Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2023 Aug 4;79(Pt 9):795–799. doi: 10.1107/S205698902300676X

Synthesis, crystal structure and Hirshfeld surface analysis of 5-[2-(di­cyano­methyl­idene)hydrazin-1-yl]-2,4,6-tri­iodo­isophthalic acid ethanol monosolvate

Fargana S Aliyeva a, Gunay Z Mammadova b, Mehmet Akkurt c,*, Sevim Türktekin Çelikesir d, Ajaya Bhattarai e,*
Editor: B Therrienf
PMCID: PMC10483556  PMID: 37693669

In the crystal, pairs of mol­ecules are linked by O—H⋯O and N—H⋯O hydrogen bonds forming dimers with Inline graphic (14) motifs. These dimers are connected by O—H⋯O hydrogen bonds into chains along the a-axis direction, forming Inline graphic (16) ring motifs. Further O—H⋯O inter­actions involving the ethanol solvent mol­ecule connect the chains into a three-dimensional network.

Keywords: crystal structure, hydrogen bonds, three dimensional network, C—I⋯π inter­actions, Hirshfeld surface analysis

Abstract

The title compound, C11H3I3N4O4·C2H6O, crystallizes in the triclinic P Inline graphic space group with one independent mol­ecule and one ethanol solvent mol­ecule in the asymmetric unit. The benzene ring and the methyl­carbonohydrazonoyl dicyanide group of the main mol­ecule makes a dihedral angle of 57.91 (16)°. In the crystal, O—H⋯O and N—H⋯O hydrogen bonds link pairs of mol­ecules, forming dimers with R 2 2(14) motifs. These dimers are connected by O—H⋯O hydrogen bonds into chains along the a-axis direction, forming R 2 2(16) ring motifs. Further O—H⋯O inter­actions involving the ethanol solvent mol­ecule connect the chains into a three-dimensional network. In addition, C—I⋯π inter­actions are observed. The inter­molecular inter­actions in the crystal structure were qu­anti­fied and analysed using Hirshfeld surface analysis.

1. Chemical context

Aryl­hydrazones of active methyl­ene compounds (AHAMC) have been extensively employed as ligands and precursors for the synthesis of coordination, organic or supra­molecular compounds (Gurbanov et al., 2020a ,b ; Kopylovich et al., 2011). Besides their biological significance (Martins et al., 2017), the transition-metal complexes of AHAMC ligands have been found to possess a wide variety of functional properties, and have applications as catalysts, supra­molecular building blocks and analytical reagents (Mahmudov et al., 2010, 2012, 2015). By the functionalization of the active methyl­ene fragment (acetyl­acetone or barbituric acid) or the aromatic moiety (2,4,6-tri­iodo­isophthalic acid) of the AHAMC mol­ecules, the catalytic properties of their metal complexes can be improved in the nitro­aldol reaction between aldehydes and nitro­ethane (Gurbanov et al., 2022). On the other hand, non-covalent inter­actions such as hydrogen, halogen and chalcogen bonds as well as π-inter­actions can be employed in the synthesis, catalysis and design of materials (Abdelhamid et al., 2011; Khalilov et al., 2021; Ma et al., 2021; Mahmudov et al., 2022). As well as hydrogen bonds, the cooperation of different weak bonds can act as a driving force for controlling supra­molecular networks (Polyanskii et al., 2019; Safarova et al., 2019; Shikhaliyev et al., 2019; Zubkov et al., 2018). Similarly to Schiff base complexes (Mahmoudi et al., 2017a ,b , 2019), the functional groups can be involved in various types of inter­molecular inter­actions in metal complexes of aryl­hydrazone ligands. We have synthesized a new iodine-substituted AHAMC ligand, 5-[2-(di­cyano­methyl­ene)hydrazin­yl]-2,4,6-tri­iodo­isophthalic acid, and studied the inter­molecular halogen bonds and other types of weak inter­actions in its crystal structure. 1.

2. Structural commentary

The title compound (Fig. 1) crystallizes in the triclinic P Inline graphic space group with one independent mol­ecule and one ethanol solvent mol­ecule in the asymmetric unit. The benzene ring (C1–C6) and the methyl­carbonohydrazonoyl dicyanide group (N1–N4/C1/C7–C9) of the main mol­ecule makes a dihedral angle of 57.91 (16)°. Geometric parameter values in the mol­ecule are normal and in good agreement with the values in the compounds discussed in the Database survey section.

