Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2023 Aug 23;79(Pt 9):831–836. doi: 10.1107/S2056989023007259

Spectroscopic, crystallographic, and Hirshfeld surface characterization of nine-membered-ring-containing 9-meth­oxy-3,4,5,6-tetra­hydro-1H-benzo[b]azonine-2,7-dione and its parent tetra­hydro­car­ba­zole

Maritza J Flores a, Brandon Mai a, Joseph M Tanski a,*
Editor: D Choprab
PMCID: PMC10483559  PMID: 37693673

9-Meth­oxy-3,4,5,6-tetra­hydro-1H-benzo[b]azonine-2,7-dione and 6-meth­oxy-1,2,3,4-tetra­hydro­car­ba­zole represent the structures of a benzoazonine that contains a nine-membered ring and its parent tetra­hydro­car­ba­zole. The mol­ecules of the former pack together via strong amide N—H⋯O hydrogen bonding and weak C—H⋯O inter­actions, whereas the parent tetra­hydro­car­ba­zole packs with C/N—H⋯π inter­actions, as visualized by Hirshfeld surface characterization.

Keywords: crystal structure, tetra­hydro­car­ba­zole, benzo[b]azonine, nine-membered ring, hydrogen bond

Abstract

9-Meth­oxy-3,4,5,6-tetra­hydro-1H-benzo[b]azonine-2,7-dione, C13H15NO3, (I), and 6-meth­oxy-1,2,3,4-tetra­hydro­car­ba­zole, C13H15NO, (II), represent the structures of a benzoazonine that contains a nine-membered ring and its parent tetra­hydro­car­ba­zole. The mol­ecules of (I) pack together via strong amide N—H⋯O hydrogen bonding and weak C—H⋯O inter­actions, whereas the parent tetra­hydro­car­ba­zole (II) packs with C/N—H⋯π inter­actions, as visualized by Hirshfeld surface characterization.

1. Chemical context

The title com­pound 9-meth­oxy-3,4,5,6-tetra­hydro-1H-benzo[b]azonine-2,7-dione, (I), was obtained as a by-product during the synthesis of 6-meth­oxy-1,2,3,4-tetra­hydro­car­ba­zole, (II). Compound (II) may be prepared by refluxing p-meth­oxy­phenyl­hydrazine hydro­chloride with cyclo­hexa­none in methanol and an anti­mony catalyst (Kumar et al., 2014) or in ethanol with 2,4,6-tri­chloro-1,3,5-triazine as a catalyst (Siddalingamurthy et al., 2013). After isolating the tetra­hydro­car­ba­zole, the remaining aqueous methanol was set aside in a refrigerator for several days, from which a batch of light-yellow crystalline material was collected and found by X-ray crystallography, as well as spectroscopy, mass spectrometry and elemental analysis, to be the nine-membered-ring-containing com­pound (I). Benzo[b]azoninediones have been shown to be accesible via the enzymatic oxidative cleavage of indole carbon–carbon double bonds in the presence of hydrogen peroxide (Takemoto et al., 2004). 1.

2. Structural commentary

The mol­ecular structure of 9-meth­oxy-3,4,5,6-tetra­hydro-1H-benzo[b]azonine-2,7-dione, (I) (Fig. 1), reveals that the mol­ecule contains a nine-membered ring which includes an organic amide and a ketone group. IR spectroscopy corroborates these functional groups with a ketone C=O stretch at 1676 cm−1, an amide C=O stretch shifted to lower energy at 1637 cm−1, and an amide N—H stretch at 3198 cm−1. The structure of the parent com­pound 6-meth­oxy-1,2,3,4-tetra­hydro­car­ba­zole, (II), is shown in Fig. 2. Unlike related tetra­hydro­car­ba­zoles, such as unsubsituted 1,2,3,4-tetra­hydro­car­ba­zole (McMahon et al., 1997; Murugavel et al., 2008; Shukla et al., 2018), com­pound (II) crystallizes without disorder in the cyclo­hexene ring.

Figure 1.

Figure 1

A view of 9-meth­oxy-3,4,5,6-tetra­hydro-1H-benzo[b]azonine-2,7-dione, (I), with the atom-numbering scheme. Displacement ellipsoids are shown at the 50% probability level.

Figure 2.

Figure 2

A view of 6-meth­oxy-1,2,3,4-tetra­hydro­car­ba­zole, (II), with the atom-numbering scheme. Displacement ellipsoids are shown at the 50% probability level.

3. Supra­molecular features and Hirshfeld surface analysis

The mol­ecules of (I) are held together in the solid state via a strong inter­molecular amide N—H⋯O hydrogen bond and weak C—H⋯O inter­actions (Figs. 3 and 4, and Table 1). Specifically, the amide group hydrogen bonds to the O atom of the amide group on a neighboring mol­ecule, i.e. N1—H1⋯O1i with a donor–acceptor distance of 2.8426 (12) Å, extending in a one-dimensional chain with graph-set notation C(4) (Fig. 3). The Hirshfeld surface calculated with CrystalExplorer21 was mapped over d norm in the range from −0.5838 to 1.1871 a.u. (Spackman et al., 2021). The brightest red spot on the surface indicates the N1—H1⋯O1i hydrogen bond, the second most intense spot corresponds to the shorter C5—H5B⋯O2ii inter­action, with a hydrogen–acceptor distance of 2.41 Å and a D—H⋯A angle of 138°, while the least intense spot corresponds to the longer C13—H13B⋯O2iii inter­action at a distance of 2.60 Å and with a D—H⋯A angle of 174° (Fig. 4 and Table 1). The two-dimensional fingerprint plots (Fig. 5) reveal that the most important inter­atomic contacts, summing to 97.3%, are H⋯H (51.3%), O⋯H/H⋯O (29.7%), C⋯H/H⋯C (15.2%), and N⋯H/H⋯N (1.1%). The large percentage contribution and forcep-shaped points in Fig. 5(c) indicate significant O⋯H inter­actions at less than the sum of the van der Waals radii, consistent with the presence of the conventional hydrogen-bond and C—H⋯O inter­actions being abundant points of contact on the surface.

