Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2023 Aug 23;79(Pt 9):821–826. doi: 10.1107/S2056989023007004

Crystal structures of the complexes containing macrocyclic cations [M(cyclam)]2+ (M = Ni, Zn) and tetra­iodido­cadmate(2–) anion

Irina L Andriichuk a, Sergiu Shova b, Yaroslaw D Lampeka a,*
Editor: J Ellenac
PMCID: PMC10483555  PMID: 37693660

The isostructural compounds I and II are composed of planar macrocyclic cations [M(cyclam)]2+ and the tetra­hedral anion [CdI4]2−, which plays a purely charge-compensation function in the NiII complex I and is axially coordinated via the iodide atom in the ZnII complex II. In both complexes, as a result of N–H⋯I hydrogen bonding, the alternating cations and anions form chains running along the b-axis direction that are arranged into di-periodic sheets oriented parallel to the (101) and ( Inline graphic 01) planes.

Keywords: crystal structure, nickel, zinc, cyclam, tetra­iodo­cadmate

Abstract

The asymmetric units of the isostructural compounds (1,4,8,11-tetra­aza­cyclo­tetra­decane-κ4 N)nickel(II) tetra­iodido­cadmate(II), [Ni(C10H24N4)][CdI4] (I), and tri­iodido-1κ3 I-μ-iodido-(1,4,8,11-tetra­aza­cyclo­tetra­decane-2κ4 N)cad­mium(II)zinc(II), [CdZnI4(C10H24N4)] (II) (C10H24N4 = 1,4,8,11-tetra­aza­cyclo­tetra­decane, cyclam, L), consist of the centrosymmetric macrocyclic cation [M(L)]2+ [M = NiII or ZnII] with the metal ion lying on a twofold screw axis, and the tetra­iodo­cadmate anion [CdI4]2− located on the mirror plane. In I, the anion acts as an uncoordinated counter-ion while in II it is bound to the ZnII atom via one of the iodide atoms, thus forming an electroneutral heterobimetallic complex [Zn(L)(CdI4)]. The NiII and ZnII ions are coordinated in a square-planar manner by the four secondary N atoms of the macrocyclic ligand L, which adopts the most energetically stable trans-III conformation. The [CdI4]2− anions in I and II are structurally very similar and represent slightly deformed tetra­hedrons with average Cd—I bond lengths and I—Cd—I angles of ca 2.79 Å and 109.6°, respectively. The supra­molecular organization of the complexes under consideration in the crystals is very similar and is determined by the hydrogen-bonding inter­actions between the secondary amino groups of the ligand L in the [M(L)]2+ cations and iodide atoms of the [CdI4]2− anion. In particular, the alternating cations and anions form chains running along the b-axis direction that are arranged into di-periodic sheets oriented parallel to the (101) and ( Inline graphic 01) planes. Because both kinds of sheets are built from the same cations and anions, this feature provides the three-dimensional coherence of the crystals of I and II.

1. Chemical context

Iodo­cadmates are one of the representatives of organic–inorganic hybrid perovskites that have been studied intensively recently. They are characterized by a number of specific electric and optical properties (Rok et al., 2021) that are dependent on the structure of the complex anions [Cd m I n ](n−2m)− which, in turn, is determined by the structure of the organic or metallocomplex cation that is used as a structure-directing agent during the synthesis. Depending on this agent, in addition to the most common mononuclear [CdI4]2– anion, several types of oligonuclear {[Cd2I6]2– (Park et al., 2018), [Cd3I7] (Bao et al., 2013), [Cd4I10]2– (Park et al., 2014), [Cd4I12]4– (Lee et al., 2016), [Cd6I16]4– (Bach et al., 1997)} and polymeric (Dobrzycki & Wózniak, 2009; Sharutin et al., 2012; Rok et al., 2021) iodo­cadmates have been structurally characterized. In some cases, octa­hedral complexes of penta- and hexa­dentate macrocyclic ligands have been used as the structure-directing agents in CdII–iodide systems (Lee et al., 2016; Park et al., 2018). At the same time, square-planar cations formed by the tetra­aza­macrocyclic ligand cyclam (cyclam = 1,4,8,11-tetra­aza­cyclo­tetra­decane, C10H24N4, L), which is the most suitable for binding of 3d transition-metal ions (Yatsimirskii & Lampeka, 1985) were never exploited in this respect, though the fruitfulness of such an approach was shown formerly during the preparation of iodo­plumbate hybrids containing the [Ni(TMC)]2+ cation (TMC = 1,4,8,11-tetra­methyl-1,4,8,11-tetra­aza­cyclo­tetra­deca­ne) (Zhang et al., 2019). 1.

The present work describes the preparation and structural characterization of two representatives of iodo­cadmate hybrids formed under the structure-directing influence of the NiII and ZnII cyclam complexes, namely (1,4,8,11-tetra­aza­cyclo­tetra­decane-κ4 N)nickel(II) tetra­iodido­cadmate(II), [Ni(C10H24N4)][CdI4] (I), and tri­iodido-1κ3 I-μ-iodido-(1,4,8,11-tetra­aza­cyclo­tetra­decane-2κ4 N)cadmium(II)zinc(II), [CdZnI4(C10H24N4)] (II).

2. Structural commentary

The asymmetric units of the isostructural compounds I and II involve the centrosymmetric macrocyclic cation [M(L)]2+ [M = NiII and ZnII, respectively] with the metal ions lying on a twofold screw axis and the tetra­iodo­cadmate anion [CdI4]2−. The latter acts as an uncoordinated counter-ion in I but is coordinated to the ZnII in II, thus forming an electroneutral heterobimetallic complex [Zn(L)(CdI4)] in which the I1 atom plays a μ2-bridging function (Fig. 1). The Cd1, I2 and I3 atoms of the tetra­iodo­cadmate anions in I and II are located on the mirror plane. The [CdI4]2− moieties as a whole represent slightly deformed tetra­hedrons with Cd—I bond lengths and I—Cd—I angles varying in the narrow ranges not exceeding 0.08 Å and 8.2°, respectively (Table 1).

Figure 1.

Figure 1

View of the mol­ecular structures of I and II showing the atom-labeling scheme, with displacement ellipsoids drawn at the 30% probability level. C-bound H atoms are omitted for clarity. Hydrogen-bonding inter­actions are shown as dotted lines. Symmetry codes: (i) −x + 1, −y + 1, −z + 1; (ii) x, −y +  Inline graphic , z.

Table 1. Selected geometric parameters (Å, °).

I   II  
Ni1—N1 1.940 (4) Zn1—N1 2.157 (4)
Ni1—N2 1.943 (4) Zn1—N2 2.169 (4)
    Zn1—N1i 2.027 (4)
    Zn1—N2i 2.053 (4)
    Zn1—I1 2.8957 (11)
Cd1—I1 2.7825 (4) Cd1—I1 2.8208 (5)
Cd1—I2 2.8024 (7) Cd1—I2 2.7756 (8)
Cd1—I3 2.7615 (7) Cd1—I3 2.7442 (7)
       
N1—Ni1—N2i 86.35 (16) N1—Zn1—N2i 83.73 (17)
    N1i—Zn1—N2 83.43 (17)
N1—Ni1—N2 93.65 (16) N1—Zn1—N2 97.02 (18)
    N1i—Zn1—N2i 89.93 (16)
I1—Cd1—I1ii 108.39 (2) I1—Cd1—I1ii 106.04 (2)
I1—Cd1—I2 106.608 (15) I1—Cd1—I2 107.978 (16)
I1—Cd1—I3 111.407 (15) I1—Cd1—I3 110.135 (17)
I2—Cd1—I3 112.16 (2) I2—Cd1—I3 114.22 (3)

Symmetry codes: (i) −x + 1, −y + 1, −z + 1; (ii) x, −y +  Inline graphic , z.

The NiII ion in I is coordinated by the four secondary N atoms of the macrocycle L (Fig. 1 a) and the centrosymmetry of the cation ensures the strict planarity of the Ni(N4) coord­ination environment. The Ni—N bond lengths of ca 1.94 Å (Table 1) are typical of four-coordinated low-spin square-planar d 8 NiII complexes with macrocyclic 14-mem­bered tetra­amine ligands and are much shorter than those (ca 2.05 Å) observed in the high-spin six-coordinated tetra­gonal–bipyramidal macrocyclic species (Yatsimirskii & Lampeka, 1985). The macrocyclic ligand L in the complex cations of I adopts the most common and energetically favorable trans-III (R,R,S,S) conformation (Bosnich et al., 1965a ; Barefield et al., 1986). Its five- and six-membered chelate rings are present in gauche and chair conformations with the bite angles of ca 87 and 93°, respectively (Table 1).

The bifurcating hydrogen-bonding inter­action between the I1 atom of the anion and the secondary amino groups of the macrocyclic ligand of the cation as well as the N1—H1⋯I2 contact (Fig. 1 a, for parameters of the hydrogen bonds see Table 2) in I arrange the [CdI4]2− fragment in such a way that its I1 atom is located just above the Ni(N4) plane in a potential axial position of the coordination sphere of the NiII ion (the deviation of the mean angles N—Ni1—I1 from 90° do not exceed 4°). However, the very long distance between the metal ion and this iodide [3.3618 (3) Å] allows a coordinative inter­action between them to be excluded. This is in agreement with the Ni—N bond lengths typical of the square-planar NiII species (see Database survey).

Table 2. Hydrogen-bond geometry (Å, °) for I .

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯I1 0.91 3.22 3.829 (4) 127
N2—H2⋯I1 0.91 3.15 3.768 (4) 126
N1—H1⋯I2 0.91 3.03 3.742 (4) 137
N2—H2⋯I3i 0.91 3.14 3.881 (4) 140

Symmetry code: (i) Inline graphic .

The mol­ecular structure of II is shown in Fig. 1 b. Similarly to the NiII atom in I, the ZnII ion in the macrocyclic cation is coordinated by the four secondary N atoms of the macrocycle L but is displaced by 0.336 (1) Å from the N4 plane towards the apically coordinated I1 atom. Because the [Zn(L)] unit is centrosymmetric, the metal ion was found to be disordered around a center of inversion and thus was refined with half occupancy.

The weak coordination of the iodide atom in the axial position of the macrocyclic cation (Zn1—I1 bond length ca 2.9 Å, Table 1) is reinforced by the hydrogen-bonding inter­action N1—H1⋯I2 (Table 3) and results in the deformed square-pyramidal coordination environment of the ZnII ion. Though the Zn—I—Cd angle [119.79 (4)°] and the mean Ni⋯I—Cd angle [120.13 (2)°] are practically identical, the displacement of the ZnII ion from the mean N4 plane of the macrocycle and a shorter distance between ZnII and the apical iodide than for NiII leads to the reduction of the M II⋯CdII distance in II as compared to I [5.332 (1) and 4.945 (1) Å, respectively].

Table 3. Hydrogen-bond geometry (Å, °) for II .

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯I2 0.91 2.95 3.714 (4) 142
N2—H2⋯I3i 0.91 3.11 3.871 (4) 143

Symmetry code: (i) Inline graphic .

Similar deformed square-pyramidal coordination polyhedra (in some cases with disordering of the metal ion) have also been observed in several other five-coordinate complexes containing the [Zn(L)X] moiety (X = axial ligand) but were never found in complexes involving the [Ni(L)] fragment (see Database survey). The reasons for such differences have been considered in detail during analysis of the structure of the five-coordinate macrocyclic ZnII complex with X = tetra­thio­anti­monato axial ligand and were explained mainly by preferable ligand field stabilization energy for the d 8 NiII electronic configuration as compared that for d 10 ZnII (Näther et al., 2022).

In general, the structure of the coordination polyhedron of the ZnII ion in II has much in common with that discussed recently in detail for the [Zn(L)I]I3 complex (Gavrish et al., 2021). In both compounds, the macrocyclic ligand L adopts the energetically favorable trans-III R,R,S,S) conformation (Bosnich et al., 1965a ; Barefield et al., 1986), though with some peculiarities connected with the displacement of the ZnII ion from the mean N4 plane of the macrocycle donor atoms toward the coordinated iodide ion [0.336 (1) Å in II and 0.381 Å in triiodide complex]. In particular, the five-membered rings in II adopt gauche–envelope conformations with very similar bite angles [average value ca 83.5° (Table 1)]. The six-membered chelate rings in II are present in a chair conformation and differ from each other more significantly, both from the point of view of the Zn—N bond lengths and bite angles. So, the chelate ring in which the hydrogen atoms of the secondary amino groups have the same orientation as the displacement of the metal ion is characterized by smaller values of the Zn—N coordination bond lengths (average value 2.041 Å) and bite angle (ca 90°) as compared to the ring with the opposite orientation of the hydrogen atoms (average value 2.163 Å and ca 97°, respectively; Table 1). Similarly to [Zn(L)I]I3, a flattening of the former six-membered chelate ring at the Zn side is observed.