Figure 1.

Figure 1

The mol­ecular structure of the title compound, showing the atom labelling and displacement ellipsoids drawn at the 30% probability level.

3. Supra­molecular features and Hirshfeld surface analysis

In the crystal of the title compound, pairs of mol­ecules are linked by O—H⋯O and N—H⋯O hydrogen bonds, forming dimers with Inline graphic (14) motifs (Bernstein et al., 1995; Table 1, Fig. 2). These dimers are connected along the a-axis direction by further O—H⋯O hydrogen bonds, forming Inline graphic (16) ring motifs. O—H⋯O hydrogen bonds involving the ethanol solvent mol­ecule connect chains into a three-dimensional network. In addition, C—I⋯π inter­actions are also observed [C2—I1⋯Cg1(1 − x, 1 − y, 1 − z), 3.8441 (15) Å]. The carbon atoms in the aryl­hydrazone mol­ecule are magnetically non-equivalent as a result of limited rotation around the C—N bond, thus the NH group is locked and becomes ‘asymmetric’, which translates into diastereotopic protons and carbons in the title compound.

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O4i 0.85 1.80 2.648 (4) 178
O3—H3⋯O5ii 0.85 1.68 2.515 (4) 169
O5—H5⋯N3iii 0.85 2.40 3.200 (5) 156
N1—H1N⋯O2iv 0.92 2.11 2.937 (4) 149

Symmetry codes: (i) Inline graphic ; (ii) Inline graphic ; (iii) Inline graphic ; (iv) Inline graphic .

Figure 2.

Figure 2

A part view of the mol­ecular packing in the unit cell. N—H⋯O, O—H⋯O hydrogen bonds and C—I⋯π inter­actions are shown as dashed lines. Symmetry codes: (i) −x, −y + 1, −z + 1; (ii) x − 1, y, z; (iii) −x + 2, −y + 2, −z + 1; (iv) −x + 1, −y + 1, −z + 1; (v) x + 1, y, z.

In order to present the inter­molecular inter­actions in the crystal structure of the title compound in a visual manner, Hirshfeld surfaces and their associated two-dimensional fingerprint plots were generated using CrystalExplorer17.5 (Spackman et al., 2021). The Hirshfeld surface plotted over d norm is shown in Fig. 3, while Fig. 4 shows the full two-dimensional fingerprint plot and those delineated into the major contacts: O⋯H/H⋯O (23.2%), N⋯H/H⋯N (11.9%), I⋯N/N⋯I (11.9%) and I⋯H/H⋯I (10.7%). Smaller contributions are made by I⋯C/C⋯I (7.7%), C⋯H/H⋯C (6.7%), I⋯O/O⋯I (6.7%), I⋯I (5.4%), C⋯C (4.8%), H⋯H (2.3%), O⋯C/C⋯O(2.3%), N⋯C/C⋯N (2.1%), O⋯N/N⋯O (2.0%), O⋯O (1.4%) and N⋯N (1.0%) inter­actions.

Figure 3.

Figure 3

(a) Front and (b) back sides of the three-dimensional Hirshfeld surface of the title compound mapped over d norm, with a fixed colour scale of −0.8291 to 1.0734 a.u.

Figure 4.

Figure 4

The two-dimensional fingerprint plots of the title compound, showing (a) all inter­actions, and delineated into (b) O⋯H/H⋯O, (c) N⋯H/H⋯N, (d) I⋯N/N⋯I, (e) I⋯H/H⋯I and (f) I⋯C/C⋯I inter­actions. [d e and d i represent the distances from a point on the Hirshfeld surface to the nearest atoms outside (external) and inside (inter­nal) the surface, respectively.]

4. Database survey

A search of the Cambridge Structural Database (CSD, version 5.43, update June 2022; Groom et al., 2016) for the 5-amino-2,4,6-tri­iodo­benzene-1,3-di­carb­oxy­lic acid unit gave four similar structures, viz. 5-amino-2,4,6-tri­iodo­isophthalic acid monohydrate (SOGGUR; Beck & Sheldrick, 2008), 4-(4-pyrid­yl)pyridinium 3-amino-5-carb­oxy-2,4,6-tri­iodo­benzoate–5-amino-2,4,6-tri­iodo­isophthalic acid (1/1) (WADPAU; Zhang et al., 2010), 5-amino-2,4,6-tri­iodo­isophthalic acid–4,4′-bi­pyri­dine N,N′-dioxide–water (1/1/1) (UNUDIR; Zhang et al., 2011) and 5-amino-2,4,6-tri­bromo­isophthalic acid (BOTVUC; Beck et al., 2009).

