Skip to main content
Journal of Medical Genetics logoLink to Journal of Medical Genetics
. 1982 Jun;19(3):204–209. doi: 10.1136/jmg.19.3.204

Alteration of NADH-diaphorase and cytochrome b5 reductase activities of erythrocytes, platelets, and leucocytes in hereditary methaemoglobinaemia with and without mental retardation.

M Takeshita, T Matsuki, K Tanishima, T Yubisui, Y Yoneyama, K Kurata, N Hara, T Igarashi
PMCID: PMC1048866  PMID: 6896729

Abstract

NADH-diaphorase and cytochrome b5 reductase activities of platelets and leucocytes, as well as erythrocytes, were found to be deficient in a patient with hereditary methaemoglobinaemia associated with moderate mental retardation and non-progressive neurological disturbance, in which hyperactive reflexes and involuntary movements were notable. In another methaemoglobinaemic patient with no mental or neurological abnormalities, these enzyme activities were defective in erythrocytes but normal in platelets and leucocytes. The first case was a generalised cytochrome b5 reductase deficiency with non-progressive encephalopathy. It is suggested that the detection of cytochrome b5 reductase activity in platelets, in addition to that in leucocytes, is useful for the assessment of a generalised enzyme defect. Genetical involvement of the present cases is discussed in association with the diaphorase gene loci in humans.

Full text

PDF
204

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Beauvais P., Leroux A., Kaplan J. C. La méthémoglobinémie héréditaire avec arriération mentale et troubles neurologiques. Etude clinique et biochimique et biochimique d'une observation. Nouv Presse Med. 1976 Dec 4;5(41):2793–2795. [PubMed] [Google Scholar]
  2. Böyum A. Isolation of mononuclear cells and granulocytes from human blood. Isolation of monuclear cells by one centrifugation, and of granulocytes by combining centrifugation and sedimentation at 1 g. Scand J Clin Lab Invest Suppl. 1968;97:77–89. [PubMed] [Google Scholar]
  3. DINE M. S. Congenital methemoglobinemia in the newborn period. AMA J Dis Child. 1956 Jul;92(1):15–19. doi: 10.1001/archpedi.1956.02060030017005. [DOI] [PubMed] [Google Scholar]
  4. Edwards Y. H., Potter J., Hopkinson D. A. Human FAD-dependent NAD(P)H diaphorase. Biochem J. 1980 May 1;187(2):429–436. doi: 10.1042/bj1870429. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Fialkow P. J., Browder J. A., Sparkes R. S., Motulsky A. G. Mental retardation in methemoglobinemia due to diaphorase deficiency. N Engl J Med. 1965 Oct 14;273(16):840–845. doi: 10.1056/NEJM196510142731602. [DOI] [PubMed] [Google Scholar]
  6. Fisher R. A., Edwards Y. H., Putt W., Potter J., Hopkinson D. A. An interpretation of human diaphorase isozymes in terms of three gene loci DIA1, DIA2 and DIA3. Ann Hum Genet. 1977 Oct;41(2):139–149. doi: 10.1111/j.1469-1809.1977.tb01908.x. [DOI] [PubMed] [Google Scholar]
  7. Hegesh E., Calmanovici N., Avron M. New method for determining ferrihemoglobin reductase (NADH-methemoglobin reductase) in erythrocytes. J Lab Clin Med. 1968 Aug;72(2):339–344. [PubMed] [Google Scholar]
  8. Heusden A., Willems C., Lambotte C., Hainaut H., Chapelle P., Malchair R. Méthémoglobinémie hérèditaire avec arrièration mentale. Etude de trois nouveaux cas. Arch Fr Pediatr. 1971 Jun-Jul;28(6):631–645. [PubMed] [Google Scholar]
  9. Hultquist D. E., Passon P. G. Catalysis of methaemoglobin reduction by erythrocyte cytochrome B5 and cytochrome B5 reductase. Nat New Biol. 1971 Feb 24;229(8):252–254. doi: 10.1038/newbio229252a0. [DOI] [PubMed] [Google Scholar]
  10. Kaplan J. C., Beutler E. Electrophoresis of red cell NADH- and NADPH-diaphorases in normal subjects and patients with congenital methemoglobinemia. Biochem Biophys Res Commun. 1967 Nov 30;29(4):605–610. doi: 10.1016/0006-291x(67)90529-3. [DOI] [PubMed] [Google Scholar]
  11. Kaplan J. C. Defective molecular variants of glucose-6-phosphate dehydrogenase and methaemoglobin reductase. J Clin Pathol Suppl (R Coll Pathol) 1974;8:134–141. [PMC free article] [PubMed] [Google Scholar]
  12. Kaplan J. C., Leroux A., Beauvais P. Formes cliniques et biologiques du déficit en cytochrome b5 réductase. C R Seances Soc Biol Fil. 1979;173(2):368–379. [PubMed] [Google Scholar]
  13. Keyes S. R., Alfano J. A., Jansson I., Cinti D. L. Rat liver microsomal elongation of fatty acids. Possible involvement of cytochrome b5. J Biol Chem. 1979 Aug 25;254(16):7778–7784. [PubMed] [Google Scholar]
  14. Kitao T., Sugita Y., Yoneyama Y., Hattori K. Methemoglobin reductase (cytochrome b5 reductase) deficiency in congenital methemoglobinemia. Blood. 1974 Dec;44(6):879–884. [PubMed] [Google Scholar]
  15. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  16. Leroux A., Junien C., Kaplan J., Bamberger J. Generalised deficiency of cytochrome b5 reductase in congenital methaemoglobinaemia with mental retardation. Nature. 1975 Dec 18;258(5536):619–620. doi: 10.1038/258619a0. [DOI] [PubMed] [Google Scholar]
  17. Leroux A., Kaplan J. C. Presence of red cell type NADH-methemoglobin reductase (NADH-diaphorase) in human non erythroid cells. Biochem Biophys Res Commun. 1972 Nov 15;49(4):945–950. doi: 10.1016/0006-291x(72)90303-8. [DOI] [PubMed] [Google Scholar]
  18. Leroux A., Torlinski L., Kaplan J. C. Soluble and microsomal forms of NADH-cytochrome beta 5 reductase from human placenta. Similarity with NADH-methemoglobin reductase from human erythrocytes. Biochim Biophys Acta. 1977 Mar 15;481(1):50–62. doi: 10.1016/0005-2744(77)90136-x. [DOI] [PubMed] [Google Scholar]
  19. Nishina T., Miwa S., Hara N., Asakura T. [Hereditary methemoglobinemia with mental and growth retardation found in a Japanese boy. With special reference to xylitol, sorbitol metabolism and methemoglobin reduction in the erythrocyte]. Nihon Ketsueki Gakkai Zasshi. 1970 Aug;33(4):455–461. [PubMed] [Google Scholar]
  20. Omura T., Takesue S. A new method for simultaneous purification of cytochrome b5 and NADPH-cytochrome c reductase from rat liver microsomes. J Biochem. 1970 Feb;67(2):249–257. doi: 10.1093/oxfordjournals.jbchem.a129248. [DOI] [PubMed] [Google Scholar]
  21. Oshino N., Imai Y., Sato R. A function of cytochrome b5 in fatty acid desaturation by rat liver microsomes. J Biochem. 1971 Jan;69(1):155–167. doi: 10.1093/oxfordjournals.jbchem.a129444. [DOI] [PubMed] [Google Scholar]
  22. Passon P. G., Reed D. W., Hultquist D. E. Soluble cytochrome b 5 from human erythrocytes. Biochim Biophys Acta. 1972 Jul 12;275(1):51–61. doi: 10.1016/0005-2728(72)90023-0. [DOI] [PubMed] [Google Scholar]
  23. Pugh E. L., Kates M. Direct desaturation of eicosatrienoyl lecithin to arachidonoyl lecithin by rat liver microsomes. J Biol Chem. 1977 Jan 10;252(1):68–73. [PubMed] [Google Scholar]
  24. SCOTT E. M. The relation of diaphorase of human erythrocytes to inheritance of methemoglobinemia. J Clin Invest. 1960 Jul;39:1176–1179. doi: 10.1172/JCI104131. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. SIMON The doctor in the witness-box. Br Med J. 1953 Jul 4;2(4826):1–3. doi: 10.1136/bmj.2.4826.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Sugita Y., Nomura S., Yoneyama Y. Purification of reduced pyridine nucleotide dehydrogenase from human erythrocytes and methemoglobin reduction by the enzyme. J Biol Chem. 1971 Oct 10;246(19):6072–6078. [PubMed] [Google Scholar]
  27. Vetrella M., Astedt B., Barthelmai W., Neuvians D. Activity of NADH- and NADPH-dependent methemoglobin reductases in erythrocytes from fetal to adult age. A parallel assessment. Klin Wochenschr. 1971 Sep 1;49(17):972–977. doi: 10.1007/BF01489462. [DOI] [PubMed] [Google Scholar]
  28. Vives-Corrons J. L., Pujades A., Vela E., Corretger J. M., Leroux A., Kaplan J. C. Congenital methemoglobin-reductase (cytochrome b5 reductase) deficiency associated with mental retardation in a Spanish girl. Acta Haematol. 1978;59(6):348–353. doi: 10.1159/000207786. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Medical Genetics are provided here courtesy of BMJ Publishing Group

RESOURCES