fo2 + 2Fc2)/3
S = 1.12 (Δ/σ)max = 0.001
2883 reflections Δρmax = 1.53 e Å3
217 parameters Δρmin = −0.31 e Å3
0 restraints

Special details

Experimental. Data was collected using a BRUKER CCD (charge coupled device) based diffractometer equipped with an Oxford low-temperature apparatus operating at 173 K. A suitable crystal was chosen and mounted on a nylon loop using Paratone oil. Data were measured using omega scans of 0.5° per frame for 30 s. The total number of images were based on results from the program COSMO where redundancy was expected to be 4 and completeness to 0.83Å to 100%. Cell parameters were retrieved using APEX II software and refined using SAINT on all observed reflections.Data reduction was performed using the SAINT software which corrects for Lp. Scaling and absorption corrections were applied using SADABS6 multi-scan technique, supplied by George Sheldrick. The structure was solved by the direct method using the SHELXT program and refined by least squares method on F2, SHELXL, incorporated in OLEX2.
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. The structure was refined by Least Squares using version 2018/3 of XL (Sheldrick, 2015b) incorporated in Olex2 (Dolomanov et al., 2009). All non-hydrogen atoms were refined anisotropically. Hydrogen atom positions were calculated geometrically and refined using the riding model, except for the Hydrogen atom on the nitrogen atom which was found by difference Fourier methods and refined isotropically. There is an unresolvable absorption artifact located as a difference peak of 1.53 e- Å-3 situated 1.45 Å from the Cu1 atom.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Cu1 0.15932 (5) 0.57426 (4) 1.06176 (4) 0.02211 (16)
O1 0.2117 (3) 0.4082 (2) 0.9252 (2) 0.0217 (5)
O2 −0.0365 (3) 0.2769 (2) 0.8582 (2) 0.0234 (5)
O3 0.3034 (3) 0.5715 (3) 0.2622 (2) 0.0254 (6)
O4 0.0605 (3) 0.4498 (2) 0.1767 (2) 0.0243 (5)
N1 0.3031 (3) 0.7066 (3) 0.9800 (3) 0.0227 (6)
N2 0.5273 (3) 0.9828 (3) 0.6389 (3) 0.0212 (6)
C1 0.1118 (4) 0.3055 (3) 0.8481 (3) 0.0201 (7)
C2 0.1732 (4) 0.2095 (4) 0.7247 (3) 0.0226 (7)
H2A 0.283116 0.198415 0.750049 0.027*
H2B 0.103647 0.112435 0.695960 0.027*
C3 0.1715 (4) 0.2823 (4) 0.6072 (3) 0.0202 (7)
C4 0.2935 (4) 0.3977 (4) 0.6063 (4) 0.0237 (8)
H4 0.377601 0.430724 0.679879 0.028*
C5 0.2926 (4) 0.4638 (4) 0.4992 (3) 0.0224 (7)
H5 0.376877 0.541559 0.499491 0.027*
C6 0.1706 (4) 0.4188 (3) 0.3911 (3) 0.0206 (7)
C7 0.0445 (4) 0.3072 (4) 0.3944 (4) 0.0262 (8)
H7 −0.042266 0.277462 0.323303 0.031*
C8 0.0466 (4) 0.2403 (4) 0.5012 (4) 0.0255 (8)
H8 −0.039000 0.164151 0.502236 0.031*
C9 0.1809 (4) 0.4860 (4) 0.2720 (3) 0.0217 (7)
C10 0.2529 (4) 0.8020 (4) 0.9196 (3) 0.0235 (7)
H10 0.147482 0.819245 0.929866 0.028*
C11 0.3479 (4) 0.8759 (4) 0.8433 (3) 0.0238 (8)
H11 0.307795 0.943106 0.802968 0.029*
C12 0.5025 (4) 0.8526 (4) 0.8249 (3) 0.0221 (7)
C13 0.5560 (4) 0.7578 (4) 0.8919 (4) 0.0267 (8)
H13 0.661744 0.740613 0.885116 0.032*
C14 0.4550 (4) 0.6888 (4) 0.9684 (4) 0.0258 (8)
H14 0.494412 0.625784 1.014908 0.031*
C15 0.6109 (4) 0.9265 (4) 0.7382 (4) 0.0259 (8)
H15A 0.688256 1.007259 0.801480 0.031*
H15B 0.672420 0.856634 0.686588 0.031*
C16 0.6446 (4) 1.0736 (3) 0.5796 (4) 0.0226 (7)
H16A 0.719702 1.015295 0.532433 0.027*
H16B 0.706851 1.153652 0.655442 0.027*
C17 0.4372 (4) 0.8651 (4) 0.5234 (4) 0.0235 (7)
H17A 0.356366 0.802431 0.560496 0.028*
H17B 0.510889 0.805222 0.475975 0.028*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cu1 0.0226 (3) 0.0256 (3) 0.0190 (3) 0.00159 (17) 0.00451 (17) 0.00903 (18)
O1 0.0243 (12) 0.0234 (12) 0.0184 (12) 0.0049 (10) 0.0047 (10) 0.0067 (10)
O2 0.0245 (13) 0.0253 (12) 0.0206 (13) 0.0031 (10) 0.0067 (10) 0.0065 (10)
O3 0.0255 (13) 0.0294 (13) 0.0222 (13) −0.0033 (11) 0.0018 (10) 0.0143 (11)
O4 0.0252 (13) 0.0309 (13) 0.0176 (13) 0.0001 (10) 0.0015 (10) 0.0115 (10)
N1 0.0235 (15) 0.0248 (15) 0.0201 (15) 0.0030 (12) 0.0032 (12) 0.0075 (12)
N2 0.0230 (15) 0.0207 (14) 0.0190 (15) −0.0013 (12) 0.0029 (12) 0.0071 (12)
C1 0.0272 (19) 0.0233 (17) 0.0171 (17) 0.0093 (15) 0.0049 (14) 0.0150 (14)
C2 0.0251 (18) 0.0240 (17) 0.0215 (18) 0.0078 (14) 0.0044 (14) 0.0084 (14)
C3 0.0233 (17) 0.0249 (17) 0.0159 (17) 0.0085 (14) 0.0062 (14) 0.0082 (14)
C4 0.0243 (18) 0.0276 (18) 0.0171 (18) 0.0026 (14) 0.0002 (14) 0.0039 (14)
C5 0.0253 (18) 0.0216 (17) 0.0189 (18) −0.0008 (14) 0.0025 (14) 0.0061 (14)
C6 0.0245 (18) 0.0239 (17) 0.0153 (17) 0.0071 (14) 0.0054 (14) 0.0063 (14)
C7 0.0232 (18) 0.037 (2) 0.0169 (18) −0.0013 (15) −0.0018 (14) 0.0102 (15)
C8 0.0216 (18) 0.0310 (19) 0.0233 (19) −0.0038 (15) 0.0052 (15) 0.0117 (15)
C9 0.0272 (18) 0.0240 (17) 0.0147 (17) 0.0075 (15) 0.0056 (14) 0.0038 (14)
C10 0.0236 (18) 0.0286 (18) 0.0197 (18) 0.0052 (15) 0.0027 (14) 0.0087 (15)
C11 0.0317 (19) 0.0233 (17) 0.0185 (18) 0.0088 (15) 0.0015 (15) 0.0072 (14)
C12 0.0244 (18) 0.0225 (17) 0.0164 (17) 0.0001 (14) 0.0017 (14) 0.0027 (14)
C13 0.0221 (18) 0.0304 (19) 0.029 (2) 0.0052 (15) 0.0039 (15) 0.0104 (16)
C14 0.0266 (19) 0.0282 (19) 0.0251 (19) 0.0047 (15) 0.0011 (15) 0.0123 (15)
C15 0.0225 (18) 0.0299 (19) 0.0244 (19) 0.0007 (15) 0.0023 (15) 0.0086 (15)
C16 0.0223 (18) 0.0215 (17) 0.0219 (19) −0.0030 (14) 0.0027 (14) 0.0070 (14)
C17 0.0251 (18) 0.0213 (17) 0.0228 (19) −0.0014 (14) 0.0035 (14) 0.0071 (14)

Geometric parameters (Å, º)

Cu1—Cu1i 2.8992 (8) C5—H5 0.9500
Cu1—O1 1.969 (2) C5—C6 1.388 (5)
Cu1—O2i 1.968 (2) C6—C7 1.400 (5)
Cu1—O3ii 2.299 (2) C6—C9 1.492 (5)
Cu1—O4ii 1.985 (2) C7—H7 0.9500
Cu1—N1 1.979 (3) C7—C8 1.381 (5)
Cu1—C9ii 2.466 (3) C8—H8 0.9500
O1—C1 1.252 (4) C10—H10 0.9500
O2—C1 1.264 (4) C10—C11 1.375 (5)
O3—C9 1.244 (4) C11—H11 0.9500
O4—C9 1.299 (4) C11—C12 1.392 (5)
N1—C10 1.343 (4) C12—C13 1.389 (5)
N1—C14 1.346 (4) C12—C15 1.513 (5)
N2—C15 1.458 (4) C13—H13 0.9500
N2—C16 1.467 (4) C13—C14 1.380 (5)
N2—C17 1.473 (4) C14—H14 0.9500
C1—C2 1.525 (4) C15—H15A 0.9900
C2—H2A 0.9900 C15—H15B 0.9900
C2—H2B 0.9900 C16—H16A 0.9900
C2—C3 1.514 (5) C16—H16B 0.9900
C3—C4 1.396 (5) C16—C17iii 1.508 (5)
C3—C8 1.391 (5) C17—H17A 0.9900
C4—H4 0.9500 C17—H17B 0.9900
C4—C5 1.378 (5)
O1—Cu1—O3ii 101.92 (9) C8—C7—H7 120.1
O1—Cu1—O4ii 92.30 (10) C3—C8—H8 119.3
O1—Cu1—N1 89.47 (11) C7—C8—C3 121.3 (3)
O2i—Cu1—O1 157.53 (10) C7—C8—H8 119.3
O2i—Cu1—O3ii 99.04 (9) O3—C9—Cu1iv 67.55 (18)
O2i—Cu1—O4ii 90.56 (10) O3—C9—O4 120.8 (3)
O2i—Cu1—N1 93.02 (11) O3—C9—C6 120.8 (3)
O4ii—Cu1—O3ii 61.65 (9) O4—C9—Cu1iv 53.30 (16)
N1—Cu1—O3ii 104.62 (10) O4—C9—C6 118.3 (3)
N1—Cu1—O4ii 166.22 (11) C6—C9—Cu1iv 171.6 (3)
C1—O1—Cu1 125.2 (2) N1—C10—H10 118.7
C1—O2—Cu1i 122.9 (2) N1—C10—C11 122.6 (3)
C9—O3—Cu1iv 82.5 (2) C11—C10—H10 118.7
C9—O4—Cu1iv 95.0 (2) C10—C11—H11 119.8
C10—N1—Cu1 123.5 (2) C10—C11—C12 120.3 (3)
C10—N1—C14 117.3 (3) C12—C11—H11 119.8
C14—N1—Cu1 118.7 (2) C11—C12—C15 122.9 (3)
C15—N2—C16 109.1 (3) C13—C12—C11 116.8 (3)
C15—N2—C17 111.4 (3) C13—C12—C15 120.3 (3)
C16—N2—C17 108.0 (3) C12—C13—H13 120.1
O1—C1—O2 126.7 (3) C14—C13—C12 119.8 (3)
O1—C1—C2 116.9 (3) C14—C13—H13 120.1
O2—C1—C2 116.3 (3) N1—C14—C13 123.0 (3)
C1—C2—H2A 110.3 N1—C14—H14 118.5
C1—C2—H2B 110.3 C13—C14—H14 118.5
H2A—C2—H2B 108.6 N2—C15—C12 114.2 (3)
C3—C2—C1 107.1 (3) N2—C15—H15A 108.7
C3—C2—H2A 110.3 N2—C15—H15B 108.7
C3—C2—H2B 110.3 C12—C15—H15A 108.7
C4—C3—C2 120.2 (3) C12—C15—H15B 108.7
C8—C3—C2 121.3 (3) H15A—C15—H15B 107.6
C8—C3—C4 118.5 (3) N2—C16—H16A 109.5
C3—C4—H4 119.8 N2—C16—H16B 109.5
C5—C4—C3 120.3 (3) N2—C16—C17iii 110.8 (3)
C5—C4—H4 119.8 H16A—C16—H16B 108.1
C4—C5—H5 119.4 C17iii—C16—H16A 109.5
C4—C5—C6 121.2 (3) C17iii—C16—H16B 109.5
C6—C5—H5 119.4 N2—C17—C16iii 110.2 (3)
C5—C6—C7 118.8 (3) N2—C17—H17A 109.6
C5—C6—C9 119.3 (3) N2—C17—H17B 109.6
C7—C6—C9 121.9 (3) C16iii—C17—H17A 109.6
C6—C7—H7 120.1 C16iii—C17—H17B 109.6
C8—C7—C6 119.9 (3) H17A—C17—H17B 108.1
Cu1—O1—C1—O2 −12.1 (5) C5—C6—C9—O3 6.7 (5)
Cu1—O1—C1—C2 164.4 (2) C5—C6—C9—O4 −175.2 (3)
Cu1i—O2—C1—O1 28.1 (4) C6—C7—C8—C3 0.5 (5)
Cu1i—O2—C1—C2 −148.4 (2) C7—C6—C9—O3 −170.6 (3)
Cu1iv—O3—C9—O4 1.2 (3) C7—C6—C9—O4 7.4 (5)
Cu1iv—O3—C9—C6 179.2 (3) C8—C3—C4—C5 −2.7 (5)
Cu1iv—O4—C9—O3 −1.4 (3) C9—C6—C7—C8 174.8 (3)
Cu1iv—O4—C9—C6 −179.5 (2) C10—N1—C14—C13 −3.5 (5)
Cu1—N1—C10—C11 −168.9 (2) C10—C11—C12—C13 −2.8 (5)
Cu1—N1—C14—C13 168.5 (3) C10—C11—C12—C15 177.8 (3)
O1—C1—C2—C3 −84.4 (3) C11—C12—C13—C14 2.0 (5)
O2—C1—C2—C3 92.4 (3) C11—C12—C15—N2 −20.0 (5)
N1—C10—C11—C12 0.5 (5) C12—C13—C14—N1 1.2 (5)
C1—C2—C3—C4 79.3 (4) C13—C12—C15—N2 160.6 (3)
C1—C2—C3—C8 −98.3 (4) C14—N1—C10—C11 2.6 (5)
C2—C3—C4—C5 179.7 (3) C15—N2—C16—C17iii −179.7 (3)
C2—C3—C8—C7 179.7 (3) C15—N2—C17—C16iii −178.5 (3)
C3—C4—C5—C6 0.6 (5) C15—C12—C13—C14 −178.7 (3)
C4—C3—C8—C7 2.1 (5) C16—N2—C15—C12 169.9 (3)
C4—C5—C6—C7 2.0 (5) C16—N2—C17—C16iii −58.8 (4)
C4—C5—C6—C9 −175.4 (3) C17—N2—C15—C12 −71.1 (4)
C5—C6—C7—C8 −2.6 (5) C17—N2—C16—C17iii 59.2 (4)

Symmetry codes: (i) −x, −y+1, −z+2; (ii) x, y, z+1; (iii) −x+1, −y+2, −z+1; (iv) x, y, z−1.

Funding Statement

Funding for this research was provided by: Lyman Briggs College, Michigan State University.

References

  1. Addison, A. W., Rao, T. N., Reedijk, J., van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349–1356.
  2. Bruker (2009). COSMO. Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Bruker (2014). SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
  5. Martin, D. P., Staples, R. J. & LaDuca, R. L. (2008). Inorg. Chem. 47, 9754–9756. [DOI] [PubMed]
  6. Palmer, D. (2020). CrystalMakerX. Crystal Maker Software, Begbroke, England.
  7. Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.
  8. Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, 1R. DOI: 10.1107/S2414314623007459/wm4195sup1.cif

x-08-x230745-sup1.cif (336.8KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2414314623007459/wm4195Isup2.hkl

x-08-x230745-Isup2.hkl (158.4KB, hkl)

res file. DOI: 10.1107/S2414314623007459/wm4195sup3.txt

x-08-x230745-sup3.txt (6.3KB, txt)

CCDC reference: 1976250

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from IUCrData are provided here courtesy of International Union of Crystallography

RESOURCES