In the crystal structure of SOGGUR, mol­ecules are linked by O—H⋯O, N—H⋯O and O—H⋯N hydrogen bonds involving all possible donors and also the water mol­ecule, forming an extensive hydrogen-bond network.

In the ammonium carboxyl­ate–carb­oxy­lic acid co-crystal WADPAU, the carboxyl­ate anion and carb­oxy­lic acid mol­ecule are linked by O—H⋯O and N—H⋯O hydrogen bonds, forming a chain running along the c-axis direction of the monoclinic unit cell. The chains are linked by pyridinium and pyridine N—H⋯O hydrogen bonds, generating a layer motif. O—H⋯N and O—H⋯O hydrogen bonds are also observed.

In the crystal of UNUDIR, mol­ecules are linked by O—H⋯O hydrogen bonds into a three-dimensional network. An N—H⋯O inter­action also occurs. One of the amino H atoms is not involved in hydrogen bonding.

In the crystal structure of BOTVUC, mol­ecules are linked into chains by COO—H⋯O bonds, and pairs of chains are connected by additional COO—H⋯O inter­actions. This chain bundle shows stacking inter­actions and weak N—H⋯O hydrogen bonds with adjacent chains.

5. Synthesis and crystallization

Diazo­tization: 558 mg (1 mmol) of 5-amino-2,4,6-tri­iodo­isophthalic acid were dissolved in 15 mL of water, and the solution was cooled in an ice bath to 273 K, then 69 mg (1 mmol) of NaNO2 were added followed by 0.2 mL of HCl, and mixed for 1 h. The temperature of the mixture should not exceed 278 K.

Azocoupling: NaOH (40 mg, 1 mmol) was added to a mixture of 1 mmol (66 mg) of malono­nitrile with 5 mL of water. The solution was cooled in an ice bath, and a suspension of 3,5-bis­(meth­oxy­carbon­yl)benzene­diazo­nium chloride (prepared according to the procedure described above) was added in two equal portions under vigorous stirring for 1 h. The precipitate was filtered off, recrystallized from methanol and dried in air. Crystals suitable for X-ray analysis were obtained by slow evaporation of an ethanol solution.

The title compound: Yield 79% (based on malono­nitrile), yellow powder soluble in DMSO, methanol, ethanol and DMF. Analysis calculated for C13H9I3N4O5: C 22.90, H 1.33, N 8.22; found: C 22.87, H 1.30, N 8.18 %. ESI–MS: m/z: 636.88. IR (KBr): 3123 ν(NH), 2937 ν(NH), 2233 ν(CN) and 1707 ν(C=N) cm−1. 1H NMR (300.130 MHz, DMSO-d 6, inter­nal TMS): δ 1.02–1.06 (3H, CH3), 3.42–3.47 (2H, CH2), 7.25 and 7.32 (2H, COOH) and 11.21 (1H, N—H). 1H, in 13C{1H} NMR (75.468 MHz, DMSO-d 6): δ 18.56 (CH3), 56.78 (CH2), 85.37, 89.06 and 94.93 (3C–I), 96.80 (C=N), 109.71 and 109.91 (CN), 149.79 and 150.13 (CCOOH), 162.97 (C–NH), 169.48 and 169.79 (C=O).

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2. The hydrogen atoms of the ethanol mol­ecule were placed at idealized positions and refined using a riding model, with U iso(H) values assigned as 1.2U eq or 1.5U eq(methyl only) of the parent atoms, with C—H distances of 0.97 (methyl­ene) and 0.96 Å (meth­yl). The remaining hydrogen atoms bound to nitro­gen and oxygen were located in difference-Fourier maps and refined with fixed positional thermal displacement parameters and with U iso(H) values assigned as 1.2U eq(NH) or 1.5U eq(OH) of the parent atoms. One reflection, (001), affected by the incident beam-stop was omitted in the final cycles of refinement.

Table 2. Experimental details.

Crystal data
Chemical formula C11H3I3N4O4·C2H6O
M r 681.94
Crystal system, space group Triclinic, P Inline graphic
Temperature (K) 296
a, b, c (Å) 9.1499 (3), 9.8771 (3), 12.0440 (4)
α, β, γ (°) 113.512 (1), 95.399 (1), 103.462 (1)
V3) 949.11 (5)
Z 2
Radiation type Mo Kα
μ (mm−1) 4.97
Crystal size (mm) 0.26 × 0.21 × 0.14
 
Data collection
Diffractometer Bruker D8 Quest PHOTON 100 detector
Absorption correction Multi-scan (SADABS; Krause et al., 2015)
T min, T max 0.325, 0.518
No. of measured, independent and observed [I > 2σ(I)] reflections 20253, 3755, 3375
R int 0.025
(sin θ/λ)max−1) 0.625
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.024, 0.054, 1.22
No. of reflections 3755
No. of parameters 227
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.75, −0.61

Computer programs: APEX4 and SAINT (Bruker, 2008), SHELXT2019/1 (Sheldrick, 2015a ), SHELXL2019/1 (Sheldrick, 2015b ), ORTEP-3 for Windows (Farrugia, 2012) and PLATON (Spek, 2020).

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S205698902300676X/tx2072sup1.cif

e-79-00795-sup1.cif (596.7KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S205698902300676X/tx2072Isup2.hkl

e-79-00795-Isup2.hkl (299.4KB, hkl)

Supporting information file. DOI: 10.1107/S205698902300676X/tx2072Isup3.cml

CCDC reference: 2286318

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors’ contributions are as follows. Conceptualization, MA and AB; synthesis, FSA and FEH; X-ray analysis, GZM, STÇ and MA; writing (review and editing of the manuscript) STÇ, MA and AB; funding acquisition, FSA, FEH and GZM; supervision, MA and AB.

supplementary crystallographic information

Crystal data

C11H3I3N4O4·C2H6O Z = 2
Mr = 681.94 F(000) = 628
Triclinic, P1 Dx = 2.386 Mg m3
a = 9.1499 (3) Å Mo Kα radiation, λ = 0.71073 Å
b = 9.8771 (3) Å Cell parameters from 9873 reflections
c = 12.0440 (4) Å θ = 2.3–26.4°
α = 113.512 (1)° µ = 4.97 mm1
β = 95.399 (1)° T = 296 K
γ = 103.462 (1)° Prism, orange
V = 949.11 (5) Å3 0.26 × 0.21 × 0.14 mm

Data collection

Bruker D8 Quest PHOTON 100 detector diffractometer 3375 reflections with I > 2σ(I)
φ and ω scans Rint = 0.025
Absorption correction: multi-scan (SADABS; Krause et al., 2015) θmax = 26.4°, θmin = 2.3°
Tmin = 0.325, Tmax = 0.518 h = −11→11
20253 measured reflections k = −12→12
3755 independent reflections l = −15→15

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.024 Hydrogen site location: mixed
wR(F2) = 0.054 H-atom parameters constrained
S = 1.22 w = 1/[σ2(Fo2) + 2.2238P] where P = (Fo2 + 2Fc2)/3
3755 reflections (Δ/σ)max < 0.001
227 parameters Δρmax = 0.75 e Å3
0 restraints Δρmin = −0.61 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
I1 0.43837 (3) 0.36375 (3) 0.66860 (2) 0.03614 (8)
I2 0.00185 (3) 0.27921 (3) 0.22009 (2) 0.03995 (8)
I3 0.34230 (3) 0.92158 (3) 0.61552 (3) 0.04489 (9)
O1 0.0961 (3) 0.1098 (3) 0.4380 (3) 0.0419 (6)
H1 0.063676 0.171314 0.495416 0.063*
O2 0.2676 (3) 0.1256 (3) 0.3246 (2) 0.0380 (6)
O3 0.1880 (3) 0.6581 (4) 0.2734 (3) 0.0433 (7)
H3 0.165558 0.704626 0.231145 0.065*
O4 0.0089 (3) 0.7033 (4) 0.3831 (3) 0.0438 (7)
O5 1.0910 (4) 0.7945 (4) 0.1586 (3) 0.0600 (9)
H5 1.151655 0.834890 0.123379 0.090*
N1 0.4566 (3) 0.7189 (3) 0.7341 (3) 0.0315 (6)
H1N 0.532784 0.799315 0.735139 0.038*
N2 0.4222 (3) 0.7013 (4) 0.8311 (3) 0.0326 (6)
N3 0.7600 (5) 1.0028 (5) 0.9762 (4) 0.0656 (12)
N4 0.4455 (6) 0.7440 (5) 1.1278 (4) 0.0656 (12)
C1 0.3561 (4) 0.6188 (4) 0.6179 (3) 0.0260 (7)
C2 0.3273 (3) 0.4583 (4) 0.5705 (3) 0.0249 (6)
C3 0.2269 (4) 0.3621 (4) 0.4560 (3) 0.0262 (7)
C4 0.1576 (4) 0.4260 (4) 0.3895 (3) 0.0258 (7)
C5 0.1879 (4) 0.5859 (4) 0.4348 (3) 0.0267 (7)
C6 0.2875 (4) 0.6808 (4) 0.5487 (3) 0.0262 (7)
C7 0.5133 (4) 0.7872 (4) 0.9390 (3) 0.0348 (8)
C8 0.6530 (5) 0.9076 (5) 0.9622 (3) 0.0398 (9)
C9 0.4713 (5) 0.7606 (5) 1.0428 (4) 0.0437 (9)
C10 0.1991 (4) 0.1893 (4) 0.4015 (3) 0.0296 (7)
C11 0.1178 (4) 0.6559 (4) 0.3606 (3) 0.0294 (7)
C12 0.8376 (7) 0.6247 (7) 0.0688 (6) 0.0785 (17)
H12A 0.731327 0.619981 0.052211 0.118*
H12B 0.850672 0.568988 0.116680 0.118*
H12C 0.869243 0.579198 −0.008073 0.118*
C13 0.9323 (6) 0.7882 (7) 0.1389 (5) 0.0646 (14)
H13A 0.915521 0.846280 0.092754 0.078*
H13B 0.903196 0.833807 0.217868 0.078*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
I1 0.04006 (14) 0.03692 (13) 0.03368 (13) 0.01326 (10) 0.00214 (10) 0.01774 (10)
I2 0.03979 (14) 0.03778 (14) 0.02815 (13) 0.00210 (10) −0.00658 (10) 0.00856 (10)
I3 0.05157 (16) 0.02331 (12) 0.05002 (16) 0.00527 (10) 0.00314 (12) 0.01113 (11)
O1 0.0475 (16) 0.0294 (13) 0.0477 (16) 0.0067 (12) 0.0229 (13) 0.0155 (12)
O2 0.0432 (15) 0.0294 (13) 0.0371 (14) 0.0089 (11) 0.0160 (12) 0.0095 (11)
O3 0.0468 (16) 0.0641 (18) 0.0457 (16) 0.0286 (14) 0.0219 (13) 0.0408 (15)
O4 0.0432 (15) 0.0589 (18) 0.0422 (15) 0.0288 (14) 0.0164 (12) 0.0255 (14)
O5 0.0564 (19) 0.069 (2) 0.081 (2) 0.0197 (17) 0.0171 (17) 0.057 (2)
N1 0.0339 (15) 0.0276 (14) 0.0257 (14) −0.0020 (12) 0.0005 (12) 0.0119 (12)
N2 0.0340 (16) 0.0339 (16) 0.0241 (14) 0.0074 (13) 0.0016 (12) 0.0092 (12)
N3 0.062 (3) 0.061 (3) 0.054 (2) −0.010 (2) −0.002 (2) 0.023 (2)
N4 0.082 (3) 0.072 (3) 0.033 (2) 0.004 (2) 0.0039 (19) 0.024 (2)
C1 0.0239 (15) 0.0290 (16) 0.0196 (15) 0.0023 (13) 0.0028 (12) 0.0087 (13)
C2 0.0204 (15) 0.0278 (16) 0.0241 (15) 0.0027 (12) 0.0015 (12) 0.0120 (13)
C3 0.0233 (15) 0.0291 (16) 0.0259 (16) 0.0038 (13) 0.0060 (13) 0.0137 (14)
C4 0.0261 (16) 0.0253 (16) 0.0209 (15) 0.0028 (13) 0.0038 (12) 0.0079 (13)
C5 0.0283 (16) 0.0293 (16) 0.0229 (15) 0.0068 (13) 0.0076 (13) 0.0122 (13)
C6 0.0281 (16) 0.0217 (15) 0.0269 (16) 0.0042 (13) 0.0066 (13) 0.0102 (13)
C7 0.0380 (19) 0.0336 (18) 0.0267 (17) 0.0075 (15) 0.0001 (15) 0.0102 (15)
C8 0.048 (2) 0.035 (2) 0.0275 (18) 0.0093 (18) −0.0007 (16) 0.0084 (16)
C9 0.049 (2) 0.044 (2) 0.0283 (19) 0.0081 (18) −0.0034 (17) 0.0112 (17)
C10 0.0291 (17) 0.0253 (16) 0.0278 (17) 0.0029 (14) 0.0030 (14) 0.0087 (14)
C11 0.0313 (17) 0.0289 (17) 0.0262 (16) 0.0062 (14) 0.0065 (14) 0.0116 (14)
C12 0.073 (4) 0.077 (4) 0.068 (4) 0.007 (3) 0.005 (3) 0.024 (3)
C13 0.063 (3) 0.072 (3) 0.058 (3) 0.016 (3) −0.009 (2) 0.034 (3)

Geometric parameters (Å, º)

I1—C2 2.097 (3) C1—C6 1.397 (5)
I2—C4 2.104 (3) C1—C2 1.401 (5)
I3—C6 2.097 (3) C2—C3 1.399 (4)
O1—C10 1.307 (4) C3—C4 1.392 (5)
O1—H1 0.8499 C3—C10 1.511 (5)
O2—C10 1.214 (4) C4—C5 1.396 (5)
O3—C11 1.287 (4) C5—C6 1.390 (5)
O3—H3 0.8500 C5—C11 1.510 (5)
O4—C11 1.205 (4) C7—C8 1.444 (6)
O5—C13 1.432 (6) C7—C9 1.445 (6)
O5—H5 0.8500 C12—C13 1.481 (8)
N1—N2 1.303 (4) C12—H12A 0.9600
N1—C1 1.419 (4) C12—H12B 0.9600
N1—H1N 0.9222 C12—H12C 0.9600
N2—C7 1.300 (5) C13—H13A 0.9700
N3—C8 1.134 (6) C13—H13B 0.9700
N4—C9 1.136 (6)
C10—O1—H1 109.4 C1—C6—I3 119.1 (2)
C11—O3—H3 120.3 N2—C7—C8 124.6 (3)
C13—O5—H5 119.8 N2—C7—C9 117.6 (3)
N2—N1—C1 117.7 (3) C8—C7—C9 117.8 (3)
N2—N1—H1N 125.8 N3—C8—C7 177.0 (4)
C1—N1—H1N 115.9 N4—C9—C7 176.6 (5)
C7—N2—N1 119.9 (3) O2—C10—O1 120.9 (3)
C6—C1—C2 119.5 (3) O2—C10—C3 121.4 (3)
C6—C1—N1 119.8 (3) O1—C10—C3 117.6 (3)
C2—C1—N1 120.7 (3) O4—C11—O3 125.5 (3)
C3—C2—C1 119.5 (3) O4—C11—C5 122.5 (3)
C3—C2—I1 120.3 (2) O3—C11—C5 112.0 (3)
C1—C2—I1 120.1 (2) C13—C12—H12A 109.5
C4—C3—C2 120.0 (3) C13—C12—H12B 109.5
C4—C3—C10 119.7 (3) H12A—C12—H12B 109.5
C2—C3—C10 120.2 (3) C13—C12—H12C 109.5
C3—C4—C5 120.9 (3) H12A—C12—H12C 109.5
C3—C4—I2 119.4 (2) H12B—C12—H12C 109.5
C5—C4—I2 119.7 (2) O5—C13—C12 109.1 (5)
C6—C5—C4 118.8 (3) O5—C13—H13A 109.9
C6—C5—C11 120.1 (3) C12—C13—H13A 109.9
C4—C5—C11 121.0 (3) O5—C13—H13B 109.9
C5—C6—C1 121.2 (3) C12—C13—H13B 109.9
C5—C6—I3 119.6 (2) H13A—C13—H13B 108.3
C1—N1—N2—C7 177.9 (3) C4—C5—C6—C1 −0.3 (5)
N2—N1—C1—C6 121.9 (3) C11—C5—C6—C1 −178.8 (3)
N2—N1—C1—C2 −59.3 (4) C4—C5—C6—I3 177.5 (2)
C6—C1—C2—C3 −1.7 (5) C11—C5—C6—I3 −1.0 (4)
N1—C1—C2—C3 179.5 (3) C2—C1—C6—C5 1.6 (5)
C6—C1—C2—I1 176.7 (2) N1—C1—C6—C5 −179.7 (3)
N1—C1—C2—I1 −2.0 (4) C2—C1—C6—I3 −176.2 (2)
C1—C2—C3—C4 0.6 (5) N1—C1—C6—I3 2.5 (4)
I1—C2—C3—C4 −177.8 (2) N1—N2—C7—C8 1.6 (6)
C1—C2—C3—C10 177.7 (3) N1—N2—C7—C9 −178.7 (3)
I1—C2—C3—C10 −0.7 (4) C4—C3—C10—O2 79.7 (4)
C2—C3—C4—C5 0.6 (5) C2—C3—C10—O2 −97.4 (4)
C10—C3—C4—C5 −176.5 (3) C4—C3—C10—O1 −98.9 (4)
C2—C3—C4—I2 −178.2 (2) C2—C3—C10—O1 84.0 (4)
C10—C3—C4—I2 4.7 (4) C6—C5—C11—O4 −79.6 (5)
C3—C4—C5—C6 −0.8 (5) C4—C5—C11—O4 102.0 (4)
I2—C4—C5—C6 178.0 (2) C6—C5—C11—O3 100.3 (4)
C3—C4—C5—C11 177.6 (3) C4—C5—C11—O3 −78.1 (4)
I2—C4—C5—C11 −3.6 (4)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
O1—H1···O4i 0.85 1.80 2.648 (4) 178
O3—H3···O5ii 0.85 1.68 2.515 (4) 169
O5—H5···N3iii 0.85 2.40 3.200 (5) 156
N1—H1N···O2iv 0.92 2.11 2.937 (4) 149

Symmetry codes: (i) −x, −y+1, −z+1; (ii) x−1, y, z; (iii) −x+2, −y+2, −z+1; (iv) −x+1, −y+1, −z+1.

Funding Statement

This work was supported by Baku State University.

References

  1. Abdelhamid, A. A., Mohamed, S. K., Khalilov, A. N., Gurbanov, A. V. & Ng, S. W. (2011). Acta Cryst. E67, o744. [DOI] [PMC free article] [PubMed]
  2. Beck, T., Herbst-Irmer, R. & Sheldrick, G. M. (2009). Acta Cryst. C65, o237–o239. [DOI] [PubMed]
  3. Beck, T. & Sheldrick, G. M. (2008). Acta Cryst. E64, o1286. [DOI] [PMC free article] [PubMed]
  4. Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
  5. Bruker (2008). APEX4 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
  6. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  7. Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
  8. Gurbanov, A. V., Kuznetsov, M. L., Demukhamedova, S. D., Alieva, I. N., Godjaev, N. M., Zubkov, F. I., Mahmudov, K. T. & Pombeiro, A. J. L. (2020a). CrystEngComm, 22, 628–633.
  9. Gurbanov, A. V., Kuznetsov, M. L., Karmakar, A., Aliyeva, V. A., Mahmudov, K. T. & Pombeiro, A. J. L. (2022). Dalton Trans. 51, 1019–1031. [DOI] [PubMed]
  10. Gurbanov, A. V., Kuznetsov, M. L., Mahmudov, K. T., Pombeiro, A. J. L. & Resnati, G. (2020b). Chem. Eur. J. 26, 14833–14837. [DOI] [PubMed]
  11. Khalilov, A. N., Tüzün, B., Taslimi, P., Tas, A., Tuncbilek, Z. & Cakmak, N. K. (2021). J. Mol. Liq. 344, 117761.
  12. Kopylovich, M. N., Mahmudov, K. T., Guedes da Silva, M. F. C., Martins, L. M. D. R. S., Kuznetsov, M. L., Silva, T. F. S., Fraústo da Silva, J. J. R. & Pombeiro, A. J. L. (2011). J. Phys. Org. Chem. 24, 764–773.
  13. Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10. [DOI] [PMC free article] [PubMed]
  14. Ma, Z., Mahmudov, K. T., Aliyeva, V. A., Gurbanov, A. V., Guedes da Silva, M. F. C. & Pombeiro, A. J. L. (2021). Coord. Chem. Rev. 437, 213859.
  15. Mahmoudi, G., Dey, L., Chowdhury, H., Bauzá, A., Ghosh, B. K., Kirillov, A. M., Seth, S. K., Gurbanov, A. V. & Frontera, A. (2017a). Inorg. Chim. Acta, 461, 192–205.
  16. Mahmoudi, G., Khandar, A. A., Afkhami, F. A., Miroslaw, B., Gurbanov, A. V., Zubkov, F. I., Kennedy, A., Franconetti, A. & Frontera, A. (2019). CrystEngComm, 21, 108–117.
  17. Mahmoudi, G., Zaręba, J. K., Gurbanov, A. V., Bauzá, A., Zubkov, F. I., Kubicki, M., Stilinović, V., Kinzhybalo, V. & Frontera, A. (2017b). Eur. J. Inorg. Chem. pp. 4763–4772.
  18. Mahmudov, K. T., Guedes da Silva, M. F. C., Glucini, M., Renzi, M., Gabriel, K. C. P., Kopylovich, M. N., Sutradhar, M., Marchetti, F., Pettinari, C., Zamponi, S. & Pombeiro, A. J. L. (2012). Inorg. Chem. Commun. 22, 187–189.