Figure 3.

Figure 3

A view of the packing in 9-meth­oxy-3,4,5,6-tetra­hydro-1H-benzo[b]azonine-2,7-dione, (I). Displacement ellipsoids are shown at the 50% probability level. [Symmetry codes: (i) x, −y +  Inline graphic , z −  Inline graphic ; (ii) x, −y +  Inline graphic , z −  Inline graphic ; (iii) −x + 1, y −  Inline graphic , −z +  Inline graphic .]

Figure 4.

Figure 4

Hirshfeld surface of 9-meth­oxy-3,4,5,6-tetra­hydro-1H-benzo[b]azonine-2,7-dione, (I), mapped over d norm, showing the N1—H1⋯O1i hydrogen bond and the weak C5—H5B⋯O2ii and C13—H13B⋯O2iii inter­actions. [Symmetry codes: (i) x, −y +  Inline graphic , z −  Inline graphic ; (ii) x, −y +  Inline graphic , z −  Inline graphic ; (iii) −x + 1, y −  Inline graphic , −z +  Inline graphic .]

Table 1. Hydrogen-bond geometry (Å, °) for (I) .

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1i 0.87 (1) 1.99 (1) 2.8426 (12) 167 (1)
C5—H5B⋯O2ii 0.99 2.41 3.2085 (14) 138
C13—H13B⋯O2iii 0.98 2.60 3.5793 (15) 174

Symmetry codes: (i) Inline graphic ; (ii) Inline graphic ; (iii) Inline graphic .

Figure 5.

Figure 5

(a) The full two-dimensional fingerprint plot for 9-meth­oxy-3,4,5,6-tetra­hydro-1H-benzo[b]azonine-2,7-dione, (I), and individual fingerprint plots for (b) H⋯H (51.3%), (c) O⋯H/H⋯O (29.7%), (d) C⋯H/H⋯C (15.2%), and (e) N⋯H/H⋯N (1.1%) contacts.

The mol­ecules of (II) pack with a herringbone motif (Fig. 6). Although (II) contains an acidic proton, the structure does not exhibit conventional hydrogen bonding, nor any meaningful inter­molecular C—H⋯O/N contacts. However, the Hirshfeld surface calculated with CrystalExplorer21, mapped over d norm in the range from −0.2999 to 1.3163 a.u. (Spackman et al., 2021), reveals that the mol­ecules inter­act via pairwise N—H⋯π and C—H⋯π inter­actions (Fig. 7). The brighter red spot on the top left of the surface indicates the N—H⋯π inter­action N1—H1⋯Cg1i (Table 2), which is directed towards the C7–C12 ring on a neighboring mol­ecule, in an offset fashion from the centroid towards C11, with the shortest contact to the ring being C11⋯H1 at a distance of 2.51 Å. The less intense red spot on the top right of the surface indicates the longer C—H⋯π ineraction C11—H11ACg2i (Table 2), which is directed towards the car­ba­zole ring on a neighboring mol­ecule, in an offset fashion from the centroid towards C1, with a C1⋯H11A distance of 2.65 Å. The Hirshfeld surface for (II) mapped over the shape-index property further confirms the blue bump shapes of the N/C—H⋯π donors on top and the red valleys of the acceptors on the face (Fig. 7) (Tan et al., 2019). The two-dimensional fiingerprint plots (Fig. 8) show that the most important inter­atomic contacts, summing to 100%, are H⋯H (63.7%), C⋯H/H⋯C (25.5%), O⋯H/H⋯O (7.5%), and N⋯H/H⋯N (3.3%) contacts. The points in the fingerprint plots in Figs. 8(b) and 8(c) indicate the significance of H⋯H and C⋯H inter­actions in (II) and the absence of inter­molecular C—H⋯O/N contacts.

Figure 6.

Figure 6

A view of the packing in 6-meth­oxy-1,2,3,4-tetra­hydro­car­ba­zole, (II), showing via dashed lines the N1—H1⋯πi and C11—H11A⋯πi inter­actions. Displacement ellipsoids are shown at the 50% probability level. [Symmetry code: (i) −x +  Inline graphic , y +  Inline graphic , −z +  Inline graphic .]

Figure 7.

Figure 7

Hirshfeld surface of 6-meth­oxy-1,2,3,4-tetra­hydro­car­ba­zole, (II), mapped over d norm, showing via dashed lines the N1—H1⋯πi and C11—H11A⋯πi inter­actions (left), and the surface mapped over the shape-index property. [Symmetry code: (i) −x +  Inline graphic , y +  Inline graphic , −z +  Inline graphic .]

Table 2. Hydrogen-bond geometry (Å, °) for (II) .

Cg1 and Cg2 are the centroids of the C7–C12 and N1/C1/C6/C7/C12 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯Cg1i 0.88 (1) 2.41 (1) 3.2645 (11) 150
C11—H11ACg2i 0.95 2.61 3.5018 (12) 146

Symmetry code: (i) Inline graphic .

Figure 8.

Figure 8

(a) The full two-dimensional fingerprint plot for 6-meth­oxy-1,2,3,4-tetra­hydro­car­ba­zole, (II), and individual fingerprint plots for (b) H⋯H (63.7%), (c) C⋯H/H⋯C (25.5%), (d) O⋯H/H⋯O (7.5%), and (e) N⋯H/H⋯N (3.3%) contacts.

4. Database survey

A search for com­pounds similar to com­pound (I) in the Cambridge Structural Database (Groom et al., 2016) found a single structure (CSD refcode COMBEO) which contains the nine-membered ring with an additional acetamide-containing group bridging the 3- and 5-position methyl­ene C atoms of the title com­pound (Baranova et al., 2012). The additional bridging group in COMBEO positions the amide carbonyl and N—H groups cis to one another, with an O—C—N—H torsion angle of 7.37°, allowing for the formation of an Inline graphic (8) graph-set centrosymmetric hydrogen-bonding dimer, whereas in com­pound (I), they are oriented trans, with an O—C—N—H torsion angle of 170.69°, which precludes hydrogen bonding via a similar dimer, and (I) forms a one-dimensional hydrogen-bonding chain.

The structure of the unsubsituted 1,2,3,4-tetra­hydro­car­ba­zole has been reported several times [refcodes LOJCIX01 (McMahon et al., 1997), LOJCIX (Murugavel et al., 2008), and LOJCIX02 (Shukla et al., 2018)], together with the simple 1,2,3,4-tetra­hydro­car­ba­zole dervatives substituted at the 6-position with X = –F (PIGWOU), –Cl (PIGWAG) or –Br (PIGVIN) (Shukla et al., 2018), –CO2Et (AHEMEF; Hökelek et al., 2002), and –NHC(O)Ph (MUDWIS; Laitar et al., 2009). The unsubstituted 1,2,3,4-tetra­hydro­car­ba­zole and its halide derivatives share the same pairwise N—H⋯π and C—H⋯π inter­actions as found in (II), whereas in the –CO2Et (AHEMEF) and –NHC(O)Ph (MUDWIS) derivatives, the car­ba­zole N—H group hydrogen bonds inter­molecularly with the carbonyl O atom.

5. Synthesis and crystallization

In a fashion similar to that reported previously in the literature (Kumar et al., 2014), equimolar amounts of (p-meth­oxy­phen­yl)hydrazine hydro­chloride (10 mmol, 1.746 g) and cyclo­hexa­none (10 mmol, 1.04 ml) were added to a round-bottomed flask along with 10 mol% anti­mony trioxide as a catalyst (0.001 mol, 0.291 g) in methanol solvent (40 ml). The resulting mixture was refluxed in a mineral oil bath at 338 K overnight. The reaction mixture was then cooled to room temperature and quenched slowly with 10 ml of water and 10 ml of saturated sodium bicarbonate. The aqueous layer was then extracted with ethyl acetate (3 × 30 ml). The combined organic layer was dried overnight with anhydrous MgSO4, filtered, and evaporated under reduced pressure, yielding 740 mg (37%) of (II). The 1H NMR data matched those reported previously in the literature. After isolating the tetra­hydro­car­ba­zole, the remaining aqueous methanol was set aside in a refrigerator for several days, from which a batch of faint-yellow crystalline material was collected and found by X-ray crystallography, as well as NMR and IR spectroscopy, mass spectrometry, and elemental analysis, to be the nine-membered-ring com­pound 9-meth­oxy-3,4,5,6-tetra­hydro-1H-benzo[b]azonine-2,7-dione, (I), formed by the oxidative cleavage of the indole carbon–carbon double bond of the parent tetra­hydro­car­ba­zole 6-meth­oxy-1,2,3,4-tetra­hydro­car­ba­zole, (II).

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3. H atoms on C atoms were included in calculated positions and refined using a riding model, with C—H = 0.95 Å and U iso(H) = 1.2U eq(C) for aryl H atoms, C—H = 0.98 Å and U iso(H) = 1.5U eq(C) for methyl H atoms, and C—H = 0.99 Å and U iso(H) = 1.2U eq(C) for methyl­ene H atoms. The positions of the amide H atom in (I) and the amine H atom in (II) were found in difference maps and refined semi-freely using a distance restraint of N—H = 0.88 Å and U iso(H) = 1.2U eq(N).

Table 3. Experimental details.

Experiments were carried out at 125 K with Mo Kα radiation using a Bruker APEXII CCD diffractometer. Absorption was corrected for by multi-scan methods (SADABS; Bruker, 2013). Refinement was with 1 restraint. H atoms were treated by a mixture of independent and constrained refinement.

  (I) (II)
Crystal data
Chemical formula C13H15NO3 C13H15NO
M r 233.26 201.26
Crystal system, space group Monoclinic, P21/c Monoclinic, C2/c
a, b, c (Å) 16.0139 (8), 8.2743 (4), 8.5596 (4) 20.513 (2), 5.6374 (6), 18.783 (2)
β (°) 96.484 (1) 100.757 (2)
V3) 1126.92 (9) 2133.9 (4)
Z 4 8
μ (mm−1) 0.10 0.08
Crystal size (mm) 0.40 × 0.10 × 0.03 0.21 × 0.10 × 0.10
 
Data collection
T min, T max 0.91, 1.00 0.93, 0.99
No. of measured, independent and observed [I > 2σ(I)] reflections 27192, 3432, 2685 24248, 3249, 2619
R int 0.038 0.030
(sin θ/λ)max−1) 0.715 0.715
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.040, 0.110, 1.04 0.042, 0.117, 1.03
No. of reflections 3432 3249
No. of parameters 158 140
Δρmax, Δρmin (e Å−3) 0.37, −0.19 0.42, −0.18

Computer programs: APEX2 (Bruker, 2013), SAINT (Bruker, 2013), SHELXT2018 (Sheldrick, 2015a ), SHELXL2017 (Sheldrick, 2015b ), SHELXTL2014 (Sheldrick, 2008), OLEX2 (Dolomanov et al., 2009), and Mercury (Macrae et al., 2020).

7. Analytical data for (I)

1H NMR (Bruker Avance III HD 400 MHz, CDCl3): δ 1.84 (m, 4H, 2 CH 2), 2.25 (m, 2H, CH 2), 2.91 (m, 2H, CH 2), 3.86 (s, 3H, OCH 3), 7.02 (dd, 1H, Car­yl H, J ortho = 8.6 Hz, J meta = 3.0 Hz), 7.05 (d, 1H, Car­yl H, J meta = 3.0 Hz), 7.16 (d, 1H, Car­yl H, J ortho = 8.6 Hz), 7.19 (br s, 1H, NH). 13C NMR (13C{1H}, 100.6 MHz, CDCl3): δ 24.42 (CH2), 25.45 (CH2), 32.56 (CH2), 41.83 (CH2), 55.72 (OCH3), 112.87 (C ar­ylH), 117.99 (C ar­ylH), 126.58 (C ar­yl), 130.50 (C ar­ylH), 140.89 (C ar­yl), 159.37 (C ar­yl), 176.49 (C=O)NH, 205.76 (C=O). IR (Thermo Nicolet iS50, ATR, cm−1): 3197.85 (m, N—H str), 3004.02 (w, Car­yl—H str), 2936.23 (m, Calk­yl—H str), 2860.88 (w, Calk­yl—H str), 2834.53 (w, Calk­yl—H str), 1675.96 (s, C=O str), 1637.49 (s, amide C=O str), 1606.93 (m), 1586.93 (m), 1519.75 (m), 1494.23 (s), 1449.73 (m), 1436.91 (s), 1411.61 (m), 1334.69 (m), 1274.09 (s), 1255.42 (m), 1227.85 (s), 1208.66 (s), 1189.46 (m), 1166.34 (s), 1139.73 (s), 1108.74 (m), 1046.53 (m), 1031.85 (s), 948.63 (m), 919.84 (m), 895.70 (m), 856.17 (m), 827.82 (s), 811.89 (m), 793.28 (s), 745.79 (m), 718.67 (m), 688.02 (m), 624.27 (m), 604.18 (m), 580.24 (m), 531.09 (m), 497.82 (s), 462.99 (m), 432.18 (m). GC–MS (Agilent Technologies 7890A GC/5975C MS): M + = 233.1 amu. Elemental analysis (CHN) carried out by Robertson Microlit Laboratories, Ledgewood, NJ, USA. Analysis calculated (%) for C13H15NO3: C 66.94, H 6.48, N 6.00; found: C 66.58, H 6.57, N 5.92.

Supplementary Material

Crystal structure: contains datablock(s) global, I, II. DOI: 10.1107/S2056989023007259/dx2054sup1.cif

e-79-00831-sup1.cif (1.5MB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989023007259/dx2054Isup2.hkl

e-79-00831-Isup2.hkl (274KB, hkl)

Structure factors: contains datablock(s) II. DOI: 10.1107/S2056989023007259/dx2054IIsup3.hkl

e-79-00831-IIsup3.hkl (259.8KB, hkl)

Supporting information file. DOI: 10.1107/S2056989023007259/dx2054Isup4.cml

Supporting information file. DOI: 10.1107/S2056989023007259/dx2054IIsup5.cml

CCDC references: 2289217, 2289218

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported by Vassar College. X-ray facilities were provided by the U.S. National Science Foundation.

supplementary crystallographic information

9-Methoxy-3,4,5,6-tetrahydro-1H-benzo[b]azonine-2,7-dione (I) . Crystal data

C13H15NO3 F(000) = 496
Mr = 233.26 Dx = 1.375 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
a = 16.0139 (8) Å Cell parameters from 9966 reflections
b = 8.2743 (4) Å θ = 2.6–30.5°
c = 8.5596 (4) Å µ = 0.10 mm1
β = 96.484 (1)° T = 125 K
V = 1126.92 (9) Å3 Needle, yellow
Z = 4 0.40 × 0.10 × 0.03 mm

9-Methoxy-3,4,5,6-tetrahydro-1H-benzo[b]azonine-2,7-dione (I) . Data collection

Bruker APEXII CCD diffractometer 3432 independent reflections
Radiation source: sealed X-ray tube, Bruker APEXII CCD 2685 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.038
Detector resolution: 8.3333 pixels mm-1 θmax = 30.5°, θmin = 2.6°
φ and ω scans h = −22→22
Absorption correction: multi-scan (SADABS; Bruker, 2013) k = −11→11
Tmin = 0.91, Tmax = 1.00 l = −12→12
27192 measured reflections

9-Methoxy-3,4,5,6-tetrahydro-1H-benzo[b]azonine-2,7-dione (I) . Refinement

Refinement on F2 Primary atom site location: dual
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040 Hydrogen site location: mixed
wR(F2) = 0.110 H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0545P)2 + 0.3033P] where P = (Fo2 + 2Fc2)/3
3432 reflections (Δ/σ)max < 0.001
158 parameters Δρmax = 0.37 e Å3
1 restraint Δρmin = −0.19 e Å3

9-Methoxy-3,4,5,6-tetrahydro-1H-benzo[b]azonine-2,7-dione (I) . Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

9-Methoxy-3,4,5,6-tetrahydro-1H-benzo[b]azonine-2,7-dione (I) . Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.11242 (5) 0.38292 (11) 0.51840 (9) 0.02220 (19)
O2 0.27855 (6) 0.62150 (11) 0.56201 (10) 0.0280 (2)
O3 0.47875 (5) 0.12590 (10) 0.65022 (10) 0.0253 (2)
N1 0.16638 (6) 0.25619 (12) 0.31640 (10) 0.01783 (19)
H1 0.1564 (9) 0.2229 (17) 0.2199 (14) 0.021*
C1 0.10773 (7) 0.34800 (14) 0.37727 (12) 0.0177 (2)
C2 0.04082 (7) 0.41965 (15) 0.26000 (13) 0.0213 (2)
H2A −0.005196 0.463892 0.31533 0.026*
H2B 0.017052 0.33484 0.186381 0.026*
C3 0.07963 (7) 0.55581 (15) 0.16766 (13) 0.0217 (2)
H3A 0.106874 0.50615 0.081181 0.026*
H3B 0.033617 0.625756 0.119347 0.026*
C4 0.14461 (7) 0.66276 (14) 0.26519 (13) 0.0218 (2)
H4A 0.125394 0.681824 0.369587 0.026*
H4B 0.147046 0.768829 0.21239 0.026*
C5 0.23445 (7) 0.58971 (14) 0.28901 (13) 0.0204 (2)
H5A 0.236483 0.499036 0.214073 0.024*
H5B 0.274181 0.67316 0.259799 0.024*
C6 0.26634 (7) 0.52791 (14) 0.45201 (13) 0.0181 (2)
C7 0.29362 (7) 0.35427 (13) 0.47129 (12) 0.0163 (2)
C8 0.37105 (7) 0.32367 (13) 0.55989 (12) 0.0181 (2)
H8 0.401666 0.409546 0.613125 0.022*
C9 0.40292 (7) 0.16727 (14) 0.56963 (12) 0.0186 (2)
C10 0.35732 (7) 0.04099 (14) 0.49279 (13) 0.0208 (2)
H10 0.379971 −0.065242 0.496916 0.025*
C11 0.27931 (7) 0.06986 (14) 0.41066 (13) 0.0196 (2)
H11 0.247791 −0.017201 0.361538 0.024*
C12 0.24680 (6) 0.22611 (13) 0.39972 (12) 0.0161 (2)
C13 0.52750 (8) 0.25286 (16) 0.72746 (15) 0.0268 (3)
H13A 0.540945 0.332863 0.649661 0.04*
H13B 0.579679 0.20819 0.78132 0.04*
H13C 0.495377 0.304782 0.804483 0.04*

9-Methoxy-3,4,5,6-tetrahydro-1H-benzo[b]azonine-2,7-dione (I) . Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0201 (4) 0.0315 (5) 0.0149 (3) 0.0040 (3) 0.0016 (3) 0.0014 (3)
O2 0.0317 (5) 0.0223 (4) 0.0274 (4) 0.0051 (3) −0.0073 (4) −0.0077 (3)
O3 0.0179 (4) 0.0227 (4) 0.0332 (5) 0.0053 (3) −0.0061 (3) −0.0022 (3)
N1 0.0171 (4) 0.0211 (5) 0.0143 (4) −0.0007 (3) −0.0023 (3) −0.0025 (3)
C1 0.0147 (5) 0.0205 (5) 0.0174 (5) −0.0031 (4) 0.0000 (4) 0.0022 (4)
C2 0.0155 (5) 0.0287 (6) 0.0188 (5) 0.0002 (4) −0.0027 (4) 0.0017 (4)
C3 0.0209 (5) 0.0249 (6) 0.0179 (5) 0.0018 (4) −0.0032 (4) 0.0026 (4)
C4 0.0209 (5) 0.0205 (5) 0.0228 (5) 0.0027 (4) −0.0036 (4) 0.0018 (4)
C5 0.0194 (5) 0.0203 (5) 0.0212 (5) 0.0008 (4) 0.0006 (4) 0.0032 (4)
C6 0.0140 (5) 0.0186 (5) 0.0212 (5) 0.0002 (4) −0.0008 (4) −0.0012 (4)
C7 0.0162 (5) 0.0171 (5) 0.0156 (4) 0.0013 (4) 0.0013 (4) −0.0011 (4)
C8 0.0167 (5) 0.0184 (5) 0.0187 (5) 0.0009 (4) 0.0001 (4) −0.0023 (4)
C9 0.0149 (5) 0.0214 (5) 0.0193 (5) 0.0033 (4) 0.0007 (4) 0.0004 (4)
C10 0.0211 (5) 0.0177 (5) 0.0237 (5) 0.0032 (4) 0.0028 (4) −0.0011 (4)
C11 0.0207 (5) 0.0178 (5) 0.0202 (5) −0.0010 (4) 0.0017 (4) −0.0029 (4)
C12 0.0157 (5) 0.0194 (5) 0.0132 (4) 0.0005 (4) 0.0013 (3) −0.0005 (4)
C13 0.0196 (5) 0.0281 (6) 0.0309 (6) 0.0020 (5) −0.0053 (5) −0.0029 (5)

9-Methoxy-3,4,5,6-tetrahydro-1H-benzo[b]azonine-2,7-dione (I) . Geometric parameters (Å, º)

O1—C1 1.2361 (13) C5—C6 1.5192 (15)
O2—C6 1.2177 (13) C5—H5A 0.99
O3—C9 1.3705 (13) C5—H5B 0.99
O3—C13 1.4260 (15) C6—C7 1.5053 (15)
N1—C1 1.3570 (14) C7—C12 1.3995 (15)
N1—C12 1.4218 (14) C7—C8 1.4015 (15)
N1—H1 0.869 (12) C8—C9 1.3901 (16)
C1—C2 1.5047 (15) C8—H8 0.95
C2—C3 1.5463 (17) C9—C10 1.3961 (16)
C2—H2A 0.99 C10—C11 1.3834 (16)
C2—H2B 0.99 C10—H10 0.95
C3—C4 1.5384 (16) C11—C12 1.3930 (15)
C3—H3A 0.99 C11—H11 0.95
C3—H3B 0.99 C13—H13A 0.98
C4—C5 1.5526 (16) C13—H13B 0.98
C4—H4A 0.99 C13—H13C 0.98
C4—H4B 0.99
C9—O3—C13 117.19 (9) C4—C5—H5B 107.9
C1—N1—C12 122.17 (9) H5A—C5—H5B 107.2
C1—N1—H1 118.8 (9) O2—C6—C7 120.19 (10)
C12—N1—H1 118.8 (9) O2—C6—C5 120.27 (10)
O1—C1—N1 122.53 (10) C7—C6—C5 119.03 (9)
O1—C1—C2 121.33 (10) C12—C7—C8 119.84 (10)
N1—C1—C2 115.85 (9) C12—C7—C6 122.73 (9)
C1—C2—C3 109.33 (9) C8—C7—C6 117.38 (9)
C1—C2—H2A 109.8 C9—C8—C7 119.81 (10)
C3—C2—H2A 109.8 C9—C8—H8 120.1
C1—C2—H2B 109.8 C7—C8—H8 120.1
C3—C2—H2B 109.8 O3—C9—C8 124.13 (10)
H2A—C2—H2B 108.3 O3—C9—C10 115.90 (10)
C4—C3—C2 115.34 (9) C8—C9—C10 119.97 (10)
C4—C3—H3A 108.4 C11—C10—C9 120.30 (10)
C2—C3—H3A 108.4 C11—C10—H10 119.9
C4—C3—H3B 108.4 C9—C10—H10 119.9
C2—C3—H3B 108.4 C10—C11—C12 120.24 (10)
H3A—C3—H3B 107.5 C10—C11—H11 119.9
C3—C4—C5 114.03 (10) C12—C11—H11 119.9
C3—C4—H4A 108.7 C11—C12—C7 119.74 (10)
C5—C4—H4A 108.7 C11—C12—N1 120.44 (10)
C3—C4—H4B 108.7 C7—C12—N1 119.81 (10)
C5—C4—H4B 108.7 O3—C13—H13A 109.5
H4A—C4—H4B 107.6 O3—C13—H13B 109.5
C6—C5—C4 117.52 (9) H13A—C13—H13B 109.5
C6—C5—H5A 107.9 O3—C13—H13C 109.5
C4—C5—H5A 107.9 H13A—C13—H13C 109.5
C6—C5—H5B 107.9 H13B—C13—H13C 109.5
C12—N1—C1—O1 −15.63 (16) C13—O3—C9—C8 −0.42 (16)
C12—N1—C1—C2 158.31 (10) C13—O3—C9—C10 178.85 (10)
O1—C1—C2—C3 102.43 (12) C7—C8—C9—O3 178.48 (10)
N1—C1—C2—C3 −71.59 (13) C7—C8—C9—C10 −0.76 (16)
C1—C2—C3—C4 −38.86 (13) O3—C9—C10—C11 178.79 (10)
C2—C3—C4—C5 82.68 (12) C8—C9—C10—C11 −1.91 (16)
C3—C4—C5—C6 −108.22 (11) C9—C10—C11—C12 2.07 (17)
C4—C5—C6—O2 −65.85 (14) C10—C11—C12—C7 0.44 (16)
C4—C5—C6—C7 122.35 (11) C10—C11—C12—N1 −179.54 (10)
O2—C6—C7—C12 142.88 (11) C8—C7—C12—C11 −3.09 (15)
C5—C6—C7—C12 −45.31 (14) C6—C7—C12—C11 174.17 (10)
O2—C6—C7—C8 −39.79 (15) C8—C7—C12—N1 176.89 (9)
C5—C6—C7—C8 132.02 (10) C6—C7—C12—N1 −5.85 (15)
C12—C7—C8—C9 3.25 (16) C1—N1—C12—C11 132.57 (11)
C6—C7—C8—C9 −174.16 (10) C1—N1—C12—C7 −47.40 (14)

9-Methoxy-3,4,5,6-tetrahydro-1H-benzo[b]azonine-2,7-dione (I) . Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N1—H1···O1i 0.87 (1) 1.99 (1) 2.8426 (12) 167 (1)
C5—H5B···O2ii 0.99 2.41 3.2085 (14) 138
C13—H13B···O2iii 0.98 2.60 3.5793 (15) 174

Symmetry codes: (i) x, −y+1/2, z−1/2; (ii) x, −y+3/2, z−1/2; (iii) −x+1, y−1/2, −z+3/2.

6-Methoxy-1,2,3,4-tetrahydrocarbazole (II). Crystal data

C13H15NO F(000) = 864
Mr = 201.26 Dx = 1.253 Mg m3
Monoclinic, C2/c Mo Kα radiation, λ = 0.71073 Å
a = 20.513 (2) Å Cell parameters from 7271 reflections
b = 5.6374 (6) Å θ = 2.2–30.5°
c = 18.783 (2) Å µ = 0.08 mm1
β = 100.757 (2)° T = 125 K
V = 2133.9 (4) Å3 Block, yellow
Z = 8 0.21 × 0.10 × 0.10 mm

6-Methoxy-1,2,3,4-tetrahydrocarbazole (II). Data collection

Bruker APEXII CCD diffractometer 3249 independent reflections
Radiation source: sealed X-ray tube, Bruker APEXII CCD 2619 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.030
Detector resolution: 8.3333 pixels mm-1 θmax = 30.5°, θmin = 2.0°
φ and ω scans h = −29→29
Absorption correction: multi-scan (SADABS; Bruker, 2013) k = −8→8
Tmin = 0.93, Tmax = 0.99 l = −26→26
24248 measured reflections

6-Methoxy-1,2,3,4-tetrahydrocarbazole (II). Refinement

Refinement on F2 Primary atom site location: dual
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042 Hydrogen site location: mixed
wR(F2) = 0.117 H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0616P)2 + 1.016P] where P = (Fo2 + 2Fc2)/3
3249 reflections (Δ/σ)max = 0.001
140 parameters Δρmax = 0.42 e Å3
1 restraint Δρmin = −0.18 e Å3

6-Methoxy-1,2,3,4-tetrahydrocarbazole (II). Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

6-Methoxy-1,2,3,4-tetrahydrocarbazole (II). Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.87890 (4) 0.58856 (15) 0.58257 (5) 0.0314 (2)
N1 0.68765 (4) 1.06336 (16) 0.69736 (5) 0.02345 (19)
H1 0.6884 (6) 1.180 (2) 0.7285 (7) 0.028*
C1 0.63171 (5) 0.93481 (17) 0.66796 (5) 0.0209 (2)
C2 0.56378 (5) 0.97953 (19) 0.68306 (6) 0.0262 (2)
H2A 0.543971 1.11983 0.655501 0.031*
H2B 0.566248 1.011127 0.735341 0.031*
C3 0.52072 (5) 0.7590 (2) 0.66027 (6) 0.0269 (2)
H3A 0.533725 0.631075 0.696225 0.032*
H3B 0.473584 0.798258 0.659681 0.032*
C4 0.52847 (5) 0.6710 (2) 0.58520 (6) 0.0275 (2)
H4A 0.516861 0.800874 0.549615 0.033*
H4B 0.497181 0.538507 0.570449 0.033*
C5 0.59931 (5) 0.58670 (19) 0.58405 (6) 0.0232 (2)
H5A 0.606042 0.426696 0.605908 0.028*
H5B 0.606091 0.57628 0.533321 0.028*
C6 0.64860 (5) 0.75580 (17) 0.62552 (5) 0.01940 (19)
C7 0.71886 (5) 0.76989 (17) 0.62904 (5) 0.01899 (19)
C8 0.76363 (5) 0.63638 (18) 0.59683 (5) 0.0215 (2)
H8A 0.74878 0.505574 0.566186 0.026*
C9 0.83002 (5) 0.70122 (18) 0.61111 (5) 0.0229 (2)
C10 0.85231 (5) 0.89428 (19) 0.65691 (6) 0.0246 (2)
H10A 0.898194 0.93291 0.666406 0.03*
C11 0.80883 (5) 1.02892 (18) 0.68837 (6) 0.0241 (2)
H11A 0.824024 1.160428 0.718572 0.029*
C12 0.74189 (5) 0.96489 (17) 0.67422 (5) 0.02058 (19)
C13 0.85810 (6) 0.4022 (2) 0.53217 (6) 0.0298 (2)
H13A 0.896092 0.346117 0.512031 0.045*
H13B 0.823643 0.461442 0.492906 0.045*
H13C 0.840275 0.271001 0.556907 0.045*

6-Methoxy-1,2,3,4-tetrahydrocarbazole (II). Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0224 (4) 0.0352 (4) 0.0378 (4) 0.0034 (3) 0.0089 (3) −0.0030 (3)
N1 0.0257 (4) 0.0205 (4) 0.0244 (4) −0.0018 (3) 0.0053 (3) −0.0051 (3)
C1 0.0224 (5) 0.0199 (4) 0.0205 (4) −0.0002 (3) 0.0037 (3) 0.0013 (3)
C2 0.0260 (5) 0.0254 (5) 0.0291 (5) 0.0012 (4) 0.0099 (4) −0.0014 (4)
C3 0.0232 (5) 0.0307 (5) 0.0280 (5) −0.0024 (4) 0.0080 (4) −0.0010 (4)
C4 0.0211 (5) 0.0348 (6) 0.0259 (5) −0.0015 (4) 0.0025 (4) −0.0021 (4)
C5 0.0212 (4) 0.0255 (5) 0.0223 (5) −0.0025 (4) 0.0024 (4) −0.0027 (4)
C6 0.0199 (4) 0.0204 (4) 0.0174 (4) −0.0001 (3) 0.0021 (3) 0.0011 (3)
C7 0.0208 (4) 0.0187 (4) 0.0168 (4) −0.0006 (3) 0.0018 (3) 0.0016 (3)
C8 0.0220 (5) 0.0212 (4) 0.0207 (4) 0.0008 (4) 0.0028 (3) −0.0002 (3)
C9 0.0207 (5) 0.0248 (5) 0.0235 (5) 0.0022 (4) 0.0049 (4) 0.0042 (4)
C10 0.0201 (4) 0.0267 (5) 0.0260 (5) −0.0040 (4) 0.0018 (4) 0.0059 (4)
C11 0.0256 (5) 0.0220 (5) 0.0233 (5) −0.0052 (4) 0.0010 (4) 0.0009 (4)
C12 0.0227 (4) 0.0191 (4) 0.0194 (4) −0.0010 (3) 0.0025 (3) 0.0013 (3)
C13 0.0307 (5) 0.0322 (6) 0.0282 (5) 0.0082 (4) 0.0097 (4) 0.0025 (4)

6-Methoxy-1,2,3,4-tetrahydrocarbazole (II). Geometric parameters (Å, º)

O1—C9 1.3772 (12) C5—C6 1.4979 (14)
O1—C13 1.4251 (15) C5—H5A 0.99
N1—C1 1.3822 (13) C5—H5B 0.99
N1—C12 1.3841 (13) C6—C7 1.4327 (13)
N1—H1 0.878 (12) C7—C8 1.4083 (13)
C1—C6 1.3700 (14) C7—C12 1.4150 (13)
C1—C2 1.4944 (14) C8—C9 1.3870 (14)
C2—C3 1.5387 (15) C8—H8A 0.95
C2—H2A 0.99 C9—C10 1.4096 (15)
C2—H2B 0.99 C10—C11 1.3848 (15)
C3—C4 1.5309 (15) C10—H10A 0.95
C3—H3A 0.99 C11—C12 1.3964 (14)
C3—H3B 0.99 C11—H11A 0.95
C4—C5 1.5329 (15) C13—H13A 0.98
C4—H4A 0.99 C13—H13B 0.98
C4—H4B 0.99 C13—H13C 0.98
C9—O1—C13 116.68 (8) C4—C5—H5B 109.6
C1—N1—C12 108.69 (8) H5A—C5—H5B 108.1
C1—N1—H1 124.7 (9) C1—C6—C7 107.08 (8)
C12—N1—H1 126.4 (9) C1—C6—C5 123.50 (9)
C6—C1—N1 109.72 (9) C7—C6—C5 129.41 (9)
C6—C1—C2 125.50 (9) C8—C7—C12 120.09 (9)
N1—C1—C2 124.73 (9) C8—C7—C6 132.97 (9)
C1—C2—C3 108.54 (9) C12—C7—C6 106.93 (8)
C1—C2—H2A 110.0 C9—C8—C7 118.14 (9)
C3—C2—H2A 110.0 C9—C8—H8A 120.9
C1—C2—H2B 110.0 C7—C8—H8A 120.9
C3—C2—H2B 110.0 O1—C9—C8 124.27 (10)
H2A—C2—H2B 108.4 O1—C9—C10 114.63 (9)
C4—C3—C2 111.42 (9) C8—C9—C10 121.09 (9)
C4—C3—H3A 109.3 C11—C10—C9 121.49 (9)
C2—C3—H3A 109.3 C11—C10—H10A 119.3
C4—C3—H3B 109.3 C9—C10—H10A 119.3
C2—C3—H3B 109.3 C10—C11—C12 117.76 (10)
H3A—C3—H3B 108.0 C10—C11—H11A 121.1
C3—C4—C5 112.03 (9) C12—C11—H11A 121.1
C3—C4—H4A 109.2 N1—C12—C11 131.00 (10)
C5—C4—H4A 109.2 N1—C12—C7 107.57 (9)
C3—C4—H4B 109.2 C11—C12—C7 121.42 (9)
C5—C4—H4B 109.2 O1—C13—H13A 109.5
H4A—C4—H4B 107.9 O1—C13—H13B 109.5
C6—C5—C4 110.18 (9) H13A—C13—H13B 109.5
C6—C5—H5A 109.6 O1—C13—H13C 109.5
C4—C5—H5A 109.6 H13A—C13—H13C 109.5
C6—C5—H5B 109.6 H13B—C13—H13C 109.5
C12—N1—C1—C6 −0.59 (11) C12—C7—C8—C9 0.33 (14)
C12—N1—C1—C2 177.03 (9) C6—C7—C8—C9 178.98 (10)
C6—C1—C2—C3 14.48 (14) C13—O1—C9—C8 3.57 (15)
N1—C1—C2—C3 −162.77 (10) C13—O1—C9—C10 −175.98 (9)
C1—C2—C3—C4 −46.60 (12) C7—C8—C9—O1 −179.13 (9)
C2—C3—C4—C5 63.94 (12) C7—C8—C9—C10 0.40 (15)
C3—C4—C5—C6 −42.77 (12) O1—C9—C10—C11 178.46 (9)
N1—C1—C6—C7 0.80 (11) C8—C9—C10—C11 −1.11 (16)
C2—C1—C6—C7 −176.80 (9) C9—C10—C11—C12 1.03 (15)
N1—C1—C6—C5 −178.39 (9) C1—N1—C12—C11 179.80 (10)
C2—C1—C6—C5 4.01 (16) C1—N1—C12—C7 0.13 (11)
C4—C5—C6—C1 10.21 (14) C10—C11—C12—N1 −179.93 (10)
C4—C5—C6—C7 −168.79 (10) C10—C11—C12—C7 −0.29 (15)
C1—C6—C7—C8 −179.49 (10) C8—C7—C12—N1 179.32 (9)
C5—C6—C7—C8 −0.36 (18) C6—C7—C12—N1 0.36 (11)
C1—C6—C7—C12 −0.71 (11) C8—C7—C12—C11 −0.39 (15)
C5—C6—C7—C12 178.41 (9) C6—C7—C12—C11 −179.36 (9)

6-Methoxy-1,2,3,4-tetrahydrocarbazole (II). Hydrogen-bond geometry (Å, º)

Cg1 and Cg2 are the centroids of the C7–C12 and N1/C1/C6/C7/C12 rings, respectively.

D—H···A D—H H···A D···A D—H···A
N1—H1···Cg1i 0.88 (1) 2.41 (1) 3.2645 (11) 150
C11—H11A···Cg2i 0.95 2.61 3.5018 (12) 146

Symmetry code: (i) −x+3/2, y+1/2, −z+3/2.

Funding Statement

Funding for this research was provided by: National Science Foundation (grant Nos. 0521237 and 0911324 to J. M. Tanski).

References

  1. Baranova, T. Y., Zefirova, O. N., Banaru, A. M., Khrustalev, V. N., Ivanova, A. A., Ivanov, A. A. & Zefirov, N. S. (2012). Russ. J. Org. Chem. 48, 552–555.
  2. Bruker (2013). SAINT, SADABS, and APEX3. Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
  4. Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
  5. Hökelek, T., Patır, S., Ergün, Y. & Okay, G. (2002). Acta Cryst. E58, o1255–o1257. [DOI] [PubMed]
  6. Kumar, T. O. S., Mahadevan, K. M. & Kumara, M. N. (2014). Int. J. Pharm. Pharm. Sci. 6, 137–140.
  7. Laitar, D. S., Kramer, J. W., Whiting, B. T., Lobkovsky, E. B. & Coates, G. W. (2009). Chem. Commun. pp. 5704–5706. [DOI] [PubMed]
  8. Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235. [DOI] [PMC free article] [PubMed]
  9. McMahon, L. P., Yu, H.-T., Vela, M. A., Morales, G. A., Shui, L., Fronczek, F. R., McLaughlin, M. L. & Barkley, M. D. (1997). J. Phys. Chem. B, 101, 3269–3280.
  10. Murugavel, S., Kannan, P. S., SubbiahPandi, A., Surendiran, T. & Balasubramanian, S. (2008). Acta Cryst. E64, o2433. [DOI] [PMC free article] [PubMed]
  11. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  12. Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.
  13. Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.
  14. Shukla, R., Singh, P., Panini, P. & Chopra, D. (2018). Acta Cryst. B74, 376–384. [DOI] [PubMed]
  15. Siddalingamurthy, E., Mahadevan, K. M., Masagalli, J. N. & Harishkumar, H. N. (2013). Tetrahedron Lett. 54, 5591–5596.
  16. Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006–1011. [DOI] [PMC free article] [PubMed]
  17. Takemoto, M., Iwakiri, Y., Suzuki, Y. & Tanaka, K. (2004). Tetrahedron Lett. 45, 8061–8064.
  18. Tan, S. L., Jotani, M. M. & Tiekink, E. R. T. (2019). Acta Cryst. E75, 308–318. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I, II. DOI: 10.1107/S2056989023007259/dx2054sup1.cif

e-79-00831-sup1.cif (1.5MB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989023007259/dx2054Isup2.hkl

e-79-00831-Isup2.hkl (274KB, hkl)

Structure factors: contains datablock(s) II. DOI: 10.1107/S2056989023007259/dx2054IIsup3.hkl

e-79-00831-IIsup3.hkl (259.8KB, hkl)

Supporting information file. DOI: 10.1107/S2056989023007259/dx2054Isup4.cml

Supporting information file. DOI: 10.1107/S2056989023007259/dx2054IIsup5.cml

CCDC references: 2289217, 2289218

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES