Table 2.
Target | Model | Method | Results | Reference |
---|---|---|---|---|
| ||||
LDLR | Mouse, C57BL/6J | AAV-CRISPR/SaCas9 disruption | Severe hypercholesterolemia Atherosclerotic lesions in aortas |
Jarrett, K. E. 2018 (21) |
Mouse, C57BL/6 | CRISPR/SpCas9 HDR into fertilized eggs |
Elevated plasma cholesterol Atherosclerotic lesions in aortas |
Zhao, H. 2020 (23) | |
Mouse, LdlrE208X Knock-in | Dual AAVs-CRISPR/SpCas9 HDR | 18% restoration LDLR protein ~65% decrease cholesterol Smaller atherosclerotic lesions in aortas |
Zhao, H. 2020 (23) | |
Human iPSC, FH Patient | CRISPR/SpCas9 Nickase, HDR repair |
Restored normal LDLR structure | Omer, L. 2017 (63) | |
| ||||
LDLR + APOB | Mouse, Cas9 Transgenic | AAV disruption | Reduced plasma cholesterol Protection against atherosclerosis |
Jarrett, K. E. 2017 (64) |
| ||||
PCSK9 | Mouse, C57BL/6 | Adenovirus-CRISPR/SpCas9 disruption | 90% decrease PCSK9 protein 35–40% decrease plasma cholesterol |
Ding, Q. 2014 (84) |
Mouse, C57BL/6 | AAV-CRISPR/SaCas9 disruption | ~95% decrease PCSK9 protein ~40% decrease plasma cholesterol |
Ran, F. 2015 (53) | |
Mouse, C57BL/6 | LNP-CRISPR/SpCas9 disruption | Undetectable PCSK9 protein 35–40% decrease plasma cholestero |
Yin, H. 2017 (87) | |
Mouse, C57BL/6J | Adenovirus-BE3 base editing disruption | ~55% decrease PCSK9 protein ~30% decrease plasma cholesterol |
Chadwick, A. C. 2017 (88) | |
Mouse, C57BL/6 | Dual AAVs-CBE base editing disruption | ~20–25% editing efficiency Pcsk9 38% editing in liver overall |
Levy, J. M. 2020 (89) | |
Mouse, Chimeric Liver-Humanized | Adenovirus-CRISPR/SpCas9 disruption | 52% decrease human PCSK9 protein | Wang, X. 2016 (86) | |
Non-human primate, Rhesus macaque | AAV-1st generation meganuclease disruption | Up to 84% decrease PCSK9 protein Up to 60% decrease LDL-C |
Wang, L. 2018 (24) | |
Non-human primate, Rhesus macaque | AAV-2nd generation meganuclease disruption | 55–62% decrease PCSK9 protein 33–39% decrease LDL-C |
Wang, L. 2018 (24) | |
Non-human primate, Rhesus macaque | AAV-2nd generation meganuclease (self-targeting) disruption | 24–60% decrease PCSK9 protein 11–36% decrease LDL-C |
Breton, C. 2021 (90) | |
Non-human primate, Cynomolgus macaque | LNP-ABE base editing disruption | 32% decrease PCSK9 protein 14% decrease LDL-C |
Rothgangl, T. 2021 (46) | |
Non-human primate, Cynomolgus macaque | LNP-ABE8.8 base editing disruption | 81–90% decrease PCSK9 proteinn 60–65% decrease LDL-C |
Musunuru, K. 2021 (47) | |
| ||||
ANGPTL3 | Mouse, C57BL/6 | LNP-CRISPR/SpCas9 disruption | 65% decrease ANTPL3 protein 56% decrease LDL-C 29% decrease TG |
Qiu, M. 2021 (96) |
Mouse, C57BL/6J | Adenovirus-BE3 base editing disruption | 49% decrease ANGPTL3 protein 19% decrease cholesterol 31% decrease TG |
Chadwick, A. C. 2018 (97) | |
Mouse, Ldlr Knockout | Adenovirus-BE3 base editing disruption | 51% decrease cholesterol 56% decrease TG |
Chadwick, A. C. 2018 (97) | |
Non-human primate | LNP-ABE base editing disruption | 95% decrease ANGPTL3 protein 19% decrease LDL-C 64% decrease TG |
Verve Therapeutics (98) | |
| ||||
PCSK9 + ANGPTL3 | Mouse, C57BL/6J | Adenovirus-BE3 base editing disruption | ~20% decrease cholesterol ~20–30% decrease TG |
Chadwick, A. C. 2018 (97) |
| ||||
APOC3 | Hamster, Syrian Golden | CRISPR/Cas9 disruption | ~50% decrease TG Some protection against atherosclerosis |
Guo, M. 2020 (102) |
Rabbit, New Zealand White | CRISPR/Cas9 disruption | 50% decrease TG Protection against atherosclerosis |
Zha, Y, 2021 (103) |
AAV, adeno-associated virus; ANGPTL3, angiopoietin-like 3; APOB, apolipoprotein B; APOC3, apolipoprotein C3; CRISPR/CAS, clustered regularly interspaced short palindromic repeats /CRISPR-associated; HDR, homology-directed repair; LDL-C, low density lipoprotein cholesterol; LDLR, low density lipoprotein receptor; LNP, lipid nanoparticle; PCSK9, proprotein convertase subtilisin/kexin type 9; SaCas9, Staphylococcus aureus Cas9; SpCas9, Streptococcus pyogenes Cas9; TG, triglyceride.