It should also be mentioned that the Zn—I1 distance to the symmetry-related I1(−x + 1, −y + 1, −z + 1) atom on the other side of the N4 plane is 3.579 (1) Å and this value seems to be too long for it to be considered as a coordination bond. This means that each component of the disordered ZnII ion is truly five-coordinate. Therefore, the connectivity within the crystal is not uniquely defined and, in principle, the [CdI4]2− anions can inter­act either with one or two [Zn(L)]2+ cations (Fig. 2).

Figure 2.

Figure 2

View of the two possible coordination modes of the [CdI4]2− anion in II. Symmetry code: (i) x, −y +  Inline graphic , z.

3. Supra­molecular features

The N1—H⋯I2 inter­actions in both I and II together with either N1—H/N2—H⋯I1 hydrogen-bonding in I or Zn—I1 coordination in II determine close similarity in the mutual spatial arrangements of the cation and anion in both compounds (Fig. 1). As expected, the supra­molecular organization of the complexes under consideration is also very similar and is determined by the hydrogen-bonding inter­actions between the secondary amino groups of the ligand L in the [M(L)]2+ cations as the proton donors and I2 and I3 atoms of the [CdI4]2− anions as the proton acceptors (Tables 2 and 3). Therefore, only complex I will be used for further illustration.

As a result of the hydrogen bonds N1—H⋯I2 and N2—H⋯I3, each macrocyclic cation [M(L)]2+ in I and II is surrounded by four [CdI4]2− anions (Fig. 3 a). In turn, each of these iodide atoms forms two bonds with different macrocyclic cations, thus resulting in binding of four cations by a single anion (Fig. 3 b).

Figure 3.

Figure 3

Nearest surrounding of the macrocyclic cation (a) and the anion (b) in I formed by N—H⋯I hydrogen bonding (black dashed lines). Symmetry codes: (i) −x + 1, −y + 1, −z + 1; (ii) x +  Inline graphic , −y +  Inline graphic , −z +  Inline graphic ; (iii) −x + 1, y −  Inline graphic , −z + 1; (iv) −x +  Inline graphic , −y + 1, z −  Inline graphic ; (v) x, −y +  Inline graphic , z; (vi) −x + 1, y +  Inline graphic , −z + 1; (vii) x −  Inline graphic , −y +  Inline graphic , −z +  Inline graphic ; (viii) −x +  Inline graphic , −y + 1, z +  Inline graphic ; (ix) x −  Inline graphic , y, −z +  Inline graphic .

In the crystal, the alternating cations and anions form chains running along the b-axis direction that are arranged in two-dimensional sheets oriented parallel to the (101) and ( Inline graphic 01) planes (Fig. 4). Since these sheets are built from the same cations and anions, this feature provides the three-dimensional coherence of crystals I and II.

Figure 4.

Figure 4

Fragment of the two-dimensional sheet in I parallel to the (101) plane as viewed along the c axis. Iodide atoms involved in the formation of sheets parallel to the ( Inline graphic 01) plane are shown in red. Hydrogen-bonding inter­actions are shown as dotted lines.

4. Database survey

A search of the Cambridge Structural Database (CSD, version 5.44; Groom et al., 2016) indicated that more than 20 compounds containing low-spin square-planar [Ni(L)]2+ cation have been characterized crystallographically. For all of them, relatively short Ni—N bond lengths in the equatorial planes typically not exceeding 1.97 Å and the absence of potential donor atoms in the axial positions of the NiII ion at distances shorter than 3.2 Å are inherent. Among them, several complexes containing a non-coordinated iodide anion as the counter-ion have also been described [CAFHUM (Prasad & McAuley, 1983); JIZTUH (Adam et al., 1991); JIZTUH01–JIZTUH08 (Horii et al., 2020)]. In general, the structural parameters of these compounds, in particular, the equatorial Ni—N bond lengths (1.93–1.96 Å) and Ni⋯I distances in the axial directions (3.29–3.34 Å) are very similar to those observed in I. Inter­estingly, there are two complexes formed by the [Ni(L)]2+ cation and tetra­hedral chloro­metalate anions [MCl4]2− with M = ZnII (FAGWAL; Barefield et al., 1986) and NiII (QASKOO; Heinemann et al., 2022) that also demonstrate rather weak (if any) inter­action of the [Ni(L)]2+ cation with the halide [the Ni—Cl distances are 2.835 (average) and 3.305 Å, respectively].

In eight of the more than forty compounds containing the [Zn(L)]2+ cation that are present in the CSD, the ZnII ion is five-coordinated in a square-pyramidal manner with different axial ligands including hexa­cyano­ferrate(III) (NEPYUC; Colacio et al., 2001), thiol­ate (ICUFES and ICUFIW; Notni et al., 2006), thio­anti­monate [GALPUI (Danker et al., 2021) and KECVIB (Näther et al., 2022)] as well as iodide [HEGNOW (Porai-Koshits et al., 1994); JALBIL and JALBOR (Gavrish et al., 2021)]. In all these five-coordinate complexes, the ZnII atom is displaced from the mean N4 plane of the donor atoms of the macrocycle toward the axial ligand. Additionally, in some compounds (GALPUI, KECVIB and JALBOR), similar to II, some kind of disorder of the metal ion is also present. The Zn—I axial bond lengths of 2.66–2.77 Å observed in the iodide complexes are shorter than that found in II [2.8957 (11) Å].

A search of the CSD gives more than 90 hits related to the structural characterization of compounds containing the [CdI4]2− anion. Like I, the majority of them are ionic species in which the charge of the anion is compensated by organic (ca 60 hits) or metalocomplex (ca 30 hits) cations. Besides, similarly to II, in three compounds that include the complex cations formed by CdII [ITAFAL (Satapathi et al., 2011) and MATKUO (Seitz et al., 2005)] or CuII (NEZXAS; Yu et al., 2007), the tetra­iodo­cadmate anion displays the μ2-bridging function with the M—I coordination bonds shorter than 3.0 Å (ca 2.83, 2.97 and 2.76 Å, respectively). In general, regardless the nature of the cation and whether the [CdI4]2− moiety is coordinated to the M II ion, it demonstrates a slightly distorted tetra­hedral shape similar to that observed in I and II.

5. Synthesis and crystallization

All chemicals and solvents used in this work were purchased from Sigma–Aldrich and were used without further purification. The complex [Ni(L)](ClO4)2 was prepared from ethanol solutions as described in the literature (Bosnich et al., 1965b ). The complex [Zn(L)](ClO4)2 was prepared analogously by mixing of equimolar amounts of L and zinc perchlorate hexa­hydrate in ethanol.

[Ni(L)(CdI4)], I, was prepared as follows. [Ni(L)](ClO4)2 (50 mg, 0.11 mmol) was dissolved in 60 ml of an EtOH/H2O/DMF mixture (7:3:20 by volume). CdI2 (40 mg, 0.11 mmol) and KI (36 mg, 0.22 mmol) dissolved in 20 ml of an EtOH/H2O mixture (1:9 by volume) were added dropwise to this solution. Brown crystals formed in several days, were filtered off, washed with ethanol and dried in air. Yield: 22 mg (23%). Single crystals of I suitable for X-ray diffraction analysis were selected from the sample resulting from the synthesis.

Alternatively, complex I can be obtained using the chloride salt of CdII. To 50 ml of an aqueous solution of CdCl2 (20 mg, 0.11 mmol) were added 0.4 ml of 57% aqueous HI and this mixture was added dropwise to a solution of [Ni(L)](ClO4)2 (50 mg, 0.11 mmol) in 40 ml of an EtOH/H2O mixture (3:1 by volume). Brown crystals formed in 5 days, were filtered off, washed with ethanol and dried in air. Yield: 35 mg (36%). Analysis calculated for C10H24CdI4N4Ni: C 13.66, H 2.75, N 6.37%. Found: C 13.78, H 2.60, N 6.42%.

[Zn(L)(CdI4)], II, was prepared similarly to I. [Zn(L)](ClO4)2 (52 mg, 0.11 mmol) was dissolved in 32 ml of an EtOH/H2O mixture (7:1 by volume). CdI2 (24 mg, 0.07 mmol) and KI (20 mg, 0.13 mmol) dissolved in 12 ml of an EtOH/H2O mixture (1:9 by volume) were added dropwise to this solution. Colorless crystals formed in several days, were filtered off, washed with ethanol and dried in air. Yield: 26 mg (46%). Analysis calculated for C10H24CdI4N4Zn: C 13.56, H 2.73, N 6.33%. Found: C 13.69, H 2.80, N 6.39%. Single crystals of II suitable for X-ray diffraction analysis were selected from the sample resulting from the synthesis.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 4. H atoms in I and II were placed in geometrically idealized positions and constrained to ride on their parent atoms, with C—H distances of methyl­ene H atoms of 0.97 Å (in I) or 0.99 Å (in II) and N—H distance of 0.91 Å with U iso(H) values of 1.2 U eq of the parent atoms.

Table 4. Experimental details.

  I II
Crystal data
Chemical formula [Ni(C10H24N4)][CdI4] [CdZnI4(C10H24N4)]
M r 879.04 885.70
Crystal system, space group Orthorhombic, P n m a Orthorhombic, P n m a
Temperature (K) 200 293
a, b, c (Å) 15.4317 (3), 17.2945 (3), 7.98733 (15) 15.6013 (3), 17.2644 (3), 8.1099 (2)
V3) 2131.69 (7) 2184.38 (8)
Z 4 4
Radiation type Mo Kα Mo Kα
μ (mm−1) 7.67 7.72
Crystal size (mm) 0.1 × 0.05 × 0.03 0.15 × 0.1 × 0.1
 
Data collection
Diffractometer Rigaku Xcalibur Eos Rigaku Xcalibur Eos
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2022) Multi-scan (CrysAlis PRO; Rigaku OD, 2022)
T min, T max 0.573, 1.000 0.426, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 16993, 2644, 2204 9158, 2582, 2096
R int 0.044 0.031
(sin θ/λ)max−1) 0.667 0.666
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.031, 0.064, 1.06 0.032, 0.065, 1.04
No. of reflections 2644 2582
No. of parameters 97 100
H-atom treatment H-atom parameters constrained H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 2.57, −1.23 1.36, −0.94

Computer programs: CrysAlis PRO (Rigaku OD, 2022), SHELXT (Sheldrick, 2015a ), SHELXL2018/3 (Sheldrick, 2015b ), Mercury (Macrae et al., 2020) and publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) I, II. DOI: 10.1107/S2056989023007004/ex2074sup1.cif

e-79-00821-sup1.cif (953.4KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989023007004/ex2074Isup2.hkl

e-79-00821-Isup2.hkl (145.4KB, hkl)

Structure factors: contains datablock(s) II. DOI: 10.1107/S2056989023007004/ex2074IIsup3.hkl

e-79-00821-IIsup3.hkl (142KB, hkl)

CCDC references: 2281090, 2281091

Additional supporting information: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

(1,4,8,11-Tetraazacyclotetradecane-κ4N)nickel(II) tetraiodidocadmate(II) (I) . Crystal data

[Ni(C10H24N4)][CdI4] Dx = 2.739 Mg m3
Mr = 879.04 Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, Pnma Cell parameters from 5956 reflections
a = 15.4317 (3) Å θ = 2.4–28.8°
b = 17.2945 (3) Å µ = 7.67 mm1
c = 7.98733 (15) Å T = 200 K
V = 2131.69 (7) Å3 Prism, clear dark orange
Z = 4 0.1 × 0.05 × 0.03 mm
F(000) = 1600

(1,4,8,11-Tetraazacyclotetradecane-κ4N)nickel(II) tetraiodidocadmate(II) (I) . Data collection

Rigaku Xcalibur Eos diffractometer 2644 independent reflections
Radiation source: fine-focus sealed X-ray tube, Enhance (Mo) X-ray Source 2204 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.044
Detector resolution: 16.1593 pixels mm-1 θmax = 28.3°, θmin = 2.4°
ω scans h = −19→19
Absorption correction: multi-scan (CrysAlisPro; Rigaku OD, 2022) k = −23→23
Tmin = 0.573, Tmax = 1.000 l = −10→10
16993 measured reflections

(1,4,8,11-Tetraazacyclotetradecane-κ4N)nickel(II) tetraiodidocadmate(II) (I) . Refinement

Refinement on F2 Primary atom site location: dual
Least-squares matrix: full Hydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.031 H-atom parameters constrained
wR(F2) = 0.064 w = 1/[σ2(Fo2) + (0.0237P)2 + 2.5375P] where P = (Fo2 + 2Fc2)/3
S = 1.06 (Δ/σ)max = 0.001
2644 reflections Δρmax = 2.57 e Å3
97 parameters Δρmin = −1.23 e Å3
0 restraints

(1,4,8,11-Tetraazacyclotetradecane-κ4N)nickel(II) tetraiodidocadmate(II) (I) . Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

(1,4,8,11-Tetraazacyclotetradecane-κ4N)nickel(II) tetraiodidocadmate(II) (I) . Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
I1 0.38762 (2) 0.61952 (2) 0.75107 (4) 0.02581 (10)
I3 0.13165 (3) 0.750000 0.68459 (7) 0.03244 (13)
I2 0.34261 (3) 0.750000 0.27469 (6) 0.02831 (12)
Cd1 0.30734 (3) 0.750000 0.61887 (7) 0.02466 (13)
Ni1 0.500000 0.500000 0.500000 0.01715 (18)
N2 0.6010 (2) 0.5611 (2) 0.5599 (5) 0.0224 (8)
H2 0.577167 0.604133 0.607128 0.027*
N1 0.4693 (2) 0.5664 (2) 0.3133 (5) 0.0219 (8)
H1 0.448687 0.609197 0.366795 0.026*
C2 0.6554 (3) 0.5152 (3) 0.6750 (7) 0.0325 (12)
H2A 0.694792 0.549462 0.738857 0.039*
H2B 0.690905 0.477600 0.611403 0.039*
C1 0.4050 (3) 0.5265 (3) 0.2080 (7) 0.0335 (12)
H1A 0.434068 0.489215 0.132448 0.040*
H1B 0.372638 0.564247 0.139112 0.040*
C5 0.6550 (3) 0.5965 (3) 0.4269 (7) 0.0316 (12)
H5A 0.682907 0.555079 0.360435 0.038*
H5B 0.701410 0.627786 0.479260 0.038*
C4 0.6021 (4) 0.6473 (3) 0.3119 (7) 0.0366 (13)
H4A 0.641638 0.675793 0.236207 0.044*
H4B 0.570150 0.685815 0.379726 0.044*
C3 0.5377 (3) 0.6012 (3) 0.2072 (6) 0.0294 (11)
H3A 0.510613 0.635643 0.123246 0.035*
H3B 0.568819 0.559713 0.146499 0.035*

(1,4,8,11-Tetraazacyclotetradecane-κ4N)nickel(II) tetraiodidocadmate(II) (I) . Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
I1 0.02646 (18) 0.02180 (17) 0.0292 (2) 0.00438 (12) 0.00288 (13) 0.00314 (13)
I3 0.0221 (2) 0.0352 (3) 0.0400 (3) 0.000 0.0040 (2) 0.000
I2 0.0290 (3) 0.0274 (2) 0.0285 (3) 0.000 −0.0001 (2) 0.000
Cd1 0.0227 (3) 0.0198 (2) 0.0315 (3) 0.000 0.0013 (2) 0.000
Ni1 0.0171 (4) 0.0164 (4) 0.0179 (4) −0.0020 (3) −0.0014 (3) 0.0013 (3)
N2 0.018 (2) 0.021 (2) 0.029 (2) −0.0005 (15) 0.0024 (17) −0.0012 (17)
N1 0.026 (2) 0.0195 (19) 0.020 (2) 0.0035 (16) −0.0001 (17) −0.0008 (16)
C2 0.025 (3) 0.040 (3) 0.033 (3) −0.003 (2) −0.010 (2) −0.003 (2)
C1 0.032 (3) 0.039 (3) 0.029 (3) 0.003 (2) −0.010 (2) 0.003 (2)
C5 0.023 (3) 0.029 (3) 0.042 (3) −0.011 (2) 0.001 (2) 0.000 (2)
C4 0.043 (3) 0.022 (3) 0.045 (3) −0.006 (2) 0.012 (3) 0.004 (2)
C3 0.032 (3) 0.026 (3) 0.030 (3) −0.001 (2) 0.008 (2) 0.007 (2)

(1,4,8,11-Tetraazacyclotetradecane-κ4N)nickel(II) tetraiodidocadmate(II) (I) . Geometric parameters (Å, º)

I1—Cd1 2.7825 (4) C2—H2A 0.9900
I1—Ni1 3.3618 (3) C2—H2B 0.9900
I3—Cd1 2.7615 (7) C2—C1i 1.504 (7)
I2—Cd1 2.8024 (7) C1—H1A 0.9900
Ni1—N2 1.943 (4) C1—H1B 0.9900
Ni1—N2i 1.943 (4) C5—H5A 0.9900
Ni1—N1i 1.940 (4) C5—H5B 0.9900
Ni1—N1 1.940 (4) C5—C4 1.511 (7)
N2—H2 0.9124 C4—H4A 0.9900
N2—C2 1.477 (6) C4—H4B 0.9900
N2—C5 1.483 (6) C4—C3 1.524 (7)
N1—H1 0.9125 C3—H3A 0.9900
N1—C1 1.472 (6) C3—H3B 0.9900
N1—C3 1.481 (6)
Cd1—I1—Ni1 120.129 (15) N2—C2—H2B 110.3
I1ii—Cd1—I1 108.39 (2) N2—C2—C1i 106.9 (4)
I1ii—Cd1—I2 106.608 (15) H2A—C2—H2B 108.6
I1—Cd1—I2 106.608 (15) C1i—C2—H2A 110.3
I3—Cd1—I1 111.407 (15) C1i—C2—H2B 110.3
I3—Cd1—I1ii 111.407 (15) N1—C1—C2i 106.7 (4)
I3—Cd1—I2 112.16 (2) N1—C1—H1A 110.4
N2—Ni1—I1 86.14 (11) N1—C1—H1B 110.4
N2i—Ni1—I1 93.86 (11) C2i—C1—H1A 110.4
N2i—Ni1—N2 180.0 C2i—C1—H1B 110.4
N1i—Ni1—I1 91.78 (11) H1A—C1—H1B 108.6
N1—Ni1—I1 88.22 (11) N2—C5—H5A 109.2
N1—Ni1—N2i 86.35 (16) N2—C5—H5B 109.2
N1i—Ni1—N2i 93.65 (16) N2—C5—C4 111.9 (4)
N1i—Ni1—N2 86.35 (16) H5A—C5—H5B 107.9
N1—Ni1—N2 93.65 (16) C4—C5—H5A 109.2
N1i—Ni1—N1 180.0 C4—C5—H5B 109.2
Ni1—N2—H2 102.8 C5—C4—H4A 109.1
C2—N2—Ni1 108.5 (3) C5—C4—H4B 109.1
C2—N2—H2 114.3 C5—C4—C3 112.4 (4)
C2—N2—C5 110.4 (4) H4A—C4—H4B 107.9
C5—N2—Ni1 119.9 (3) C3—C4—H4A 109.1
C5—N2—H2 100.7 C3—C4—H4B 109.1
Ni1—N1—H1 101.9 N1—C3—C4 111.3 (4)
C1—N1—Ni1 109.0 (3) N1—C3—H3A 109.4
C1—N1—H1 114.4 N1—C3—H3B 109.4
C1—N1—C3 110.1 (4) C4—C3—H3A 109.4
C3—N1—Ni1 120.4 (3) C4—C3—H3B 109.4
C3—N1—H1 100.7 H3A—C3—H3B 108.0
N2—C2—H2A 110.3
Ni1—N2—C2—C1i −39.7 (5) C2—N2—C5—C4 −177.0 (4)
Ni1—N2—C5—C4 55.7 (5) C1—N1—C3—C4 176.4 (4)
Ni1—N1—C1—C2i 39.1 (5) C5—N2—C2—C1i −173.1 (4)
Ni1—N1—C3—C4 −55.5 (5) C5—C4—C3—N1 66.9 (5)
N2—C5—C4—C3 −67.2 (6) C3—N1—C1—C2i 173.2 (4)

Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) x, −y+3/2, z.

(1,4,8,11-Tetraazacyclotetradecane-κ4N)nickel(II) tetraiodidocadmate(II) (I) . Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N1—H1···I1 0.91 3.22 3.829 (4) 127
N2—H2···I1 0.91 3.15 3.768 (4) 126
N1—H1···I2 0.91 3.03 3.742 (4) 137
N2—H2···I3iii 0.91 3.14 3.881 (4) 140

Symmetry code: (iii) x+1/2, y, −z+3/2.

Triiodido-1κ3I-µ-iodido-(1,4,8,11-tetraazacyclotetradecane-2κ4N)cadmium(II)zinc(II) (II) . Crystal data

[CdZnI4(C10H24N4)] Dx = 2.693 Mg m3
Mr = 885.70 Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, Pnma Cell parameters from 3723 reflections
a = 15.6013 (3) Å θ = 2.4–28.5°
b = 17.2644 (3) Å µ = 7.72 mm1
c = 8.1099 (2) Å T = 293 K
V = 2184.38 (8) Å3 Prism, clear light colourless
Z = 4 0.15 × 0.1 × 0.1 mm
F(000) = 1608

Triiodido-1κ3I-µ-iodido-(1,4,8,11-tetraazacyclotetradecane-2κ4N)cadmium(II)zinc(II) (II) . Data collection

Rigaku Xcalibur Eos diffractometer 2582 independent reflections
Radiation source: fine-focus sealed X-ray tube, Enhance (Mo) X-ray Source 2096 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.031
Detector resolution: 16.1593 pixels mm-1 θmax = 28.3°, θmin = 2.4°
ω scans h = −20→18
Absorption correction: multi-scan (CrysAlisPro; Rigaku OD, 2022) k = −20→21
Tmin = 0.426, Tmax = 1.000 l = −10→9
9158 measured reflections

Triiodido-1κ3I-µ-iodido-(1,4,8,11-tetraazacyclotetradecane-2κ4N)cadmium(II)zinc(II) (II) . Refinement

Refinement on F2 Primary atom site location: dual
Least-squares matrix: full Hydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.032 H-atom parameters constrained
wR(F2) = 0.065 w = 1/[σ2(Fo2) + (0.0226P)2 + 2.0518P] where P = (Fo2 + 2Fc2)/3
S = 1.04 (Δ/σ)max = 0.001
2582 reflections Δρmax = 1.36 e Å3
100 parameters Δρmin = −0.94 e Å3
0 restraints

Triiodido-1κ3I-µ-iodido-(1,4,8,11-tetraazacyclotetradecane-2κ4N)cadmium(II)zinc(II) (II) . Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Triiodido-1κ3I-µ-iodido-(1,4,8,11-tetraazacyclotetradecane-2κ4N)cadmium(II)zinc(II) (II) . Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
I1 0.60630 (2) 0.61948 (2) 0.72972 (4) 0.04273 (11)
I2 0.65629 (3) 0.750000 0.25522 (7) 0.04439 (14)
I3 0.85889 (3) 0.750000 0.67325 (8) 0.04858 (15)
Cd1 0.68815 (3) 0.750000 0.59194 (7) 0.04059 (15)
Zn1 0.50999 (12) 0.51552 (8) 0.5195 (2) 0.0325 (4) 0.5
N1 0.5302 (3) 0.5688 (2) 0.3001 (5) 0.0365 (10)
H1 0.553580 0.612411 0.344223 0.044*
N2 0.3925 (2) 0.5640 (2) 0.5681 (5) 0.0382 (10)
H2 0.413021 0.607917 0.616123 0.046*
C1 0.5928 (4) 0.5255 (3) 0.2012 (6) 0.0472 (14)
H1A 0.623595 0.560764 0.129340 0.057*
H1B 0.563348 0.487810 0.132915 0.057*
C2 0.3449 (3) 0.5153 (3) 0.6856 (8) 0.0504 (15)
H2A 0.310992 0.477403 0.626059 0.060*
H2B 0.306174 0.547248 0.750024 0.060*
C3 0.4573 (3) 0.5993 (3) 0.2050 (6) 0.0437 (13)
H3A 0.427594 0.556651 0.152125 0.052*
H3B 0.478559 0.633453 0.119263 0.052*
C4 0.3943 (4) 0.6438 (3) 0.3148 (8) 0.0552 (16)
H4A 0.426472 0.681033 0.379528 0.066*
H4B 0.355727 0.672860 0.244098 0.066*
C5 0.3405 (3) 0.5950 (3) 0.4320 (7) 0.0477 (14)
H5A 0.294530 0.626459 0.476734 0.057*
H5B 0.314889 0.552420 0.371555 0.057*

Triiodido-1κ3I-µ-iodido-(1,4,8,11-tetraazacyclotetradecane-2κ4N)cadmium(II)zinc(II) (II) . Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
I1 0.0457 (2) 0.03772 (19) 0.0448 (2) −0.01092 (14) −0.00578 (17) 0.00554 (15)
I2 0.0440 (3) 0.0406 (3) 0.0485 (3) 0.000 0.0018 (2) 0.000
I3 0.0348 (3) 0.0515 (3) 0.0595 (4) 0.000 −0.0069 (3) 0.000
Cd1 0.0354 (3) 0.0320 (3) 0.0543 (4) 0.000 −0.0033 (3) 0.000
Zn1 0.0297 (9) 0.0377 (11) 0.0302 (9) 0.0088 (7) 0.0030 (7) 0.0069 (7)
N1 0.043 (2) 0.034 (2) 0.032 (2) −0.0040 (18) −0.004 (2) 0.0008 (17)
N2 0.032 (2) 0.036 (2) 0.046 (3) 0.0004 (17) −0.002 (2) −0.0030 (19)
C1 0.054 (3) 0.053 (3) 0.035 (3) −0.011 (3) 0.017 (3) −0.002 (2)
C2 0.035 (3) 0.050 (3) 0.066 (4) 0.000 (2) 0.016 (3) −0.005 (3)
C3 0.053 (3) 0.040 (3) 0.038 (3) −0.003 (2) −0.010 (3) 0.010 (2)
C4 0.062 (4) 0.038 (3) 0.066 (4) 0.011 (3) −0.027 (3) 0.007 (3)
C5 0.034 (3) 0.045 (3) 0.064 (4) 0.009 (2) −0.005 (3) −0.003 (3)

Triiodido-1κ3I-µ-iodido-(1,4,8,11-tetraazacyclotetradecane-2κ4N)cadmium(II)zinc(II) (II) . Geometric parameters (Å, º)

I1—Cd1 2.8208 (5) C1—H1A 0.9700
I1—Zn1 2.8957 (11) C1—H1B 0.9700
I2—Cd1 2.7756 (8) C1—C2i 1.512 (8)
I3—Cd1 2.7442 (7) C2—H2A 0.9700
Zn1—N1 2.027 (4) C2—H2B 0.9700
Zn1—N1i 2.157 (4) C3—H3A 0.9700
Zn1—N2i 2.169 (4) C3—H3B 0.9700
Zn1—N2 2.053 (4) C3—C4 1.534 (8)
N1—H1 0.9100 C4—H4A 0.9700
N1—C1 1.468 (6) C4—H4B 0.9700
N1—C3 1.471 (6) C4—C5 1.522 (8)
N2—H2 0.9101 C5—H5A 0.9700
N2—C2 1.472 (6) C5—H5B 0.9700
N2—C5 1.470 (6)
Cd1—I1—Zn1 119.79 (4) C5—N2—Zn1i 111.8 (3)
I1—Cd1—I1ii 106.04 (2) C5—N2—H2 102.3
I2—Cd1—I1 107.978 (16) C5—N2—C2 114.5 (4)
I2—Cd1—I1ii 107.978 (16) N1—C1—H1A 109.8
I3—Cd1—I1ii 110.135 (17) N1—C1—H1B 109.8
I3—Cd1—I1 110.135 (17) N1—C1—C2i 109.5 (4)
I3—Cd1—I2 114.22 (3) H1A—C1—H1B 108.2
N1i—Zn1—I1 99.78 (12) C2i—C1—H1A 109.8
N1—Zn1—I1 98.91 (12) C2i—C1—H1B 109.8
N1—Zn1—N1i 161.17 (7) N2—C2—C1i 109.5 (4)
N1—Zn1—N2i 83.73 (17) N2—C2—H2A 109.8
N1i—Zn1—N2i 89.93 (16) N2—C2—H2B 109.8
N1—Zn1—N2 97.02 (18) C1i—C2—H2A 109.8
N2—Zn1—I1 95.59 (12) C1i—C2—H2B 109.8
N2i—Zn1—I1 102.79 (12) H2A—C2—H2B 108.2
N2—Zn1—N1i 83.43 (17) N1—C3—H3A 109.3
N2—Zn1—N2i 161.28 (6) N1—C3—H3B 109.3
Zn1—N1—Zn1i 18.83 (7) N1—C3—C4 111.8 (4)
Zn1i—N1—H1 114.1 H3A—C3—H3B 107.9
Zn1—N1—H1 95.3 C4—C3—H3A 109.3
C1—N1—Zn1i 102.7 (3) C4—C3—H3B 109.3
C1—N1—Zn1 110.6 (3) C3—C4—H4A 108.3
C1—N1—H1 111.7 C3—C4—H4B 108.3
C1—N1—C3 114.2 (4) H4A—C4—H4B 107.4
C3—N1—Zn1i 111.9 (3) C5—C4—C3 116.0 (4)
C3—N1—Zn1 120.2 (3) C5—C4—H4A 108.3
C3—N1—H1 102.7 C5—C4—H4B 108.3
Zn1—N2—Zn1i 18.72 (6) N2—C5—C4 111.5 (4)
Zn1i—N2—H2 114.9 N2—C5—H5A 109.3
Zn1—N2—H2 96.2 N2—C5—H5B 109.3
C2—N2—Zn1i 101.8 (3) C4—C5—H5A 109.3
C2—N2—Zn1 110.0 (3) C4—C5—H5B 109.3
C2—N2—H2 112.1 H5A—C5—H5B 108.0
C5—N2—Zn1 119.8 (3)
Zn1—N1—C1—C2i −30.3 (5) Zn1—N2—C5—C4 −45.3 (5)
Zn1i—N1—C1—C2i −48.2 (4) N1—C3—C4—C5 −71.7 (6)
Zn1i—N1—C3—C4 63.8 (5) C1—N1—C3—C4 180.0 (4)
Zn1—N1—C3—C4 45.0 (5) C2—N2—C5—C4 −179.3 (4)
Zn1i—N2—C2—C1i 48.1 (5) C3—N1—C1—C2i −169.5 (4)
Zn1—N2—C2—C1i 30.6 (5) C3—C4—C5—N2 71.8 (6)
Zn1i—N2—C5—C4 −64.2 (5) C5—N2—C2—C1i 168.9 (4)

Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) x, −y+3/2, z.

Triiodido-1κ3I-µ-iodido-(1,4,8,11-tetraazacyclotetradecane-2κ4N)cadmium(II)zinc(II) (II) . Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N1—H1···I2 0.91 2.95 3.714 (4) 142
N2—H2···I3iii 0.91 3.11 3.871 (4) 143

Symmetry code: (iii) x−1/2, y, −z+3/2.

References

  1. Adam, K. R., Antolovich, M., Brigden, L. G., Leong, A. J., Lindoy, L. F., Baillie, P. J., Uppal, D. K., McPartlin, M., Shah, B., Proserpio, D., Fabbrizzi, L. & Tasker, P. A. (1991). J. Chem. Soc. Dalton Trans. pp. 2493–2501.
  2. Bach, A., Hoyer, M. & Hartl, H. (1997). Z. Naturforsch. B: Chem. Sci. 52, 1497–1500.
  3. Bao, X., Liu, W., Liu, J.-L., Gómez-Coca, S., Ruiz, E. & Tong, M.-L. (2013). Inorg. Chem. 52, 1099–1107. [DOI] [PubMed]
  4. Barefield, E. K., Bianchi, A., Billo, E. J., Connolly, P. J., Paoletti, P., Summers, J. S. & Van Derveer, D. G. (1986). Inorg. Chem. 25, 4197–4202.
  5. Bosnich, B., Poon, C. K. & Tobe, M. L. (1965a). Inorg. Chem. 4, 1102–1108.
  6. Bosnich, B., Tobe, M. L. & Webb, G. A. (1965b). Inorg. Chem. 4, 1109–1112.
  7. Colacio, E., Ghazi, M., Stoeckli-Evans, H., Lloret, F., Moreno, J. M. & Pérez, C. (2001). Inorg. Chem. 40, 4876–4883. [DOI] [PubMed]
  8. Danker, F., Engesser, T. A., Broich, D., Näther, C. & Bensch, W. (2021). Dalton Trans. 50, 18107–18117. [DOI] [PubMed]
  9. Dobrzycki, L. & Woźniak, K. (2009). J. Mol. Struct. 921, 18–33.
  10. Gavrish, S. P., Shova, S. & Lampeka, Y. D. (2021). Acta Cryst. E77, 1185–1189. [DOI] [PMC free article] [PubMed]
  11. Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
  12. Heinemann, F. W., Schickaneder, C. & Alsfasser, R. (2022). CSD Communication (refcode QASKOO). CCDC, Cambridge, England.
  13. Horii, Y., Kanegae, Y., Takahashi, K., Fuyuhiro, A., Noguchi, M., Suzuki, H. & Nakano, M. (2020). Inorg. Chem. 59, 5418–5423. [DOI] [PubMed]
  14. Lee, H.-H., Lee, E., Ju, H., Kim, S., Park, I.-H. & Lee, S. S. (2016). Inorg. Chem. 55, 2634–2640. [DOI] [PubMed]
  15. Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235. [DOI] [PMC free article] [PubMed]
  16. Näther, C., Danker, F. & Bensch, W. (2022). Acta Cryst. E78, 490–495. [DOI] [PMC free article] [PubMed]
  17. Notni, J., Gorls, H. & Anders, E. (2006). Eur. J. Inorg. Chem. pp. 1444–1455.
  18. Park, I.-H., Kang, Y., Lee, E., Ju, H., Kim, S., Seo, S., Jung, J. H. & Lee, S. S. (2018). IUCrJ, 5, 45–53. [DOI] [PMC free article] [PubMed]
  19. Park, I.-H., Kim, J.-Y., Kim, K. & Lee, S. S. (2014). Cryst. Growth Des. 14, 6012–6023.
  20. Porai-Koshits, M. A., Antsyshkina, A. S., Shevchenko, Yu. N., Yashina, N. I. & Varava, F. B. (1994). Zh. Neorg. Khim. 39, 435–445.
  21. Prasad, L. & McAuley, A. (1983). Acta Cryst. C39, 1175–1177.
  22. Rigaku OD (2022). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.
  23. Rok, M., Zarychta, B., Bil, A., Trojan-Piegza, J., Medycki, W., Miniewicz, A., Piecha-Bisiorek, A., Ciżman, A. & Jakubas, R. (2021). J. Mater. Chem. C. 9, 7665–7676.
  24. Satapathi, S., Roy, S., Bhar, K., Ghosh, R., Srinivasa Rao, A. & Ghosh, B. K. (2011). Struct. Chem. 22, 605–613.
  25. Seitz, M., Kaiser, A., Stempfhuber, S., Zabel, M. & Reiser, O. (2005). Inorg. Chem. 44, 4630–4636. [DOI] [PubMed]
  26. Sharutin, V. V., Senchurin, V. S., Klepikov, N. N. & Sharutina, O. K. (2012). Russ. J. Inorg. Chem. 57, 922–929.
  27. Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.
  28. Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.
  29. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.
  30. Yatsimirskii, K. B. & Lampeka, Ya. D. (1985). Physicochemistry of Metal Complexes with Macrocyclic Ligands. Kiev: Naukova Dumka. (In Russian.)
  31. Yu, J.-H., Ye, L., Bi, M.-H., Hou, Q., Zhang, X. & Xu, J.-Q. (2007). Inorg. Chim. Acta, 360, 1987–1994.
  32. Zhang, L., Tang, C., Zheng, W., Jiang, W. & Jia, D. (2019). Eur. J. Inorg. Chem. pp. 237–244.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, II. DOI: 10.1107/S2056989023007004/ex2074sup1.cif

e-79-00821-sup1.cif (953.4KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989023007004/ex2074Isup2.hkl

e-79-00821-Isup2.hkl (145.4KB, hkl)

Structure factors: contains datablock(s) II. DOI: 10.1107/S2056989023007004/ex2074IIsup3.hkl

e-79-00821-IIsup3.hkl (142KB, hkl)

CCDC references: 2281090, 2281091

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES