The title compound is a diperiodic slab copper(II) coordination polymer held together via longer-range C—H⋯O attractive interactions.
Keywords: crystal structure, copper(II), Jahn–Teller distortion, coordination polymer
Abstract
In the title coordination polymer, [Cu2(C9H6O4)2(C16H20N4)]
n
, the CuII atoms in {NO4} square-pyramidal coordination environments are conjoined into diperiodic coordination polymer slabs by the full span of the bridging 1,4-bis(pyridin-4-ylmethyl)piperazine (bpmp) and 4-(carboxylethyl)benzoate (ceb) ligands. The slab motifs are expanded into the full crystal structure by means of longer-range C—H⋯O attractive interactions.
Structure description
Our group has reported several divalent metal coordination polymers with intriguing topologies based on the dipodal pyridyl ligand 1,4-bis(pyridin-4-ylmethyl)piperazine (bpmp) in the presence of dicarboxylate co-ligands. For example, using the dicarboxylate ligand oxy(bisbenzoate) (oba) afforded the highly entangled self-penetrated phase [Co3(oba)3(bpmp)2] (Martin et al., 2008 ▸). The title compound was obtained by hydrothermal reaction of copper nitrate, 4-(carboxylethyl)benzoic acid (cebH2), and bpmp under basic conditions.
The asymmetric unit of the title compound consists of a CuII atom, a ceb ligand, and half of a bpmp ligand whose central piperazine ring is situated on a crystallographic inversion center. The CuII atom is coordinated in a {NO4} square-pyramidal arrangement (Fig. 1 ▸) with ‘longer’ arm ceb carboxylate O-atom donors in trans positions in the basal plane. A carboxylate group from the ‘shorter’ arm ceb terminus bridges a basal position and the Jahn–Teller elongated apical position. The remaining coordination site in the basal plane is taken up by a pyridyl N-atom donor from a bpmp ligand. A modest deviation from idealized square-pyramidal coordination is indicated by the trigonality factor τ of 0.11 (Addison et al., 1984 ▸). Bond lengths and angles within the coordination sphere are listed in Table 1 ▸.
Figure 1.
The copper coordination environment in the title compound with full ceb and bpmp ligands. Displacement ellipsoids are drawn at the 50% probability level. Color code: Cu dark blue, O red, N light blue, C black, and H pink. The symmetry codes are as listed in Table 1 ▸.
Table 1. Selected geometric parameters (Å, °).
| Cu1—O1 | 1.969 (2) | Cu1—O4ii | 1.985 (2) |
| Cu1—O2i | 1.968 (2) | Cu1—N1 | 1.979 (3) |
| Cu1—O3ii | 2.299 (2) | ||
| O1—Cu1—O3ii | 101.92 (9) | O2i—Cu1—O4ii | 90.56 (10) |
| O1—Cu1—O4ii | 92.30 (10) | O2i—Cu1—N1 | 93.02 (11) |
| O1—Cu1—N1 | 89.47 (11) | O4ii—Cu1—O3ii | 61.65 (9) |
| O2i—Cu1—O1 | 157.53 (10) | N1—Cu1—O3ii | 104.62 (10) |
| O2i—Cu1—O3ii | 99.04 (9) | N1—Cu1—O4ii | 166.22 (11) |
Symmetry codes: (i)
; (ii)
.
The carboxylate groups of the longer arms of the ceb ligands bridge two CuII atoms in a syn–syn fashion to construct [Cu2(OCO)2] dimeric groups with a Cu⋯Cu distance of 2.8992 (8) Å. These are connected by chelating carboxylate groups belonging to the shorter ceb termini, to form [Cu2(ceb)2] monoperiodic coordination polymer ribbons oriented along the c axis (Fig. 2 ▸). These [Cu2(ceb)2] ribbon motifs are pillared by dipodal bpmp ligands to form [Cu2(ceb)2(bpmp)]
n
coordination polymer slabs that are oriented parallel to (1
0) (Fig. 3 ▸). Longer-range C—H⋯O attractive forces between parallel adjacent slab motifs construct the full three-dimensional crystal structure of the title compound (Fig. 4 ▸). The slabs stack in an AAA repeating pattern along the a crystal direction.
Figure 2.
The [Cu2(ceb)2] n coordination polymer chain in the title compound.
Figure 3.
The [Cu2(ceb)2(bpmp)] n coordination polymer slab in the title compound. The [Cu2(ceb)2] n chain motifs are drawn in red.
Figure 4.
The AAA stacking of the [Cu2(ceb)2(bpmp)] n coordination polymer slabs in the title compound.
Synthesis and crystallization
Cu(NO3)2·2.5H2O (86 mg, 0.37 mmol), 4-(carboxymethyl)benzoic acid (cmbH2) (67 mg, 0.37 mmol), 1,4-bis(pyridin-4-ylmethyl)piperazine (bpmp) (99 mg, 0.37 mmol), and 0.75 ml of a 1.0 M NaOH solution were placed in 10 ml distilled water in a Teflon-lined acid digestion bomb. The bomb was sealed and heated in an oven at 393 K for 48 h, and then cooled slowly to 273 K. Green crystals of the title complex were obtained in 51% yield.
Refinement
Crystal data, data collection and structure refinement details are summarized in Table 2 ▸. The greatest remaining electron density of 1.53 e Å−3 is situated 1.45 Å from the Cu1 atom.
Table 2. Experimental details.
| Crystal data | |
| Chemical formula | [Cu2(C9H6O4)2(C16H20N4)] |
| M r | 751.71 |
| Crystal system, space group | Triclinic, P
|
| Temperature (K) | 173 |
| a, b, c (Å) | 8.5431 (8), 9.7391 (9), 9.9667 (9) |
| α, β, γ (°) | 104.523 (1), 93.049 (1), 99.966 (1) |
| V (Å3) | 786.57 (13) |
| Z | 1 |
| Radiation type | Mo Kα |
| μ (mm−1) | 1.41 |
| Crystal size (mm) | 0.20 × 0.11 × 0.07 |
| Data collection | |
| Diffractometer | Bruker APEXII CCD |
| Absorption correction | Multi-scan (SADABS; Bruker, 2014 ▸) |
| T min, T max | 0.693, 0.745 |
| No. of measured, independent and observed [I > 2σ(I)] reflections | 10964, 2883, 2459 |
| R int | 0.042 |
| (sin θ/λ)max (Å−1) | 0.602 |
| Refinement | |
| R[F 2 > 2σ(F 2)], wR(F 2), S | 0.044, 0.114, 1.12 |
| No. of reflections | 2883 |
| No. of parameters | 217 |
| H-atom treatment | H-atom parameters constrained |
| Δρmax, Δρmin (e Å−3) | 1.53, −0.32 |
Supplementary Material
Crystal structure: contains datablock(s) I, 1R. DOI: 10.1107/S2414314623007459/wm4195sup1.cif
Structure factors: contains datablock(s) I. DOI: 10.1107/S2414314623007459/wm4195Isup2.hkl
res file. DOI: 10.1107/S2414314623007459/wm4195sup3.txt
CCDC reference: 1976250
Additional supporting information: crystallographic information; 3D view; checkCIF report
full crystallographic data
Crystal data
| [Cu2(C9H6O4)2(C16H20N4)] | Z = 1 |
| Mr = 751.71 | F(000) = 386 |
| Triclinic, P1 | Dx = 1.587 Mg m−3 |
| a = 8.5431 (8) Å | Mo Kα radiation, λ = 0.71073 Å |
| b = 9.7391 (9) Å | Cell parameters from 5378 reflections |
| c = 9.9667 (9) Å | θ = 2.2–25.3° |
| α = 104.523 (1)° | µ = 1.41 mm−1 |
| β = 93.049 (1)° | T = 173 K |
| γ = 99.966 (1)° | Plate, green |
| V = 786.57 (13) Å3 | 0.20 × 0.11 × 0.07 mm |
Data collection
| Bruker APEXII CCD diffractometer | 2883 independent reflections |
| Radiation source: sealed tube | 2459 reflections with I > 2σ(I) |
| Graphite monochromator | Rint = 0.042 |
| Detector resolution: 8.36 pixels mm-1 | θmax = 25.3°, θmin = 2.1° |
| ω scans | h = −10→10 |
| Absorption correction: multi-scan (SADABS; Bruker, 2014) | k = −11→11 |
| Tmin = 0.693, Tmax = 0.745 | l = −11→11 |
| 10964 measured reflections |
Refinement
| Refinement on F2 | Primary atom site location: dual |
| Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
| R[F2 > 2σ(F2)] = 0.044 | H-atom parameters constrained |
| wR(F2) = 0.114 | w = 1/[σ2(Fo2) + (0.0559P)2 + 0.6812P] where P = (Fo2 + 2Fc2)/3 |
| S = 1.12 | (Δ/σ)max = 0.001 |
| 2883 reflections | Δρmax = 1.53 e Å−3 |
| 217 parameters | Δρmin = −0.31 e Å−3 |
| 0 restraints |
Special details
| Experimental. Data was collected using a BRUKER CCD (charge coupled device) based diffractometer equipped with an Oxford low-temperature apparatus operating at 173 K. A suitable crystal was chosen and mounted on a nylon loop using Paratone oil. Data were measured using omega scans of 0.5° per frame for 30 s. The total number of images were based on results from the program COSMO where redundancy was expected to be 4 and completeness to 0.83Å to 100%. Cell parameters were retrieved using APEX II software and refined using SAINT on all observed reflections.Data reduction was performed using the SAINT software which corrects for Lp. Scaling and absorption corrections were applied using SADABS6 multi-scan technique, supplied by George Sheldrick. The structure was solved by the direct method using the SHELXT program and refined by least squares method on F2, SHELXL, incorporated in OLEX2. |
| Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
| Refinement. The structure was refined by Least Squares using version 2018/3 of XL (Sheldrick, 2015b) incorporated in Olex2 (Dolomanov et al., 2009). All non-hydrogen atoms were refined anisotropically. Hydrogen atom positions were calculated geometrically and refined using the riding model, except for the Hydrogen atom on the nitrogen atom which was found by difference Fourier methods and refined isotropically. There is an unresolvable absorption artifact located as a difference peak of 1.53 e- Å-3 situated 1.45 Å from the Cu1 atom. |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)
| x | y | z | Uiso*/Ueq | ||
| Cu1 | 0.15932 (5) | 0.57426 (4) | 1.06176 (4) | 0.02211 (16) | |
| O1 | 0.2117 (3) | 0.4082 (2) | 0.9252 (2) | 0.0217 (5) | |
| O2 | −0.0365 (3) | 0.2769 (2) | 0.8582 (2) | 0.0234 (5) | |
| O3 | 0.3034 (3) | 0.5715 (3) | 0.2622 (2) | 0.0254 (6) | |
| O4 | 0.0605 (3) | 0.4498 (2) | 0.1767 (2) | 0.0243 (5) | |
| N1 | 0.3031 (3) | 0.7066 (3) | 0.9800 (3) | 0.0227 (6) | |
| N2 | 0.5273 (3) | 0.9828 (3) | 0.6389 (3) | 0.0212 (6) | |
| C1 | 0.1118 (4) | 0.3055 (3) | 0.8481 (3) | 0.0201 (7) | |
| C2 | 0.1732 (4) | 0.2095 (4) | 0.7247 (3) | 0.0226 (7) | |
| H2A | 0.283116 | 0.198415 | 0.750049 | 0.027* | |
| H2B | 0.103647 | 0.112435 | 0.695960 | 0.027* | |
| C3 | 0.1715 (4) | 0.2823 (4) | 0.6072 (3) | 0.0202 (7) | |
| C4 | 0.2935 (4) | 0.3977 (4) | 0.6063 (4) | 0.0237 (8) | |
| H4 | 0.377601 | 0.430724 | 0.679879 | 0.028* | |
| C5 | 0.2926 (4) | 0.4638 (4) | 0.4992 (3) | 0.0224 (7) | |
| H5 | 0.376877 | 0.541559 | 0.499491 | 0.027* | |
| C6 | 0.1706 (4) | 0.4188 (3) | 0.3911 (3) | 0.0206 (7) | |
| C7 | 0.0445 (4) | 0.3072 (4) | 0.3944 (4) | 0.0262 (8) | |
| H7 | −0.042266 | 0.277462 | 0.323303 | 0.031* | |
| C8 | 0.0466 (4) | 0.2403 (4) | 0.5012 (4) | 0.0255 (8) | |
| H8 | −0.039000 | 0.164151 | 0.502236 | 0.031* | |
| C9 | 0.1809 (4) | 0.4860 (4) | 0.2720 (3) | 0.0217 (7) | |
| C10 | 0.2529 (4) | 0.8020 (4) | 0.9196 (3) | 0.0235 (7) | |
| H10 | 0.147482 | 0.819245 | 0.929866 | 0.028* | |
| C11 | 0.3479 (4) | 0.8759 (4) | 0.8433 (3) | 0.0238 (8) | |
| H11 | 0.307795 | 0.943106 | 0.802968 | 0.029* | |
| C12 | 0.5025 (4) | 0.8526 (4) | 0.8249 (3) | 0.0221 (7) | |
| C13 | 0.5560 (4) | 0.7578 (4) | 0.8919 (4) | 0.0267 (8) | |
| H13 | 0.661744 | 0.740613 | 0.885116 | 0.032* | |
| C14 | 0.4550 (4) | 0.6888 (4) | 0.9684 (4) | 0.0258 (8) | |
| H14 | 0.494412 | 0.625784 | 1.014908 | 0.031* | |
| C15 | 0.6109 (4) | 0.9265 (4) | 0.7382 (4) | 0.0259 (8) | |
| H15A | 0.688256 | 1.007259 | 0.801480 | 0.031* | |
| H15B | 0.672420 | 0.856634 | 0.686588 | 0.031* | |
| C16 | 0.6446 (4) | 1.0736 (3) | 0.5796 (4) | 0.0226 (7) | |
| H16A | 0.719702 | 1.015295 | 0.532433 | 0.027* | |
| H16B | 0.706851 | 1.153652 | 0.655442 | 0.027* | |
| C17 | 0.4372 (4) | 0.8651 (4) | 0.5234 (4) | 0.0235 (7) | |
| H17A | 0.356366 | 0.802431 | 0.560496 | 0.028* | |
| H17B | 0.510889 | 0.805222 | 0.475975 | 0.028* |
Atomic displacement parameters (Å2)
| U11 | U22 | U33 | U12 | U13 | U23 | |
| Cu1 | 0.0226 (3) | 0.0256 (3) | 0.0190 (3) | 0.00159 (17) | 0.00451 (17) | 0.00903 (18) |
| O1 | 0.0243 (12) | 0.0234 (12) | 0.0184 (12) | 0.0049 (10) | 0.0047 (10) | 0.0067 (10) |
| O2 | 0.0245 (13) | 0.0253 (12) | 0.0206 (13) | 0.0031 (10) | 0.0067 (10) | 0.0065 (10) |
| O3 | 0.0255 (13) | 0.0294 (13) | 0.0222 (13) | −0.0033 (11) | 0.0018 (10) | 0.0143 (11) |
| O4 | 0.0252 (13) | 0.0309 (13) | 0.0176 (13) | 0.0001 (10) | 0.0015 (10) | 0.0115 (10) |
| N1 | 0.0235 (15) | 0.0248 (15) | 0.0201 (15) | 0.0030 (12) | 0.0032 (12) | 0.0075 (12) |
| N2 | 0.0230 (15) | 0.0207 (14) | 0.0190 (15) | −0.0013 (12) | 0.0029 (12) | 0.0071 (12) |
| C1 | 0.0272 (19) | 0.0233 (17) | 0.0171 (17) | 0.0093 (15) | 0.0049 (14) | 0.0150 (14) |
| C2 | 0.0251 (18) | 0.0240 (17) | 0.0215 (18) | 0.0078 (14) | 0.0044 (14) | 0.0084 (14) |
| C3 | 0.0233 (17) | 0.0249 (17) | 0.0159 (17) | 0.0085 (14) | 0.0062 (14) | 0.0082 (14) |
| C4 | 0.0243 (18) | 0.0276 (18) | 0.0171 (18) | 0.0026 (14) | 0.0002 (14) | 0.0039 (14) |
| C5 | 0.0253 (18) | 0.0216 (17) | 0.0189 (18) | −0.0008 (14) | 0.0025 (14) | 0.0061 (14) |
| C6 | 0.0245 (18) | 0.0239 (17) | 0.0153 (17) | 0.0071 (14) | 0.0054 (14) | 0.0063 (14) |
| C7 | 0.0232 (18) | 0.037 (2) | 0.0169 (18) | −0.0013 (15) | −0.0018 (14) | 0.0102 (15) |
| C8 | 0.0216 (18) | 0.0310 (19) | 0.0233 (19) | −0.0038 (15) | 0.0052 (15) | 0.0117 (15) |
| C9 | 0.0272 (18) | 0.0240 (17) | 0.0147 (17) | 0.0075 (15) | 0.0056 (14) | 0.0038 (14) |
| C10 | 0.0236 (18) | 0.0286 (18) | 0.0197 (18) | 0.0052 (15) | 0.0027 (14) | 0.0087 (15) |
| C11 | 0.0317 (19) | 0.0233 (17) | 0.0185 (18) | 0.0088 (15) | 0.0015 (15) | 0.0072 (14) |
| C12 | 0.0244 (18) | 0.0225 (17) | 0.0164 (17) | 0.0001 (14) | 0.0017 (14) | 0.0027 (14) |
| C13 | 0.0221 (18) | 0.0304 (19) | 0.029 (2) | 0.0052 (15) | 0.0039 (15) | 0.0104 (16) |
| C14 | 0.0266 (19) | 0.0282 (19) | 0.0251 (19) | 0.0047 (15) | 0.0011 (15) | 0.0123 (15) |
| C15 | 0.0225 (18) | 0.0299 (19) | 0.0244 (19) | 0.0007 (15) | 0.0023 (15) | 0.0086 (15) |
| C16 | 0.0223 (18) | 0.0215 (17) | 0.0219 (19) | −0.0030 (14) | 0.0027 (14) | 0.0070 (14) |
| C17 | 0.0251 (18) | 0.0213 (17) | 0.0228 (19) | −0.0014 (14) | 0.0035 (14) | 0.0071 (14) |
Geometric parameters (Å, º)
| Cu1—Cu1i | 2.8992 (8) | C5—H5 | 0.9500 |
| Cu1—O1 | 1.969 (2) | C5—C6 | 1.388 (5) |
| Cu1—O2i | 1.968 (2) | C6—C7 | 1.400 (5) |
| Cu1—O3ii | 2.299 (2) | C6—C9 | 1.492 (5) |
| Cu1—O4ii | 1.985 (2) | C7—H7 | 0.9500 |
| Cu1—N1 | 1.979 (3) | C7—C8 | 1.381 (5) |
| Cu1—C9ii | 2.466 (3) | C8—H8 | 0.9500 |
| O1—C1 | 1.252 (4) | C10—H10 | 0.9500 |
| O2—C1 | 1.264 (4) | C10—C11 | 1.375 (5) |
| O3—C9 | 1.244 (4) | C11—H11 | 0.9500 |
| O4—C9 | 1.299 (4) | C11—C12 | 1.392 (5) |
| N1—C10 | 1.343 (4) | C12—C13 | 1.389 (5) |
| N1—C14 | 1.346 (4) | C12—C15 | 1.513 (5) |
| N2—C15 | 1.458 (4) | C13—H13 | 0.9500 |
| N2—C16 | 1.467 (4) | C13—C14 | 1.380 (5) |
| N2—C17 | 1.473 (4) | C14—H14 | 0.9500 |
| C1—C2 | 1.525 (4) | C15—H15A | 0.9900 |
| C2—H2A | 0.9900 | C15—H15B | 0.9900 |
| C2—H2B | 0.9900 | C16—H16A | 0.9900 |
| C2—C3 | 1.514 (5) | C16—H16B | 0.9900 |
| C3—C4 | 1.396 (5) | C16—C17iii | 1.508 (5) |
| C3—C8 | 1.391 (5) | C17—H17A | 0.9900 |
| C4—H4 | 0.9500 | C17—H17B | 0.9900 |
| C4—C5 | 1.378 (5) | ||
| O1—Cu1—O3ii | 101.92 (9) | C8—C7—H7 | 120.1 |
| O1—Cu1—O4ii | 92.30 (10) | C3—C8—H8 | 119.3 |
| O1—Cu1—N1 | 89.47 (11) | C7—C8—C3 | 121.3 (3) |
| O2i—Cu1—O1 | 157.53 (10) | C7—C8—H8 | 119.3 |
| O2i—Cu1—O3ii | 99.04 (9) | O3—C9—Cu1iv | 67.55 (18) |
| O2i—Cu1—O4ii | 90.56 (10) | O3—C9—O4 | 120.8 (3) |
| O2i—Cu1—N1 | 93.02 (11) | O3—C9—C6 | 120.8 (3) |
| O4ii—Cu1—O3ii | 61.65 (9) | O4—C9—Cu1iv | 53.30 (16) |
| N1—Cu1—O3ii | 104.62 (10) | O4—C9—C6 | 118.3 (3) |
| N1—Cu1—O4ii | 166.22 (11) | C6—C9—Cu1iv | 171.6 (3) |
| C1—O1—Cu1 | 125.2 (2) | N1—C10—H10 | 118.7 |
| C1—O2—Cu1i | 122.9 (2) | N1—C10—C11 | 122.6 (3) |
| C9—O3—Cu1iv | 82.5 (2) | C11—C10—H10 | 118.7 |
| C9—O4—Cu1iv | 95.0 (2) | C10—C11—H11 | 119.8 |
| C10—N1—Cu1 | 123.5 (2) | C10—C11—C12 | 120.3 (3) |
| C10—N1—C14 | 117.3 (3) | C12—C11—H11 | 119.8 |
| C14—N1—Cu1 | 118.7 (2) | C11—C12—C15 | 122.9 (3) |
| C15—N2—C16 | 109.1 (3) | C13—C12—C11 | 116.8 (3) |
| C15—N2—C17 | 111.4 (3) | C13—C12—C15 | 120.3 (3) |
| C16—N2—C17 | 108.0 (3) | C12—C13—H13 | 120.1 |
| O1—C1—O2 | 126.7 (3) | C14—C13—C12 | 119.8 (3) |
| O1—C1—C2 | 116.9 (3) | C14—C13—H13 | 120.1 |
| O2—C1—C2 | 116.3 (3) | N1—C14—C13 | 123.0 (3) |
| C1—C2—H2A | 110.3 | N1—C14—H14 | 118.5 |
| C1—C2—H2B | 110.3 | C13—C14—H14 | 118.5 |
| H2A—C2—H2B | 108.6 | N2—C15—C12 | 114.2 (3) |
| C3—C2—C1 | 107.1 (3) | N2—C15—H15A | 108.7 |
| C3—C2—H2A | 110.3 | N2—C15—H15B | 108.7 |
| C3—C2—H2B | 110.3 | C12—C15—H15A | 108.7 |
| C4—C3—C2 | 120.2 (3) | C12—C15—H15B | 108.7 |
| C8—C3—C2 | 121.3 (3) | H15A—C15—H15B | 107.6 |
| C8—C3—C4 | 118.5 (3) | N2—C16—H16A | 109.5 |
| C3—C4—H4 | 119.8 | N2—C16—H16B | 109.5 |
| C5—C4—C3 | 120.3 (3) | N2—C16—C17iii | 110.8 (3) |
| C5—C4—H4 | 119.8 | H16A—C16—H16B | 108.1 |
| C4—C5—H5 | 119.4 | C17iii—C16—H16A | 109.5 |
| C4—C5—C6 | 121.2 (3) | C17iii—C16—H16B | 109.5 |
| C6—C5—H5 | 119.4 | N2—C17—C16iii | 110.2 (3) |
| C5—C6—C7 | 118.8 (3) | N2—C17—H17A | 109.6 |
| C5—C6—C9 | 119.3 (3) | N2—C17—H17B | 109.6 |
| C7—C6—C9 | 121.9 (3) | C16iii—C17—H17A | 109.6 |
| C6—C7—H7 | 120.1 | C16iii—C17—H17B | 109.6 |
| C8—C7—C6 | 119.9 (3) | H17A—C17—H17B | 108.1 |
| Cu1—O1—C1—O2 | −12.1 (5) | C5—C6—C9—O3 | 6.7 (5) |
| Cu1—O1—C1—C2 | 164.4 (2) | C5—C6—C9—O4 | −175.2 (3) |
| Cu1i—O2—C1—O1 | 28.1 (4) | C6—C7—C8—C3 | 0.5 (5) |
| Cu1i—O2—C1—C2 | −148.4 (2) | C7—C6—C9—O3 | −170.6 (3) |
| Cu1iv—O3—C9—O4 | 1.2 (3) | C7—C6—C9—O4 | 7.4 (5) |
| Cu1iv—O3—C9—C6 | 179.2 (3) | C8—C3—C4—C5 | −2.7 (5) |
| Cu1iv—O4—C9—O3 | −1.4 (3) | C9—C6—C7—C8 | 174.8 (3) |
| Cu1iv—O4—C9—C6 | −179.5 (2) | C10—N1—C14—C13 | −3.5 (5) |
| Cu1—N1—C10—C11 | −168.9 (2) | C10—C11—C12—C13 | −2.8 (5) |
| Cu1—N1—C14—C13 | 168.5 (3) | C10—C11—C12—C15 | 177.8 (3) |
| O1—C1—C2—C3 | −84.4 (3) | C11—C12—C13—C14 | 2.0 (5) |
| O2—C1—C2—C3 | 92.4 (3) | C11—C12—C15—N2 | −20.0 (5) |
| N1—C10—C11—C12 | 0.5 (5) | C12—C13—C14—N1 | 1.2 (5) |
| C1—C2—C3—C4 | 79.3 (4) | C13—C12—C15—N2 | 160.6 (3) |
| C1—C2—C3—C8 | −98.3 (4) | C14—N1—C10—C11 | 2.6 (5) |
| C2—C3—C4—C5 | 179.7 (3) | C15—N2—C16—C17iii | −179.7 (3) |
| C2—C3—C8—C7 | 179.7 (3) | C15—N2—C17—C16iii | −178.5 (3) |
| C3—C4—C5—C6 | 0.6 (5) | C15—C12—C13—C14 | −178.7 (3) |
| C4—C3—C8—C7 | 2.1 (5) | C16—N2—C15—C12 | 169.9 (3) |
| C4—C5—C6—C7 | 2.0 (5) | C16—N2—C17—C16iii | −58.8 (4) |
| C4—C5—C6—C9 | −175.4 (3) | C17—N2—C15—C12 | −71.1 (4) |
| C5—C6—C7—C8 | −2.6 (5) | C17—N2—C16—C17iii | 59.2 (4) |
Symmetry codes: (i) −x, −y+1, −z+2; (ii) x, y, z+1; (iii) −x+1, −y+2, −z+1; (iv) x, y, z−1.
Funding Statement
Funding for this research was provided by: Lyman Briggs College, Michigan State University.
References
- Addison, A. W., Rao, T. N., Reedijk, J., van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349–1356.
- Bruker (2009). COSMO. Bruker AXS Inc., Madison, Wisconsin, USA.
- Bruker (2014). SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
- Martin, D. P., Staples, R. J. & LaDuca, R. L. (2008). Inorg. Chem. 47, 9754–9756. [DOI] [PubMed]
- Palmer, D. (2020). CrystalMakerX. Crystal Maker Software, Begbroke, England.
- Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.
- Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.
Associated Data
This section collects any data citations, data availability statements, or supplementary materials included in this article.
Supplementary Materials
Crystal structure: contains datablock(s) I, 1R. DOI: 10.1107/S2414314623007459/wm4195sup1.cif
Structure factors: contains datablock(s) I. DOI: 10.1107/S2414314623007459/wm4195Isup2.hkl
res file. DOI: 10.1107/S2414314623007459/wm4195sup3.txt
CCDC reference: 1976250
Additional supporting information: crystallographic information; 3D view; checkCIF report