  19. Mahmudov, K. T., Gurbanov, A. V., Aliyeva, V. A., Guedes da Silva, M. F. C., Resnati, G. & Pombeiro, A. J. L. (2022). Coord. Chem. Rev. 464, 214556.
  20. Mahmudov, K. T., Maharramov, A. M., Aliyeva, R. A., Aliyev, I. A., Kopylovich, M. N. & Pombeiro, A. J. L. (2010). Anal. Lett. 43, 2923–2938.
  21. Mahmudov, K. T., Sutradhar, M., Martins, L. M. D. R. S., Guedes da Silva, F. C., Ribera, A., Nunes, A. V. M., Gahramanova, S. I., Marchetti, F. & Pombeiro, A. J. L. (2015). RSC Adv. 5, 25979–25987.
  22. Martins, N. M. R., Anbu, S., Mahmudov, K. T., Ravishankaran, R., Guedes da Silva, M. F. C., Martins, L. M. D. R. S., Karande, A. A. & Pombeiro, A. J. L. (2017). New J. Chem. 41, 4076–4086.
  23. Polyanskii, K. B., Alekseeva, K. A., Raspertov, P. V., Kumandin, P. A., Nikitina, E. V., Gurbanov, A. V. & Zubkov, F. I. (2019). Beilstein J. Org. Chem. 15, 769–779. [DOI] [PMC free article] [PubMed]
  24. Safavora, A. S., Brito, I., Cisterna, J., Cárdenas, A., Huseynov, E. Z., Khalilov, A. N., Naghiyev, F. N., Askerov, R. K. & Maharramov, A. M. Z. (2019). Z. Kristallogr. New Cryst. Struct. 234, 1183–1185.
  25. Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.
  26. Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.
  27. Shikhaliyev, N. Q., Kuznetsov, M. L., Maharramov, A. M., Gurbanov, A. V., Ahmadova, N. E., Nenajdenko, V. G., Mahmudov, K. T. & Pombeiro, A. J. L. (2019). CrystEngComm, 21, 5032–5038.
  28. Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006–1011. [DOI] [PMC free article] [PubMed]
  29. Spek, A. L. (2020). Acta Cryst. E76, 1–11. [DOI] [PMC free article] [PubMed]
  30. Zhang, K.-L., Diao, G.-W. & Ng, S. W. (2010). Acta Cryst. E66, o3165. [DOI] [PMC free article] [PubMed]
  31. Zhang, K.-L., Zhang, J.-B. & Ng, S. W. (2011). Acta Cryst. E67, o793. [DOI] [PMC free article] [PubMed]
  32. Zubkov, F. I., Mertsalov, D. F., Zaytsev, V. P., Varlamov, A. V., Gurbanov, A. V., Dorovatovskii, P. V., Timofeeva, T. V., Khrustalev, V. N. & Mahmudov, K. T. (2018). J. Mol. Liq. 249, 949–952.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S205698902300676X/tx2072sup1.cif

e-79-00795-sup1.cif (596.7KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S205698902300676X/tx2072Isup2.hkl

e-79-00795-Isup2.hkl (299.4KB, hkl)

Supporting information file. DOI: 10.1107/S205698902300676X/tx2072Isup3.cml

CCDC reference: 2286318

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES