Skip to main content
Data in Brief logoLink to Data in Brief
. 2023 Aug 26;50:109520. doi: 10.1016/j.dib.2023.109520

Meta-analysis data of skeletal muscle slow fiber content across mammalian species

Samantha R Queeno a,, Kirstin N Sterner a, Matthew C O'Neill b
PMCID: PMC10493253  PMID: 37701714

Abstract

Herein, the dataset generated for Queeno et al. [1] is presented and described. Mammalian skeletal muscle slow (MyHC-I) fiber composition data was collated from 269 eligible studies identified via a systematic literature search and meta-analysis, following a structure similar to PRISMA [2]. Academic search systems were queried with terms relating to mammalian skeletal muscle fiber content and reference lists of selected articles were thoroughly investigated for additional studies. Eligible studies were those that provided skeletal muscle fiber composition data from mammalian species that were not subjected to experimental manipulations. Taxonomic information, sex, age, number of individuals sampled, average body mass (kg), average slow fiber content (%) of each skeletal muscle under investigation and fiber-typing methodology were collated from eligible studies when available. Muscle fiber composition data was collected from more than 200 skeletal muscles across 174 mammalian species, which will be of value to those interested in muscle physiology, interspecific muscle comparisons, and connections between muscle physiology, taxonomy, body mass, ecomorphology and locomotor strategy (among others).

Keywords: Muscle fiber composition, Myosin heavy chain I, MyHC I, Slow-twitch, Fiber typing, Interspecific muscle physiology comparison


Specifications Table

Subject Animal physiology
Specific subject area Biology, muscle, anatomy, life sciences, meta-analysis, interspecific comparison, locomotion
Type of data Tables
Figures
How the data were acquired A systematic literature search was conducted using academic search systems (Google Scholar, PubMed, and JSTOR) and library databases between June 1 2021 and November 30 2022 following a structure similar to PRISMA [2]. Reference lists of selected articles were also thoroughly investigated for additional studies. Data were extracted from the text, figures, tables, and supplementary materials of studies deemed eligible for the systematic review and meta-analysis (i.e. studies that provided skeletal muscle fiber composition data from mammalian species that were not subjected to experimental manipulations).
Data format Secondary data
Analyzed
Filtered
Description of data collection Taxonomic information, sex, age, number of individuals sampled, average body mass (kg), average slow fiber content (%) of each skeletal muscle under investigation and fiber-typing methodology were collated from eligible studies when available. If species body mass was not reported the mean was taken from published studies [3,4]. If muscle fiber content was reported from multiple sampling sites across a single muscle, the average across sampling sites was recorded.
Data source location Eligible studies providing mammalian skeletal muscle fiber content are listed in Table 1.
Data accessibility Repository name: Mendeley Data
Data identification number: doi:10.17632/y47mj24ywy.3
Direct URL to data: https://data.mendeley.com/datasets/y47mj24ywy/3
Related research article S.R. Queeno, P.J. Reiser, C.M. Orr, T.D. Capellini, K.N. Sterner, M.C. O’Neill, Human and African ape myosin heavy chain content and the evolution of hominin skeletal muscle, Comp. Biochem. Physiol. A Mol. Integr. Physiol. 281 (2023) 111415.

1. Value of the Data

  • This is the first meta-analysis of its kind, which compiles skeletal muscle fiber composition data across 174 mammalian species into a single, usable file.

  • These data will be of value to scientists interested in muscle physiology, interspecific muscle comparisons, and connections between muscle physiology, taxonomy, body mass, ecomorphology and locomotor strategy (among others).

  • These data highlight certain species, taxonomic orders, and muscles for which fiber composition data is lacking and needs investigation.

  • These data will spark interest in gathering muscle fiber composition data from currently unsampled (or underrepresented) species and muscles, generate interest in pursuing questions relating to muscle physiology and evolution, as well as analyses based on interspecific datasets.

2. Objective

Skeletal muscle slow fiber content varies across muscles and taxa and is one of the traits that distinguishes humans from other apes [1,5], yet no study to date has compiled these data into a single, usable format. The goal of this study was to compile mammalian skeletal muscle slow (MyHC-I) fiber composition data from published, peer-reviewed articles for interspecific comparison and analysis. This is the dataset referred to in Queeno et al. [1].

3. Data Description

A total of 2610 studies were found from academic search systems (Google Scholar, PubMed, and JSTOR) and library databases according to the selection criteria (Fig. 1). Of these, 2459 studies were selected for screening. After reading the abstract, 389 articles were selected for full-text eligibility assessment. In total, 269 studies fully met the selection criteria and were selected for inclusion in the meta-analysis (Table 1).

Fig. 1.

Fig 1

PRISMA flow diagram adopted from Moher et al. [2] describing the systematic review and meta-analysis workflow.

Table 1.

Citations for the 269 studies that met the selection criteria and were included in the meta-analysis.

Number Citation
1 Acevedo, L.M., Rivero, J.L.L., 2006. New insights into skeletal muscle fibre types in the dog with particular focus towards hybrid myosin phenotypes. Cell Tissue Res 323, 283–303. https://doi.org/10.1007/s00441-005-0057-4
2 Acosta, L., Roy, R.R., 1987. Fiber-type composition of selected hindlimb muscles of a primate (cynomolgus monkey). Anat Rec 218, 136–141. https://doi.org/10.1002/ar.1092180207
3 Agostini, de Martino, L., Soltau, B., Hasselbach, W., 1991. The Modulation of the Calcium Transport by Skeletal Muscle Sarcoplasmic Reticulum in the Hibernating European Hamster. Zeitschrift für Naturforschung C 46, 1109–1126. https://doi.org/10.1515/znc-1991-11-1229
4 Aigner, S., Gohlsch, B., Hämaläinen, N., Staron, R.S., Uber, A., Wehrle, U., Pette, D., 1993. Fast myosin heavy chain diversity in skeletal muscles of the rabbit: heavy chain IId, not IIb predominates. Eur J Biochem 211, 367–372. https://doi.org/10.1111/j.1432-1033.1993.tb19906.x
5 Almeida-Silveira, M.I., Pérot, C., Pousson, M., Goubel, F., 1994. Effects of stretch-shortening cycle training on mechanical properties and fibre type transition in the rat soleus muscle. Pflug Arch Eur J Physiol 427, 289–94. https://doi.org/10.1007/BF00374536
6 Alnaqeeb, M.A., Al-Baker, E., 1994. Muscle fiber type, number and size in the EDL and soleus of Jaculus jaculus. J. Univ. Kuwait (Sci.) 21, 231–241.
7 Alvarez, G.I., Díaz, A.O., Longo, M. v., Becerra, F., Vassallo, A.I., 2012. Histochemical and Morphometric Analyses of the Musculature of the Forelimb of the Subterranean Rodent Ctenomys talarum (Octodontoidea). J Vet Med C: Anat Histol Embryol41, 317–325. https://doi.org/10.1111/j.1439-0264.2012.01137.x
8 Anapol, F.C., Jungers, W.L., 1986. Architectural and histochemical diversity within the quadriceps femoris of the brown lemur (Lemur fulvus). Am J Phys Anthropol 69, 355–375. https://doi.org/10.1002/ajpa.1330690308
9 Ansved, T., 1995. Effects of immobilization on the rat soleus muscle in relation to age. Acta Physiol Scand 154, 291–302. https://doi.org/10.1111/j.1748-1716.1995.tb09913.x
10 Arbanas, J., Klasan, G.S., Nikolić, M., Cvijanović, O., Malnar, D., 2010. Immunohistochemical analysis of the human psoas major muscle with regards to the body side and aging. Coll Antropol 34 Suppl 2, 169–73.
11 Arbanas, J., Klasan, G.S., Nikolic, M., Jerkovic, R., Miljanovic, I., Malnar, D., 2009. Fibre type composition of the human psoas major muscle with regard to the level of its origin. J Anat 215, 636–41. https://doi.org/10.1111/j.1469-7580.2009.01155.x
12 Ariano, M.A., Edgerton, V.R., Armstrong, R.B., 1973. Hindlimb muscle fiber populations of five mammals. J Histochem Cytochem 21, 51–55. https://doi.org/10.1177/21.1.51
13 Armstrong, R.B., Ianuzzo, C.D., Kunz, T.H., 1977. Histochemical and biochemical properties of flight muscle fibers in the little brown bat,Myotis lucifugus. J Comp Physiol B: Biochem Syst Environ Physiol 119, 141–154. https://doi.org/10.1007/BF00686562
14 Armstrong, R.B., Phelps, R.O., 1984. Muscle fiber type composition of the rat hindlimb. Am J Anat 171, 259–272. https://doi.org/10.1002/aja.1001710303
15 Armstrong, R.B., Saubert, C.W., Seeherman, H.J., Taylor, C.R., 1982. Distribution of fiber types in locomotory muscles of dogs. Am J Anat 163, 87–98. https://doi.org/10.1002/aja.1001630107
16 Asmussen, G., Gaunitz, U., 1989. Temperature effects on isometric contractions of slow and fast twitch muscles of various rodents–dependence on fibre type composition: a comparative study. Biomed Biochim Acta 48, S536-41.
17 Augusto, V., Padovani, C.R., Rocha Campos, G.E., 2004. Skeletal muscle fiber types in C57Bl6J mice. Braz J Morphol Sci 21, 89–94.
18 Bao, T., Han, H., Li, B., Zhao, Y., Bou, G., Zhang, X., Du, M., Zhao, R., Mongke, T., Laxima, Ding, W., Jia, Z., Dugarjaviin, M., Bai, D., 2020. The distinct transcriptomes of fast-twitch and slow-twitch muscles in Mongolian horses. Comp Biochem Physiol Part D Genomics Proteomics 33, 100649. https://doi.org/10.1016/j.cbd.2019.100649
19 Bär, A., Pette, D., 1988. Three fast myosin heavy chains in adult rat skeletal muscle. FEBS Lett 235, 153–155. https://doi.org/10.1016/0014-5793(88)81253-5
20 Beecher, G.R., Cassens, R.G., Hoekstra, W.G., Briskey, E.J., 1965. Red and White Fiber Content and Associated Post-Mortem Properties of Seven Porcine Muscles. J Food Sci 30, 969–976. https://doi.org/10.1111/j.1365-2621.1965.tb01872.x
21 Bello, M.A., Roy, R.R., Martin, T.P., Goforth, H.W., Edgerton, V.R., 1985. Axial musculature in the dolphin (Tursiops truncatus): Some architectural and histochemical characteristics. Mar Mamm Sci 1, 324–336. https://doi.org/10.1111/j.1748-7692.1985.tb00019.x
22 Bloemberg, D., Quadrilatero, J., 2012. Rapid determination of myosin heavy chain expression in rat, mouse, and human skeletal muscle using multicolor immunofluorescence analysis. PLoS One 7. https://doi.org/10.1371/journal.pone.0035273
23 Bonington, A., Whitmore, I., Mahon, M., 1987. A histological and histochemical study of the cricopharyngeus muscle in the guinea-pig. J Anat 153, 151–61.
24 Boyd-Clark, L.C., Briggs, C.A., Galea, M.P., 2001. Comparative histochemical composition of muscle fibres in a pre- and a postvertebral muscle of the cervical spine. J Anat 199, 709–716. https://doi.org/10.1017/S0021878201008706
25 Brandstetter, A.M., Picard, B., Geay, Y., 1998. Muscle fibre characteristics in four muscles of growing bulls I. Postnatal differentiation, Livest Prod Sci.
26 Brasseur, J.E., Curtis, R.L., Mellender, J.W., Rimm, A.A., Melvin, J.L., Sulaiman, A.R., 1987. Systematic distribution of muscle fiber types in the medical gastrocnemius of the laboratory mouse: A morphometric analysis. Anat Rec 218, 396–401. https://doi.org/10.1002/ar.1092180407
27 Braund, K.G., Amling, K.A., Mehta, J.R., Steiss, J.E., Scholz, C., 1995. Histochemical and morphometric study of fiber types in ten skeletal muscles of healthy young adult cats. Am J Vet Res 56, 349–57.
28 Braund, K.G., Mcguire, J.A., Lincoln, C.E., 1982. Observations on Normal Skeletal Muscle of Mature Dogs: A Cytochemical, Histochemical, and Morphometric Study, Vet Pathol.
29 Brigham, R.M., Ianuzzo, C.D., Hamilton, N., Fenton, M.B., 1990. Histochemical and biochemical plasticity of muscle fibers in the little brown bat (Myotis lucifugus). J Comp Physiol B: Biochem Syst Environ Physiol 160, 183–186. https://doi.org/10.1007/BF00300951
30 Burke, R.E., 1967. Motor unit types of cat triceps surae muscle. J Physiol 193, 141–160. https://doi.org/10.1113/jphysiol.1967.sp008348
31 Burke, R.E., Levine, D.N., Salcman, M., Tsairis, P., 1974. Motor units in cat soleus muscle: physiological, histochemical and morphological characteristics. J Physiol 238, 503–514. https://doi.org/10.1113/jphysiol.1974.sp010540
32 Burke, R.E., Levine, D.N., Tsairis, P., Zajac, F.E., 1973. Physiological types and histochemical profiles in motor units of the cat gastrocnemius. J Physiol 234, 723–748. https://doi.org/10.1113/jphysiol.1973.sp010369
33 Burkholder, T.J., Fingado, B., Baron, S., Lieber, R.L., 1994. Relationship between muscle fiber types and sizes and muscle architectural properties in the mouse hindlimb. J Morphol 221, 177–190. https://doi.org/10.1002/jmor.1052210207
34 Carlson, H., 1978. Histochemical fiber composition of lumbar back muscles in the cat. Acta Physiol Scand 103, 198–209. https://doi.org/10.1111/j.1748-1716.1978.tb06207.x
35 Casinos, A., Milne, N., Jouffroy, F.K., Médina, M.F., 2016. Muscle fibre types in the reduced forelimb and enlarged hindlimb of the quokka (Setonix brachyurus, Macropodidae). Aust J Zool 64, 277–284. https://doi.org/10.1071/ZO15055
36 Cebesoy, S., 2009. Morphology and histochemistry of primary flight muscles in Rhinolophus mehelyii. Afr J Biotechnol 8, 1160–1164.
37 Cebesoy, S., Ayvali, C., 2003. Morphology and histochemistry of primary flight muscles in Myotis myotis 16, 245–252.
38 Chanaud, C.M., Pratt, C.A., Loeb, G.E., 1991. Functionally complex muscles of the cat hindlimb. Exp Brain Res 85, 300–313. https://doi.org/10.1007/BF00229408
39 Chang, H., Jiang, S., Ma, X., Peng, X., Zhang, J., Wang, Z., Xu, S., Wang, H., Gao, Y., 2018. Proteomic analysis reveals the distinct energy and protein metabolism characteristics involved in myofiber type conversion and resistance of atrophy in the extensor digitorum longus muscle of hibernating Daurian ground squirrels. Comp Biochem Physiol Part D Genomics Proteomics 26, 20–31. https://doi.org/10.1016/j.cbd.2018.02.002
40 Choi, H., Selpides, P.-J.I., Nowell, M.M., Rourke, B.C., 2009. Functional overload in ground squirrel plantaris muscle fails to induce myosin isoform shifts. Am J Physiol Regul Integr Comp Physiol 297, R578-86. https://doi.org/10.1152/ajpregu.00236.2009
41 Chopard, A., Pons, F., Marini, J.F., 2001. Cytoskeletal protein contents before and after hindlimb suspension in a fast and slow rat skeletal muscle. Am J Physiol Regul Integr Comp Physiol 280, R323-30. https://doi.org/10.1152/ajpregu.2001.280.2.R323
42 Collatos, T.C., Edgerton, V.R., Smith, J.L., Botterman, B.R., 1977. Contractile properties and fiber type compositions of flexors and extensors of elbow joint in cat: implications for motor control. J Neurophysiol 40, 1292–1300. https://doi.org/10.1152/jn.1977.40.6.1292
43 Cordonnier, C., Stevens, L., Picquet, F., Mounier, Y., 1995. Structure-function relationship of soleus muscle fibres from the rhesus monkey. Pflug Arch Eur J Physiol 430, 19–25. https://doi.org/10.1007/BF00373835
44 Cornachione, A.S., Benedini-Elias, P.C.O., Polizello, J.C., Carvalho, L.C., Mattiello-Sverzut, A.C., 2011. Characterization of fiber types in different muscles of the hindlimb in female weanling and adult wistar rats. Acta Histochem Cytochem 44, 43–50. https://doi.org/10.1267/ahc.10031
45 Cotton, C.J., Harlow, H.J., 2010. Avoidance of Skeletal Muscle Atrophy in Spontaneous and Facultative Hibernators. Physiol Biochem Zool 83, 551–560. https://doi.org/10.1086/650471
46 Curry, J.W., Hohl, R., Noakes, T.D., Kohn, T.A., 2012. High oxidative capacity and type IIx fibre content in springbok and fallow deer skeletal muscle suggest fast sprinters with a resistance to fatigue. J Exp Biol 215, 3997–4005. https://doi.org/10.1242/jeb.073684
47 Dada, S., Henning, F., Feldmann, D.C., Kohn, T.A., 2018. Baboon (Papio ursinus) single fibre contractile properties are similar to that of trained humans. J Muscle Res Cell Motil 39, 189–199. https://doi.org/10.1007/s10974-019-09509-x
48 de A. Braga, S., G. F. Padilha, F., M. R. Ferreira, A., 2016. Evaluation of Muscle Fiber Types in German Shepherd Dogs of Different Ages. Anat Rec 299, 1540–1547. https://doi.org/10.1002/ar.23464
49 de Diego, M., Casado, A., Gómez, M., Martín, J., Pastor, J.F., Potau, J.M., 2020. Structural and molecular analysis of elbow flexor muscles in modern humans and common chimpanzees. Zoomorphology 139, 277–290. https://doi.org/10.1007/s00435-020-00482-5
50 Delp, M.D., Duan, C., 1996. Composition and size of type I, IIA, IID/X, and IIB fibers and citrate synthase activity of rat muscle. J Appl Physiol 80, 261–270. https://doi.org/10.1152/jappl.1996.80.1.261
51 Dennington, S., Baldwin, J., 1988. Biochemical Correlates of Energy-Metabolism in Muscles Used to Power Hopping by Kangaroos. Aust J Zool 36, 229. https://doi.org/10.1071/ZO9880229
52 Donselaar, Y., Eerbeek, O., Kernell, D., Verhey, B.A., 1987. Fibre sizes and histochemical staining characteristics in normal and chronically stimulated fast muscle of cat. J Physiol 382, 237–54. https://doi.org/10.1113/jphysiol.1987.sp016365
53 Edgerton, V.R., Barnard, R.J., Peter, J.B., Maier, A., Simpson, D.R., 1975a. Properties of immobilized hind-limb muscles of the Galago senegalensis. Exp Neurol 46, 115–131. https://doi.org/10.1016/0014-4886(75)90036-9
54 Edgerton, V.R., Smith, J.L., Simpson, D.R., 1975b. Muscle fibre type populations of human leg muscles. Histochem J 7, 259–266. https://doi.org/10.1007/BF01003594
55 Edström, L., Lindquist, C., 1973. Histochemical fiber composition of some facial muscles in the cat in relation to their contraction properties. Acta Physiol Scand 89, 491–503. https://doi.org/10.1111/j.1748-1716.1973.tb05543.x
56 Edström, L., Nyström, B., 1969. Histochemical types and sizes of fibres in normal human muscles. A biopsy study. Acta Neurol Scand 45, 257–69. https://doi.org/10.1111/j.1600-0404.1969.tb01238.x
57 Egginton, S., 1990. Numerical and areal density estimates of fibre type composition in a skeletal muscle (rat extensor digitorum longus). J Anat 168, 73–80.
58 Eizema, K., van den Burg, M., Kiri, A., Dingboom, E.G., van Oudheusden, H., Goldspink, G., Weijs, W.A., 2003. Differential expression of equine myosin heavy-chain mRNA and protein isoforms in a limb muscle. J Histochem Cytochem 51, 1207–16. https://doi.org/10.1177/002215540305100911
59 Eizema, K., van den Burg, M.M.M., de Jonge, H.W., Dingboom, E.G., Weijs, W.A., Everts, M.E., 2005. Myosin heavy chain isoforms in equine gluteus medius muscle: comparison of mRNA and protein expression profiles. J Histochem Cytochem 53, 1383–90. https://doi.org/10.1369/jhc.4A6609.2005
60 Eng, C.M., Smallwood, L.H., Rainiero, M.P., Lahey, M., Ward, S.R., Lieber, R.L., 2008. Scaling of muscle architecture and fiber types in the rat hindlimb. J Exp Biol 211, 2336–2345. https://doi.org/10.1242/jeb.017640
61 English, A.W., Letbetter, W.D., 1982. A histochemical analysis of identified compartments of cat lateral gastrocnemius muscle. Anat Rec 204, 123–30. https://doi.org/10.1002/ar.1092040205
62 Enríquez, V., Granados, S., Arias, M.P., Calderón, J.C., 2015. Muscle Fiber Types of Gluteus Medius in the Colombian Creole Horse. J Equine Vet Sci 35, 524–530. https://doi.org/10.1016/j.jevs.2015.02.010
63 Essén-Gustavsson, B., Fjelkner-Modig, S., 1985. Skeletal muscle characteristics in different breeds of pigs in relation to sensory properties of meat. Meat Sci 13, 33–47. https://doi.org/10.1016/S0309-1740(85)80003-6
64 Essén-Gustavsson, B., Rehbinder, C., 1985. Skeletal muscle characteristics of reindeer (Rangifer tarandus L.). Comp Biochem Physiol A Physiol 82, 675–679. https://doi.org/10.1016/0300-9629(85)90450-5
65 Feng, X., Zhang, T., Xu, Z., Choi, S.J., Qian, J., Furdui, C.M., Register, T.C., Delbono, O., 2012. Myosin heavy chain isoform expression in the Vastus Lateralis muscle of aging African green vervet monkeys. Exp Gerontol 47, 601–607. https://doi.org/10.1016/j.exger.2012.05.007
66 Fitts, R.H., Bodine, S.C., Romatowski, J.G., Widrick, J.J., 1998. Velocity, force, power, and Ca2+ sensitivity of fast and slow monkey skeletal muscle fibers. J Appl Physiol 84, 1776–87. https://doi.org/10.1152/jappl.1998.84.5.1776
67 Foehring, R.C., Hermanson, J.W., 1984. Morphology and Histochemistry of Flight Muscles in Free-Tailed Bats, Tadarida brasiliensis. J Mammal 65, 388–394. https://doi.org/10.2307/1381084
68 Ford, D.M., Bagnall, K.M., McFadden, K.D., Reid, D.C., 1986. A Comparison of Muscle Fiber Characteristics at Different Levels of the Vertebral Column in the Rhesus Monkey. Cells Tissues Organs 126, 163–166. https://doi.org/10.1159/000146208
69 Francisco, C.L., Jorge, A.M., Dal-Pai-Silva, M., Carani, F.R., Cabeço, L.C., Silva, S.R., 2011. Muscle fiber type characterization and myosin heavy chain (MyHC) isoform expression in Mediterranean buffaloes. Meat Sci 88, 535–541. https://doi.org/10.1016/j.meatsci.2011.02.007
70 Fuentes, I., Cobos, A.R., Segade, L.A.G., 1998. Muscle fibre types and their distribution in the biceps and triceps brachii of the rat and rabbit. J Anat 192, 203–210. https://doi.org/10.1046/j.1469-7580.1998.19220203.x
71 Gao, Y.F., Wang, J., Wang, H.P., Feng, B., Dang, K., Wang, Q., Hinghofer-Szalkay, H.G., 2012. Skeletal muscle is protected from disuse in hibernating dauria ground squirrels.Comp Biochem Physiol A Mol Integr Physiol 161, 296–300. https://doi.org/10.1016/j.cbpa.2011.11.009
72 Gellman, K.S., Bertram, J.E.A., Hermanson, J.W., 2002. Morphology, histochemistry, and function of epaxial cervical musculature in the horse (Equus caballus). J Morphol 251, 182–194. https://doi.org/10.1002/jmor.1082
73 Gibson, M.C., Schultz, E., 1982. The distribution of satellite cells and their relationship to specific fiber types in soleus and extensor digitorum longus muscles. Anat Rec 202, 329–337. https://doi.org/10.1002/ar.1092020305
74 Gillespie, M.J., Gordon, T., Murphy, P.R., 1987. Motor units and histochemistry in rat lateral gastrocnemius and soleus muscles: evidence for dissociation of physiological and histochemical properties after reinnervation. J Neurophysiol 57, 921–937. https://doi.org/10.1152/jn.1987.57.4.921
75 Goldstein, B., 1971. Heterogeneity of Muscle Fibers in Some Burrowing Mammals. J Mammal 52, 515–527. https://doi.org/10.2307/1378586
76 Gómez, M., Casado, A., de Diego, M., Pastor, J.F., Potau, J.M., 2022. Anatomical and molecular analyses of the deltoid muscle in chimpanzees (Pan troglodytes) and modern humans (Homo sapiens): Similarities and differences due to the uses of the upper extremity. Am J Primatol 84. https://doi.org/10.1002/ajp.23390
77 Gonyea, W.J., Ericson, G.C., 1977. Morphological and histochemical organization of the flexor carpi radialis muscle in the cat. Am J Anat 148, 329–344. https://doi.org/10.1002/aja.1001480304
78 Gorza, L., 1990. Identification of a novel type 2 fiber population in mammalian skeletal muscle by combined use of histochemical myosin ATPase and anti-myosin monoclonal antibodies. J Histochem Cytochem 38, 257–265. https://doi.org/10.1177/38.2.2137154
79 Goto, M., Itamoto, K., Tani, Y., Miyata, H., Kihara, I., Mori, F., Tajima, T., Wada, N., 2013a. Distribution of Muscle Fibers in Skeletal Muscles of the African Elephant (Loxodonta africana africana). Mammal Study 38, 135. https://doi.org/10.3106/041.038.0210
80 Goto, M., Kawai, M., Nakata, M., Itamoto, K., Miyata, H., Ikebe, Y., Tajima, T., Wada, N., 2013b. Distribution of muscle fibers in skeletal muscles of the cheetah (Acinonyx jubatus). Mamm Biol 78, 127–133. https://doi.org/10.1016/j.mambio.2012.07.001
81 Gotoh, T., 2003. Histochemical properties of skeletal muscles in Japanese cattle and their meat production ability, Anim Sci J.
82 Gray, S.D., Renkin, E.M., 1978. Microvascular supply in relation to fiber metabolic type in mixed skeletal muscles of rabbits. Microvasc Res 16, 406–425. https://doi.org/10.1016/0026-2862(78)90073-0
83 Graziotti, G.H., Chamizo, V.E., Ríos, C., Acevedo, L.M., Rodríguez-Menéndez, J.M., Victorica, C., Rivero, J.L.L., 2012. Adaptive functional specialisation of architectural design and fibre type characteristics in agonist shoulder flexor muscles of the llama, Lama glama. J Anat 221, 151–163. https://doi.org/10.1111/j.1469-7580.2012.01520.x
84 Graziotti, G.H., Palencia, P., Delhon, G., Rivero, J.L.L., 2004. Neuromuscular partitioning, architectural design, and myosin fiber types of the M. vastus lateralis of the llama (Lama glama). J Morphol 262, 667–681. https://doi.org/10.1002/jmor.10268
85 Graziotti, G.H., Ríos, C.M., Rivero, J.-L.L., 2001. Evidence for Three Fast Myosin Heavy Chain Isoforms in Type II Skeletal Muscle Fibers in the Adult Llama ( Lama glama ), J Histochem Cytochem.
86 Green, H.J., Klug, G.A., Reichmann, H., Seedorf, U., Wiehrer, W., Pette, D., 1984. Exercise-induced fibre type transitions with regard to myosin, parvalbumin, and sarcoplasmic reticulum in muscles of the rat. Pflug Arch Eur J Physiol 400, 432–8. https://doi.org/10.1007/BF00587545
87 Grotmol, S., Totland, G.K., Kryvi, H., Breistøl, A., Essén-Gustavsson, B., Lindholm, A., 2002. Spatial distribution of fiber types within skeletal muscle fascicles from standardbred horses. Anat Rec 268, 131–136. https://doi.org/10.1002/ar.10140
88 Hämäläinen, N., Pette, D., 1993. The histochemical profiles of fast fiber types IIB, IID, and IIA in skeletal muscles of mouse, rat, and rabbit. J Histochem Cytochem 41, 733–743. https://doi.org/10.1177/41.5.8468455
89 Hansen, S., Cutts, J.H., Krause, W.J., Cutts, J.H., 1987. Distribution of fibre types in thirty-seven muscles of Didelphis virginiana. Anat Anz 164, 153–8.
90 Hazimihalis, P.J., Gorvet, M.A., Butcher, M.T., 2013. Myosin Isoform Fiber Type and Fiber Size in the Tail of the Virginia Opossum (Didelphis virginiana). Anat Rec 296, 96–107. https://doi.org/10.1002/ar.22614
91 Hemingway, H.W., Burrows, A.M., Omstead, K.M., Zohdy, S., Pastor, J.F., Muchlinski, M.N., 2020. Vertical Clinging and Leaping Ahead: How Bamboo Has Shaped the Anatomy and Physiology of Hapalemur. Anat Rec 303, 295–307. https://doi.org/10.1002/ar.24183
92 Hena, S., Sonfada, M., Shehu, S., Jibir, M., Bello, A., Omirinde, J., Gosomji, I., 2018. Determination of the Proportions of Muscle Fibre Types from Selected Muscles of the Forelimb: A Comparative Study of Cattle (Bos taurus indicus) and One-humped Camel (Camelus dromedaries). J Vet Anat 11, 39–52. https://doi.org/10.21608/jva.2018.45055
93 Hermanson, J.W., Cobb, M.A., Schutt, W.A., Muradali, F., Ryan, J.M., 1993. Histochemical and myosin composition of vampire bat (Desmodus rotundus) pectoralis muscle targets a unique locomotory niche. J Morphol 217, 347–356. https://doi.org/10.1002/jmor.1052170309
94 Hermanson, J.W., Foehring, R.C., 1988. Histochemistry of flight muscles in the jamaican fruit bat, Artibeus jamaicensis: Implications for motor control. J Morphol 196, 353–362. https://doi.org/10.1002/jmor.1051960308
95 Hermanson, J.W., LaFramboise, W.A., Daood, M.J., 1991. Uniform myosin isoforms in the flight muscles of little brown bats,Myotis lucifugus. J Exp Zool 259, 174–180. https://doi.org/10.1002/jez.1402590205
96 Hermanson, J.W., Ryan, J.M., Cobb, M.A., Bentley, J., Schutts, Jr., W.A., 1998. Histochemical and electrophoretic analysis of the primary flight muscle of several phyllostomid bats. Can J Zool 76, 1983–1992. https://doi.org/10.1139/z98-158
97 Hershey, J.D., Robbins, C.T., Nelson, O.L., Lin, D.C., 2008. Minimal seasonal alterations in the skeletal muscle of captive brown bears. Physiol Biochem Zool 81, 138–147. https://doi.org/10.1086/524391
98 Hesse, B., Fischer, M.S., Schilling, N., 2010. Distribution pattern of muscle fiber types in the perivertebral musculature of two different sized species of mice. Anat Rec 293, 446–63. https://doi.org/10.1002/ar.21090
99 Hesse, B., Fröber, R., Fischer, M.S., Schilling, N., 2013. Functional differentiation of the human lumbar perivertebral musculature revisited by means of muscle fibre type composition. Ann Anat 195, 570–580. https://doi.org/10.1016/j.aanat.2013.07.003
100 Hitomi, Y., Kizaki, T., Watanabe, S., Matsumura, G., Fujioka, Y., Haga, S., Izawa, T., Taniguchi, N., Ohno, H., 2005. Seven skeletal muscles rich in slow muscle fibers may function to sustain neutral position in the rodent hindlimb. Comp Biochem Physiol B Biochem Mol Biol 140, 45–50. https://doi.org/10.1016/j.cbpc.2004.09.021
101 Ho, K.W., Heusner, W.W., van Huss, J., van Huss, W.D., 1983. Postnatal muscle fibre histochemistry in the rat. J Embryol Exp Morphol 76, 37–49.
102 Hochachka, P.W., Foreman III, R.A., 1993. Phocid and cetacean blueprints of muscle metabolism. Can J Zool 71, 2089–2098. https://doi.org/10.1139/z93-294
103 Howells, K.F., Jordan, T.C., Howells, J.D., 1978. Myofibril content of histochemical fibre types in rat skeletal muscle. Acta Histochem 63, 177–182. https://doi.org/10.1016/S0065-1281(78)80023-3
104 Huq, E., 2013. Physiological, Histological, and Mechanical Characteristics of Selected Epaxial Muscles in Primates. State University of New York at Stony Brook, Stony Brook.
105 Huq, E., Taylor, A.B., Su, Z., Wall, C.E., 2018. Fiber type composition of epaxial muscles is geared toward facilitating rapid spinal extension in the leaper Galago senegalensis. Am J Phys Anthropol 166, 95–106. https://doi.org/10.1002/ajpa.23405
106 Hwang, K., Huan, F. and Kim, D.J., 2011. Muscle fiber types of human orbicularis oculi muscle. J Craniofac Surg 22, 1827-1830. https://doi.org/10.1097/scs.0b013e31822e8468
107 Hyatt, J.P.K., Roy, R.R., Stuart, R., Talmadge, R.J., 2010. Myosin heavy chain composition of tiger (Panthera tigris) and cheetah (Acinonyx jubatus) hindlimb muscles. J Exp Zool A Ecol Genet Physiol 313, 45–57. https://doi.org/10.1002/jez.574
108 Ichikawa, H., Matsuo, T., Higurashi, Y., Nagahisa, H., Miyata, H., Sugiura, T., Wada, N., 2019. Characteristics of Muscle Fiber‐Type Distribution in Moles. Anat Rec 302, 1010–1023. https://doi.org/10.1002/ar.24008
109 Ito, J., 1998. Fiber Type Composition of Abdominal Muscles in Japanese Macaques(Macaca fuscata). Okajimas Folia Anat Jpn 74, 199–205. https://doi.org/10.2535/ofaj1936.74.6_199
110 Johnson, M.A., Polgar, J., Weightman, D., Appleton, D., 1973. Data on the distribution of fibre types in thirty-six human muscles. An autopsy study. J Neurol Sci 18, 111–129. https://doi.org/10.1016/0022-510X(73)90023-3
111 Jørgensen, K., Nicholaisen, T., Kato, M., 1993. Muscle fiber distribution, capillary density, and enzymatic activities in the lumbar paravertebral muscles of young men. Spine J 18, 1439–50.
112 Jouffroy, F.K., Médina, M.F., 1996. Developmental Changes in the Fibre Composition of Elbow, Knee, and Ankle Extensor Muscles in Cercopithecid Monkeys. Folia Primatologica 66, 55–67. https://doi.org/10.1159/000157185
113 Jouffroy, F.K., Medina, M.F., Renous, S., Gasc, J.-P., 2003. Immunocytochemical characteristics of elbow, knee and ankle muscles of the five-toed jerboa (Allactaga elater). J Anat 202, 373–386. https://doi.org/10.1046/j.1469-7580.2003.00167.x
114 Jouffroy, F.K., Stern, J.T., Medina, M.F., Larson, S.G., 1999. Function and Cytochemical Characteristics of Postural Limb Muscles of the Rhesus Monkey: A Telemetered EMG and Immunofluorescence Study. Folia Primatol 70, 235-253.
115 Jürgens, K.D., 2002. Etruscan shrew muscle: the consequences of being small. J Exp Biol 205, 2161–2166. https://doi.org/10.1242/jeb.205.15.2161
116 Kadim, I.T., Mahgoub, O., Al-Marzooqi, W., Khalaf, S.K., Mansour, M.H., Al-Sinani, S.S.H., Al-Amri, I.S., 2009. Effects of Electrical Stimulation on Histochemical Muscle Fiber Staining, Quality, and Composition of Camel and Cattle Longissimus thoracis Muscles. J Food Sci 74, S44–S52. https://doi.org/10.1111/j.1750-3841.2008.00992.x
117 Kanatous, S.B., Davis, R.W., Watson, R., Polasek, L., Williams, T.M., Mathieu-Costello, O., 2002. Aerobic capacities in the skeletal muscles of Weddell seals: key to longer dive durations? J Exp Biol 205, 3601–3608. https://doi.org/10.1242/jeb.205.23.3601
118 Karlsson, A., Enfält, A.-C., Essén-Gustavsson, B., Lundström, K., Rydhmer, L., Stern, S., 1993. Muscle histochemical and biochemical properties in relation to meat quality during selection for increased lean tissue growth rate in pigs. J Anim Sci 71, 930–938. https://doi.org/10.2527/1993.714930x
119 Kawai, M., Minami, Y., Sayama, Y., Kuwano, A., Hiraga, A., Miyata, H., 2009. Muscle Fiber Population and Biochemical Properties of Whole Body Muscles in Thoroughbred Horses. Anat Rec 292, 1663–1669. https://doi.org/10.1002/ar.20961
120 Kielhorn, C.E., Dillaman, R.M., Kinsey, S.T., McLellan, W.A., Mark Gay, D., Dearolf, J.L., Ann Pabst, D., 2013. Locomotor muscle profile of a deep (Kogia breviceps) versus shallow (Tursiops truncatus) diving cetacean. J Morphol 274, 663–675. https://doi.org/10.1002/jmor.20124
121 Kiessling, K.-H., Kiessling, A., 1984. Fibre composition and enzyme activities in five different muscles from the svalbard reindeer. Comp Biochem Physiol A Physiol 77, 75–78. https://doi.org/10.1016/0300-9629(84)90014-8
122 Kimura, T., 2002. Composition of psoas major muscle fibers compared among humans, orangutans, and monkeys. Z Morphol Anthropol 83, 305–14.
123 Kimura, T., 1994. Muscle Fiber Composition of the Anterior Tibial Muscle in Several Species of Prosimians. Primate Res 10, 25–31. https://doi.org/10.2354/psj.10.25
124 Kimura, T., Kumakura, H., Inokuchi, S., Ishida, H., 1987. Composition of muscle fibers in the slow loris, using the m. biceps brachii as an example. Primates 28, 525–532. https://doi.org/10.1007/BF02380866
125 Kohn, T.A., 2014. Insights into the skeletal muscle characteristics of three southern African antelope species. Biol Open 3, 1037–1044. https://doi.org/10.1242/bio.20149241
126 Kohn, T.A., Burroughs, R., Hartman, M.J., Noakes, T.D., 2011a. Fiber type and metabolic characteristics of lion (Panthera leo), caracal (Caracal caracal) and human skeletal muscle. Comp Biochem Physiol A Mol Integr Physiol 159, 125–133. https://doi.org/10.1016/j.cbpa.2011.02.006
127 Kohn, T.A., Curry, J.W., Noakes, T.D., 2011b. Black wildebeest skeletal muscle exhibits high oxidative capacity and a high proportion of type IIx fibres. J Exp Biol 214, 4041–4047. https://doi.org/10.1242/jeb.061572
128 Kohn, T.A., Hoffman, L.C., Myburgh, K.H., 2007. Identification of myosin heavy chain isoforms in skeletal muscle of four Southern African wild ruminants.Comp Biochem Physiol A Mol Integr Physiol 148, 399–407. https://doi.org/10.1016/j.cbpa.2007.05.028
129 Konno, T., Watanabe, K., 2012. Distribution of myofiber types in the crural musculature of sheep. Okajimas Folia Anat Jpn 89, 39–45. https://doi.org/10.2535/ofaj.89.39
130 LaRosa, D.A., Cannata, D.J., Arnould, J.P.Y., O'Sullivan, L.A., Snow, R.J., West, J.M., 2012. Changes in muscle composition during the development of diving ability in the Australian fur seal. Aust J Zool 60, 81–90. https://doi.org/10.1071/ZO11072
131 Larsson, L., Yu, F., 1997. Gender-related differences in the regulatory influence of thyroid hormone on the expression of myosin isoforms in young and old rats. Acta Physiol Scand 159, 81–9. https://doi.org/10.1046/j.1365-201X.1997.559328000.x
132 Lazareva, M. v., Trapeznikova, K.O., Vikhlyantsev, I.M., Bobylev, A.G., Klimov, A.A., Podlubnaya, Z.A., 2012. Seasonal changes in the isoform composition of the myosin heavy chains in skeletal muscles of hibernating ground squirrels Spermophilus undulatus. Biophys (Russ Fed) 57, 764–768. https://doi.org/10.1134/S0006350912060085
133 Lefaucheur, L., Ecolan, P., Plantard, L., Gueguen, N., 2002. New Insights into Muscle Fiber Types in the Pig. J Histochem Cytochem 50, 719–730. https://doi.org/10.1177/002215540205000513
134 Lefaucheur, L.L., Ecolan, P.P., 2005. Pattern of muscle fiber formation in Large White and Meishan pigs. Arch Tierz 48, 117–122.
135 Levine, M., Tjian, R., Tijan, R., 2003. Transcription regulation and animal diversity. Nature 424, 147–151. https://doi.org/10.1038/nature01763
136 Lewis, D.M., Levi, A.J., Brooksby, P., Jones, J. v, 1994. A faster twitch contraction of soleus in the spontaneously hypertensive rat is partly due to changed fibre type composition. Exp Physiol 79, 377–86. https://doi.org/10.1113/expphysiol.1994.sp003772
137 Lexell, J., Henriksson-larsen, K., Sjostrom, M., 1983. Distribution of different fibre types in human skeletal muscles 2. A study of cross-sections of whole m. vastus lateralis. Acta Physiol Scand 117, 115–122.
138 Lindholm, A., Piehl, K., 1974. Fibre Composition, Enzyme Activity and Concentrations of Metabolites and Electrolytes in Muscles of Standardbred Horses. Acta Vet Scand 15, 287–309. https://doi.org/10.1186/BF03547460
139 Luziga, C., Miyata, H., Nagahisa, H., Oji, T., Wada, N., 2021. Muscle fibre distribution in forelimb, hindlimb and trunk muscles in three bat species: The little Japanese horseshoe, greater horseshoe and Egyptian fruit. Anat Histol Embryol 50, 685–693. https://doi.org/10.1111/ahe.12670
140 Mabuchi, K., Szvetko, D., Pinter, K., Sreter, F.A., 1982. Type IIB to IIA fiber transformation in intermittently stimulated rabbit muscles. Am J Physiol Cell Physiol 242, C373–C381. https://doi.org/10.1152/ajpcell.1982.242.5.C373
141 Malatesta, M., Perdoni, F., Battistelli, S., Muller, S., Zancanaro, C., 2009. The cell nuclei of skeletal muscle cells are transcriptionally active in hibernating edible dormice. BMC Cell Biol 10, 19. https://doi.org/10.1186/1471-2121-10-19
142 Maréchal, G., Goffart, M., Reznik, M., Gerebtzoff, M.A., 1976. The striated muscles in a slow-mover, Perodicticus potto (prosimii, lorisidae, lorisinae). Comp Biochem Physiol A Physiol 54, 81–93. https://doi.org/10.1016/S0300-9629(76)80075-8
143 Mashima, D., Oka, Y., Gotoh, T., Tomonaga, S., Sawano, S., Nakamura, M., Tatsumi, R., Mizunoya, W., 2019. Correlation between skeletal muscle fiber type and free amino acid levels in Japanese Black steers. Anim Sci J 90, 604–609. https://doi.org/10.1111/asj.13185
144 Mattson, J.P., Miller, T.A., Poole, D.C., Delp, M.D., 2002. Fiber Composition and Oxidative Capacity of Hamster Skeletal Muscle. J Histochem Cytochem 50, 1685–1692. https://doi.org/10.1177/002215540205001214
145 Maxwell, L.C., Barclay, J.K., Mohrman, D.E., Faulkner, J.A., 1977. Physiological characteristics of skeletal muscles of dogs and cats. Am J Physiol Cell Physiol 233, C14–C18. https://doi.org/10.1152/ajpcell.1977.233.1.C14
146 McFadden, K.D., Bagnall, K.M., Mahon, M., Ford, D., 1984. Histochemical Fiber Composition of Lumbar Back Muscles in the Rabbit. Cells Tissues Organs 120, 146–150. https://doi.org/10.1159/000145909
147 McIntosh, M., Ringqvist, J.S., Schmidt, E.M., 1986. Fiber Type Composition of Monkey Forearm Muscle. Anat Rec 211, 403–409.
148 Melichna, J., Macková, E. v, Semiginovský, B., Tolar, M., Stichová, J., Slavícek, A., Vanková, S., Bartůnĕk, Z., 1987. Effect of exercise on muscle fibre composition and enzyme activities of skeletal muscles in young rats. Physiol Bohemoslov 36, 321–8.
149 Meznaric, M., Čarni, A., 2020. Characterisation of flexor digitorum profundus, flexor digitorum superficialis and extensor digitorum communis by electrophoresis and immunohistochemical analysis of myosin heavy chain isoforms in older men. Ann Anat 227, 151412. https://doi.org/10.1016/j.aanat.2019.151412
150 Moritz, S., Fischer, M.S., Schilling, N., 2007. Three-dimensional fibre-type distribution in the paravertebral muscles of the domestic ferret (Mustela putorius f. furo) with relation to functional demands during locomotion. Zoology 110, 197–211. https://doi.org/10.1016/j.zool.2007.01.004
151 Mu, L., Sanders, I., 2002. Muscle Fiber-Type Distribution Pattern in the Human Cricopharyngeus Muscle. Dysphagia 17, 87–96. https://doi.org/10.1007/s00455-001-0108-2
152 Muchlinski, M.N., Hemingway, H.W., Pastor, J., Omstead, K.M., Burrows, A.M., 2018. How the Brain May Have Shaped Muscle Anatomy and Physiology: A Preliminary Study. Anat Rec 301, 528–537. https://doi.org/10.1002/ar.23746
153 Myatt, J.P., Schilling, N., Thorpe, S.K.S., 2011. Distribution patterns of fibre types in the triceps surae muscle group of chimpanzees and orangutans. J Anat 218, 402–412. https://doi.org/10.1111/j.1469-7580.2010.01338.x
154 Nemeth, P., Pette, D., 1981. Succinate dehydrogenase activity in fibres classified by myosin ATPase in three hind limb muscles of rat. J Physiol 320, 73–80. https://doi.org/10.1113/jphysiol.1981.sp013935
155 Neufuss, J., Hesse, B., Thorpe, S.K.S., Vereecke, E.E., D'Aout, K., Fischer, M.S., Schilling, N., 2014. Fibre type composition in the lumbar perivertebral muscles of primates: implications for the evolution of orthogrady in hominoids. J Anat 224, 113–131. https://doi.org/10.1111/joa.12130
156 Niederle, B., Mayr, R., 1978. Course of denervation atrophy in type I and type II fibres of rat extensor digitorum longus muscle. Anat Embryol (Berl) 153, 9–21. https://doi.org/10.1007/BF00569846
157 North, M.K., Hoffman, L.C., 2017. Effect of Sex and Muscle on the Fiber-Type Composition and Cross-Sectional Area of Springbok (Antidorcas marsupialis) Muscle. Meat and Muscle Biology 1. https://doi.org/10.22175/mmb2017.01.0001
158 North, M.K., Hoffman, L.C., 2015. The muscle fibre characteristics of springbok (Antidorcas marsupialis) longissimus thoracis et lumborum and biceps femoris muscle, in: 61st International Congress of Meat Science and Technology. Clermont-Ferrand.
159 Nowell, M.M., Choi, H., Rourke, B.C., 2011. Muscle plasticity in hibernating ground squirrels (Spermophilus lateralis) is induced by seasonal, but not low-temperature, mechanisms. J Comp Physiol B 181, 147–164. https://doi.org/10.1007/s00360-010-0505-7
160 Olson, R.A., Womble, M.D., Thomas, D.R., Glenn, Z.D., Butcher, M.T., 2016. Functional Morphology of the Forelimb of the Nine-Banded Armadillo (Dasypus novemcinctus): Comparative Perspectives on the Myology of Dasypodidae. J Mamm Evol 23, 49–69. https://doi.org/10.1007/s00360-010-0505-7
161 O'Neill, M.C., Umberger, B.R., Holowka, N.B., Larson, S.G., Reiser, P.J., 2017. Chimpanzee super strength and human skeletal muscle evolution. PNAS 114, 7343–7348. https://doi.org/10.1073/pnas.1619071114
162 Ozaki, K., Matsuura, T., Narama, I., 2001. Histochemical and morphometrical analysis of skeletal muscle in spontaneous diabetic WBN/Kob rat. Acta Neuropathol 102, 264–70. https://doi.org/10.1007/s004010100363
163 Peter, J.B., Barnard, R.J., Edgerton, V.R., Gillespie, C.A., Stempel, K.E., 1972. Metabolic profiles of three fiber types of skeletal muscle in guinea pigs and rabbits. Biochemistry 11, 2627–33. https://doi.org/10.1021/bi00764a013
164 Peters, S.E., Mulkey, R., Rasmussen, S.A., Goslow, G.E., 1984. Motor units of the primary ankle extensor muscles of the opossum (Didelphis virginiana): Functional properties and fiber types. J Morphol 181, 305–317. https://doi.org/10.1002/jmor.1051810305
165 Peters, T., Kubis, H.P., Wetzel, P., Sender, S., Asmussen, G., Fons, R., Jurgens, K.D., 1999. Contraction parameters, myosin composition and metabolic enzymes of the skeletal muscles of the etruscan shrew Suncus etruscus and of the common European white-toothed shrew Crocidura russula (Insectivora: soricidae). J Exp Biol 202, 2461–2473. https://doi.org/10.1242/jeb.202.18.2461
166 Petter, A., Jouffroy, F.K., 1993. Fiber type population in limb muscles of Microcebus murinus. Primates 34, 181–196. https://doi.org/10.1007/BF02381389
167 Plaghki, L., Goffart, M., Beckers-Bleukx, G., Moureau-Lebbe, A., 1981. Some characteristics of the hind limb muscles in the leaping night monkey Aotus trivirgatus (primates, anthropoidae, cebidae). Comp Biochem Physiol A Physiol 70, 341–349. https://doi.org/10.1016/0300-9629(81)90188-2
168 Plas, R.L.C., Degens, H., Meijer, J.P., de Wit, G.M.J., Philippens, I.H.C.H.M., Bobbert, M.F., Jaspers, R.T., 2015. Muscle contractile properties as an explanation of the higher mean power output in marmosets than humans during jumping. J Exp Biol 218, 2166–2173. https://doi.org/10.1242/jeb.117655
169 Ponganis, P.J., Pierce, R.W., 1978. Muscle metabolic profiles and fiber-type composition in some marine mammals. Comp Biochem Physiol B Biochem Mol Biol 59, 99–102. https://doi.org/10.1016/0305-0491(78)90187-6
170 Popova, S.S., Yurshenas, D.A., Mikhailova, G.Z., Bobyleva, L.G., Salmov, N.N., Tyapkina, O.V., Nurullin, L.F., Gazizova, G.R., Nigmetzyanov, I.R., Gusev, O.A., Zakharova, N.M., Vikhlyantsev, I.M., 2021. Stable Level of Giant Sarcomeric Cytoskeletal Proteins in Striated Muscles of the Edible Dormouse Glis glis during Hibernation. J Evol Biochem Physiol 57, 886–895. https://doi.org/10.1134/S0022093021040128
171 Pösö, A.R., Nieminen, M., Raulio, J., Räsänen, L.A., Soveri, T., 1996. Skeletal muscle characteristics of racing reindeer (Rangifer tarandus). Comp Biochem Physiol A Physiol 114, 277–281. https://doi.org/10.1016/0300-9629(96)00014-X
172 Potau, J.M., Artells, R., Bello, G., Muñoz, C., Monzó, M., Pastor, J.F., de Paz, F., Barbosa, M., Diogo, R., Wood, B., 2011. Expression of Myosin Heavy Chain Isoforms in the Supraspinatus Muscle of Different Primate Species: Implications for the Study of the Adaptation of Primate Shoulder Muscles to Different Locomotor Modes. Int J Primatol 32, 931–944. https://doi.org/10.1007/s10764-011-9512-0
173 Potau, J.M., Artells, R., Muñoz, C., Arias-Martorell, J., Pastor, J.F., de Paz, F.J., Barbosa, M., Bello-Hellegouarch, G., Pérez-Pérez, A., 2018. Quantification of Myosin Heavy Chain Isoform mRNA Transcripts in the Supraspinatus Muscle of Vertical Clinger Primates. Folia Primatol 88, 497–506. https://doi.org/10.1159/000485246
174 Potau, J.M., Casado, A., de Diego, M., Ciurana, N., Arias‐Martorell, J., Bello‐Hellegouarch, G., Barbosa, M., de Paz, F.J., Pastor, J.F. and Pérez‐Pérez, A., 2018. Structural and molecular study of the supraspinatus muscle of modern humans (Homo sapiens) and common chimpanzees (Pan troglodytes). Am J Biol Anthropol 166, 934-940.
175 Pousson, M., Pérot, C., Goubel, F., 1991. Stiffness changes and fibre type transitions in rat soleus muscle produced by jumping training. Pflug Arch Eur J Physiol 419, 127–130. https://doi.org/10.1007/BF00372997
176 Pullen, A.H., 1977. The distribution and relative sized of fibre types in the extensor digitorum longus and soleus muscles of the adult rat. J Anat 123, 467–86.
177 Queeno, S.R., Reiser, P.J., Orr, C.M., Capellini, T.D., Sterner, K.N., O'Neill, M.C., 2023. Human and African ape myosin heavy chain content and the evolution of hominin skeletal muscle. Comp Biochem Physiol A Mol Integr Physiol 281, 111415.
178 Rab, M., Neumayer, CH., Koller, R., Kamolz, L.-P., Haslik, W., Gassner, R., Giovanoli, P., Schaden, G., Frey, M., 2000. Histomorphology of rabbit thigh muscles: establishment of standard control values. J Anat 196, 203–209. https://doi.org/10.1046/j.1469-7580.2000.19620203.x
179 Rantanen, J., Rissanen, A., Kalimo, H., 1994. Lumbar muscle fiber size and type distribution in normal subjects. Eur Spine J 3, 331–5. https://doi.org/10.1007/BF02200146
180 Raub, R.R., Bechtel, P.J., Lawrence, L.M., 1985. Variation in the distribution of muscle fiber types in equine skeletal muscles. J Equine Vet Sci 5, 34–37. https://doi.org/10.1016/S0737-0806(85)80084-8
181 Reed, J.Z., Butler, P.J., Fedak, M.A., 1994. The metabolic characteristics of the locomotory muscles of grey seals (Halichoerus grypus), harbour seals (Phoca vitulina) and Antarctic fur seals (Arctocephalus gazella). J Exp Biol 194, 33–46. https://doi.org/10.1242/jeb.194.1.33
182 Rehfeldt, C., Henning, M., Fiedler, I., 2008. Consequences of pig domestication for skeletal muscle growth and cellularity. Livest Sci 116, 30–41. https://doi.org/10.1016/j.livsci.2007.08.017
183 Reid, W.D., Ng, A., Wilton, R., Milsom, W.K., 1995. Characteristics of diaphragm muscle fibre types in hibernating squirrels. Respir Physiol 101, 301–9. https://doi.org/10.1016/0034-5687(95)00036-d
184 Richmond, F.J., Abrahams, V.C., 1975. Morphology and enzyme histochemistry of dorsal muscles of the cat neck. J Neurophysiol 38, 1312–21. https://doi.org/10.1152/jn.1975.38.6.1312
185 Richmond, F.J.R., Singh, K., Corneil, B.D., 2001. Neck Muscles in the Rhesus Monkey. I. Muscle Morphometry and Histochemistry. J Neurophysiol 86, 1717–1728. https://doi.org/10.1152/jn.2001.86.4.1717
186 Riley, D.A., van Dyke, J.M., Vogel, V., Curry, B.D., Bain, J.L.W., Schuett, R., Costill, D.L., Trappe, T., Minchev, K., Trappe, S., 2018. Soleus muscle stability in wild hibernating black bears. Am J Physiol Regul Integr Comp Physiol 315, R369–R379. https://doi.org/10.1152/ajpregu.00060.2018
187 Rivero, J.L., Serrano, A.L., Barrey, E., Valette, J.P., Jouglin, M., 1999. Analysis of myosin heavy chains at the protein level in horse skeletal muscle. J Muscle Res Cell Motil 20, 211–221. https://doi.org/10.1023/A:1005461214800
188 Rivero, J.L., Talmadge, R.J., Edgerton, V.R., 1996. Correlation between myofibrillar ATPase activity and myosin heavy chain composition in equine skeletal muscle and the influence of training. Anat Rec 246, 195–207. 10.1002/(SICI)1097-0185(199610)246:2<195::AID-AR6>3.0.CO;2-0
189 Rivero, J.-L.L., 2018. Locomotor muscle fiber heterogeneity and metabolism in the fastest large-bodied rorqual: the fin whale (Balaenoptera physalus). J Exp Biol 221. https://doi.org/10.1242/jeb.177758
190 Ronéus, M., Essén-Gustavsson, B., Lindholm, A., Persson, S.G., 1992. Skeletal muscle characteristics in young trained and untrained standardbred trotters. Equine Vet J 24, 292–4. https://doi.org/10.1111/j.2042-3306.1992.tb02838.x
191 Rourke, B.C., Cotton, C.J., Harlow, H.J., Caiozzo, V.J., 2006. Maintenance of slow type I myosin protein and mRNA expression in overwintering prairie dogs (Cynomys leucurus and ludovicianus) and black bears (Ursus americanus). J Comp Physiol B 176, 709–720. https://doi.org/10.1007/s00360-006-0093-8
192 Rourke, B.C., Yokoyama, Y., Milsom, W.K., Caiozzo, V.J., 2004. Myosin isoform expression and MAFbx mRNA levels in hibernating golden-mantled ground squirrels (Spermophilus lateralis). Physiol Biochem Zool 77, 582–93. https://doi.org/10.1086/421753
193 Rowlerson, A., Mascarello, F., Veggetti, A., Carpene, E., 1983. The arch fibre-type composition of the first branchial muscles in Carnivora and Primates. J Muscle Res Cell Motil 4, 443–472.
194 Roy, R.R., Bello, M.A., Powell, P.L., Simpson, D.R., 1984. Architectural design and fiber-type distribution of the major elbow flexors and extensors of the monkey (cynomolgus). Am J Anat 171, 285–293. https://doi.org/10.1002/aja.1001710305
195 Roy, R.R., Bodine-Fowler, S.C., Kim, J., Haque, N., de Leon, D., Rudolph, W., Edgerton, V.R., 1991. Architectural and Fiber Type Distribution Properties of Selected Rhesus Leg Muscles: Feasibility of Multiple Independent Biopsies. Cells Tissues Organs 140, 350–356. https://doi.org/10.1159/000147081
196 Roy, R.R., Graham, S., Peterson, J.A., 1988. Fiber type composition of the plantarflexors of giraffes (giraffa camelopardalis) at different postnatal stages of development. Comp Biochem Physiol A Physiol 91, 347–352. https://doi.org/10.1016/0300-9629(88)90429-X
197 Rupert, J.E., Rose, J.A., Organ, J.M., Butcher, M.T., 2015. Forelimb muscle architecture and myosin isoform composition in the groundhog (Marmota monax). J Exp Biol 218, 194–205. https://doi.org/10.1242/jeb.107128
198 Rupert, J.E., Schmidt, E.C., Moreira-Soto, A., Herrera, B.R., Vandeberg, J.L., Butcher, M.T., 2014. Myosin isoform expression in the prehensile tails of didelphid marsupials: Functional differences between arboreal and terrestrial opossums. Anat Rec 297, 1364–1376. https://doi.org/10.1002/ar.22948
199 Ryu, Y.C., Choi, Y.M., Lee, S.H., Shin, H.G., Choe, J.H., Kim, J.M., Hong, K.C., Kim, B.C., 2008. Comparing the histochemical characteristics and meat quality traits of different pig breeds. Meat Sci 80, 363–369. https://doi.org/10.1016/j.meatsci.2007.12.020
200 Sahd, L., Doubell, N., Bennett, N.C., Kotzé, S.H., 2022. Hind foot drumming: Myosin heavy chain muscle fiber distribution in the hind limb muscles of three African mole‐rat species (Bathyergidae). Anat Rec 305, 170–183. https://doi.org/10.1002/ar.24712
201 Salmov, N.N., Vikhlyantsev, I.M., Ulanova, A.D., Gritsyna, Yu. v., Bobylev, A.G., Saveljev, A.P., Makariushchenko, V. v., Maksudov, G.Yu., Podlubnaya, Z.A., 2015. Seasonal changes in isoform composition of giant proteins of thick and thin filaments and titin (connectin) phosphorylation level in striated muscles of bears (Ursidae, Mammalia). Biochem (Mosc) 80, 343–355. https://doi.org/10.1134/S0006297915030098
202 Savolainen, J., Vornanen, M., 1995a. Myosin heavy chains in skeletal muscles of the common shrew (Sorex araneus): absence of a slow isoform and transitions of fast isoforms with ageing. Acta Physiol Scand 155, 233–239. https://doi.org/10.1111/j.1748-1716.1995.tb09968.x
203 Savolainen, J., Vornanen, M., 1995b. Fiber types and myosin heavy chain composition in muscles of common shrew (Sorex araneus). J Exp Zool 271, 27–35. https://doi.org/10.1002/jez.1402710104
204 Sazili, A.Q., Parr, T., Sensky, P.L., Jones, S.W., Bardsley, R.G., Buttery, P.J., 2005. The relationship between slow and fast myosin heavy chain content, calpastatin and meat tenderness in different ovine skeletal muscles. Meat Sci 69, 17–25. https://doi.org/10.1016/j.meatsci.2004.06.021
205 Schilling, N., 2005. Characteristics of paravertebral muscles - fibre type distribution pattern in the pika, Ochotona rufescens (Mammalia: Lagomorpha). J Zool Syst Evol Res 43, 38–48. https://doi.org/10.1111/j.1439-0469.2004.00295.x
206 Schmidt, M., Schilling, N., 2007. Fiber type distribution in the shoulder muscles of the tree shrew, the cotton-top tamarin, and the squirrel monkey related to shoulder movements and forelimb loading. J Hum Evol 52, 401–419. https://doi.org/10.1016/j.jhevol.2006.11.005
207 Sickles, D.W., Pinkstaff, C.A., 1981. Comparative histochemical study of prosimian primate hindlimb muscles. II. Populations of fiber types. Am J Anat 160, 187–194. https://doi.org/10.1002/aja.1001600205
208 Singh, K., Melis, E.H., Richmond, F.J.R., Scott, S.H., 2002. Morphometry of Macaca mulatta forelimb. II. Fiber-type composition in shoulder and elbow muscles. J Morphol 251, 323–332. https://doi.org/10.1002/jmor.1092
209 Širca, A., Kostevc, V., 1985. The fibre type composition of thoracic and lumbar paravertebral muscles in man. J Anat 141, 131–7.
210 Skewes, O., Cádiz, P., Merino, V., Islas, A., Morales, R., 2014. Muscle fibre characteristics, enzyme activity and meat colour of wild boar (Sus scrofa s. L.) muscle with 2n=36 compared to those of phenotypically similar crossbreeds (2n=37 and 2n=38). Meat Sci 98, 272–278. https://doi.org/10.1016/j.meatsci.2014.06.001
211 Smerdu, V., Ĉehovin, T., Ŝtrbenc, M., Fazarinc, G., 2009. Enzyme-and immunohistochemical aspects of skeletal muscle fibers in brown bear (Ursus arctos). J Morphol 270, 154–161. https://doi.org/10.1002/jmor.10673
212 Snow, D.H., Guy, P.S., 1980. Muscle fibre type composition of a number of limb muscles in different types of horse. Res Vet Sci 28, 137–144. https://doi.org/10.1016/S0034-5288(18)32735-8
213 Sokoloff, A.J., Yang, B., Li, H., Burkholder, T.J., 2007. Immunohistochemical characterization of slow and fast myosin heavy chain composition of muscle fibres in the styloglossus muscle of the human and macaque (Macaca rhesus). Arch Oral Biol 52, 533–543. https://doi.org/10.1016/j.archoralbio.2006.11.012
214 Song, S., Ahn, C.H., Kim, G.D., 2020. Muscle fiber typing in bovine and porcine skeletal muscles using immunofluorescence with monoclonal antibodies specific to myosin heavy chain isoforms. Food Sci Anim Resour 40, 132–144. https://doi.org/10.5851/kosfa.2019.e97
215 Soukup, T., Vydra, J., Černý, M., 1979. Changes in ATPase and SDH reactions of the rat extrafusal and intrafusal muscle fibres after preincubations at different pH. Histochemistry 60, 71–84. https://doi.org/10.1007/BF00495730
216 Soukup, T., Zacharová, G., Smerdu, V., 2002. Fibre type composition of soleus and extensor digitorum longus muscles in normal female inbred Lewis rats. Acta Histochem 104, 399–405. https://doi.org/10.1078/0065-1281-00660
217 Spainhower, K.B., Cliffe, R.N., Metz, A.K., Barkett, E.M., Kiraly, P.M., Thomas, D.R., Kennedy, S.J., Avey-Arroyo, J.A., Butcher, M.T., 2018. Cheap labor: myosin fiber type expression and enzyme activity in the forelimb musculature of sloths (Pilosa: Xenarthra). J Appl Physiol 125, 799–811. https://doi.org/10.1152/japplphysiol.01118.2017
218 Spainhower, K.B., Metz, A.K., Yusuf, A.-R.S., Johnson, L.E., Avey-Arroyo, J.A., Butcher, M.T., 2021. Coming to grips with life upside down: how myosin fiber type and metabolic properties of sloth hindlimb muscles contribute to suspensory function. J Comp Physiol B: Biochem Syst Environ Physiol 191, 207–224. https://doi.org/10.1007/s00360-020-01325-x
219 Spiegel, N.B., Beaton, A.J.W., Mcgrath, J., Thompson, J.M., Wynn, P.C., Greenwood, P.L., 2002. Myofibre types in eight skeletal muscles from the eastern grey kangaroo (Macropus giganteus). Anim Prod Sci 24, 225–228.
220 Srinivasan, R.C., Lungren, M.P., Langenderfer, J.E., Hughes, R.E., 2007. Fiber type composition and maximum shortening velocity of muscles crossing the human shoulder. Clin Anat 20, 144–149. https://doi.org/10.1002/ca.20349
221 Staron, R.S., Kraemer, W.J., Hikida, R.S., Fry, A.C., Murray, J.D., Campos, G.E.R., 1999. Fiber type composition of four hindlimb muscles of adult Fisher 344 rats. Histochem Cell Biol 111, 117–123. https://doi.org/10.1007/s004180050341
222 Suzuki, A., 1995. Differences in distribution of myofiber types between the supraspinatus and infraspinatus muscles of sheep. Anat Rec 242, 483–490. https://doi.org/10.1002/ar.1092420406
223 Suzuki, A., 1991. Composition of myofiber types in the pectoral girdle musculature of sheep. Anat Rec 230, 339–346. https://doi.org/10.1002/ar.1092300307
224 Suzuki, A., 1990. Composition of myofiber types in limb muscles of the house shrew (Suncus murinus): Lack of type I myofibers. Anat Rec 228, 23–30. https://doi.org/10.1002/ar.1092280105
225 Suzuki, A., 1972. Histochemical classification of individual skeletal muscle fibers in the sheep III. On the M. masseter. Anim Sci J 43, 161–166.
226 Suzuki, A., 1971a. Histochemical classification of individual skeletal muscle fibers in the sheep. I. On musculi semitendinosus, musculi longissimus dorsi, musculi psoas major, musculi latissimus dorsi and musculi gastrocnemus. Anim Sci Js 42, 39–54.
227 Suzuki, A., 1971b. Histochemical classification of individual skeletal muscle fibers in the sheep II. On M. serratus ventralis, M. supraspinatus, M. infraspinatus,M. semimembranosus, and M. triceps brachii (Caput longum). Anim Sci J 42, 463–473.
228 Suzuki, A., Hayama, S., 1994. Individual Variation in Myofiber Type Composition in the Triceps Surae and Flexor Digitorum Superficialis Muscles of Japanese Macaques. Anthropol Sci 102, 127–138. https://doi.org/10.1537/ase.102.Supplement_127
229 Suzuki, A., Hayama, S., 1991. Histochemical classification of myofiber types in the triceps surae and flexor digitorum superficialis muscle of Japanese macaques. Acta Histochem Cytochem 24, 323–328. https://doi.org/10.1267/ahc.24.323
230 Suzuki, A., Tamate, H., 1988. Distribution of myofiber types in the hip and thigh musculature of sheep. Anat Rec 221, 494–502. https://doi.org/10.1002/ar.1092210106
231 Suzuki, A., Tamate, H., 1974. Histochemical classification of skeletal muscle fibers in the cattle. Acta Histochem Cytochem 7, 319–327. https://doi.org/10.1267/ahc.7.319
232 Suzuki, A., Watanabe, K., Konno, T., Ohwada, S., 1999. Distribution of Myofiber Types in the Hip and Thigh Musculature of Pigs. Anim Sci J 70, 519–525. https://doi.org/10.2508/chikusan.70.519
233 Talmadge, R.J., Grossman, E.J., Roy, R.R., 1996. Myosin heavy chain composition of adult feline (Felis catus) limb and diaphragm muscles. J Exp Zool 275, 413–20. 10.1002/(SICI)1097-010X(19960815)275:6<413::AID-JEZ3>3.0.CO;2-R
234 Thomason, D.B., Baldwin, K.M., Herrick, R.E., 1986. Myosin isozyme distribution in rodent hindlimb skeletal muscle. J Appl Physiol 60, 1923–1931. https://doi.org/10.1152/jappl.1986.60.6.1923
235 Thorstensson, A., Carlson, H., 1987. Fibre types in human lumbar back muscles. Acta Physiol Scand 131, 195–202. https://doi.org/10.1111/j.1748-1716.1987.tb08226.x
236 Tinker, D.B., Harlow, H.J., Beck, T.D.I., 1998. Protein Use and Muscle‐Fiber Changes in Free‐Ranging, Hibernating Black Bears. Physiol Zool 71, 414–424. https://doi.org/10.1086/515429
237 Tirrell, T.F., Cook, M.S., Carr, J.A., Lin, E., Ward, S.R., Lieber, R.L., 2012. Human skeletal muscle biochemical diversity. J Exp Biol 215, 2551–2559. https://doi.org/10.1242/jeb.069385
238 Toniolo, L., Maccatrozzo, L., Patruno, M., Pavan, E., Caliaro, F., Rossi, R., Rinaldi, C., Canepari, M., Reggiani, C., Mascarello, F., 2007. Fiber types in canine muscles: Myosin isoform expression and functional characterization. Am J Physiol Cell Physiol 292. https://doi.org/10.1152/ajpcell.00601.2006
239 Toole, J.F., Bullock, T.H., 1973. Neuromuscular responses of sloths. J Comp Neurol 149, 259–270. https://doi.org/10.1002/cne.901490209
240 Tůmová, E., Chodová, D., Svobodová, J., Uhlířová, L., Volek, Z., 2015. Carcass composition and meat quality of czech genetic resources of nutrias (Myocastor coypus). Czech J Anim Sci 60, 479–486. https://doi.org/10.17221/8556-CJAS
241 Tůmová, E., Chodová, D., Uhlířová, L., Vlčková, J., Volek, Z., Skřivanová, V., 2016. Relationship between muscle fibre characteristics and meat sensory properties in three nutria (Myocastor coypus) colour types. Czech J Anim Sci 61, 217–222. https://doi.org/10.17221/59/2015-CJAS
242 Tůmová, E., Chodová, D., Vlčková, J., Němeček, T., Uhlířová, L., Skřivanová, V., 2017. Age-related changes in the carcass yield and meat quality of male and female nutrias (Myocastor coypus) under intensive production system. Meat Sci 133, 51–55. https://doi.org/10.1016/j.meatsci.2017.06.003
243 Ustunel, I., Demir, R., 1997. A Histochemical, Morphometric and Ultrastructural Study of Gastrocnemius and Soleus Muscle Fiber Type Composition in Male and Female Rats. Cells Tissues Organs 158, 279–286. https://doi.org/10.1159/000147941
244 van de Graaff, K.M., Frederick, E.C., Williamson, R.G., Goslow, G.E., 1977. Motor Units and Fiber Types of Primary Ankle Extensors of the Skunk (Mephitis mephitis). J Neurophysiol 40.
245 Vesely, M.J., Sanders, R., Green, C.J., Motterlini, R., 1999. Fibre type specificity of haem oxygenase-1 induction in rat skeletal muscle. FEBS Lett 458, 257–60. https://doi.org/10.1016/s0014-5793(99)01129-1
246 von Mering, F., Fischer, M.S., 1999. Fibre type regionalization of forelimb muscles in two mammalian species, Galea musteloides (Rodentia, Caviidae) and Tupaia belangeri (Scandentia, Tupaiidae), with comments on postnatal myogenesis. Zoomorphology 119, 117–126. https://doi.org/10.1007/s004350050086
247 Wada, N., Miyata, H., Tokuriki, M., 1994. Histochemical fiber composition of cat's tail muscles. Arch Ital Biol 132, 53–8.
248 Wall, C.E., Briggs, M.M., Huq, E., Hylander, W.L., Schachat, F., 2013. Regional variation in IIM myosin heavy chain expression in the temporalis muscle of female and male baboons (Papio anubis). Arch Oral Biol 58, 435–443. https://doi.org/10.1016/j.archoralbio.2012.09.008
249 Watanabe, K., Suzuki, A., 1999. Distribution, Density, and Structure of Muscle Spindles in the Vastus Intermedius and the Peroneus Longus Muscles of Sheep. Okajimas Folia Anat Jpn 76, 203–219. https://doi.org/10.2535/ofaj1936.76.5_203
250 Watson, R.R., Miller, T.A., Davis, R.W., 2003. Immunohistochemical fiber typing of harbor seal skeletal muscle. J Exp Biol 206, 4105–11. https://doi.org/10.1242/jeb.00652
251 Wenfang, Yuye, F., Yang, B., Yang, H., Borjigin, G., Bao, H., Narenbatu, Demtu, 2019. Comparative studies on slaughter performance and skeletal muscle fibre type of alxa gobi camel and desert camel. J Camel Pract Res 26, 63. https://doi.org/10.5958/2277-8934.2019.00009.2
252 Whiteman, J.P., Harlow, H.J., Durner, G.M., Regehr, E. v., Rourke, B.C., Robles, M., Amstrup, S.C., Ben-David, M., 2017. Polar bears experience skeletal muscle atrophy in response to food deprivation and reduced activity in winter and summer. Conserv Physiol 5. https://doi.org/10.1093/conphys/cox049
253 Wigston, D.J., English, A.Wm., 1992. Fiber-type proportions in mammalian soleus muscle during postnatal development. J Neurobiol 23, 61–70. https://doi.org/10.1002/neu.480230107
254 Williams, T.M., Dobson, G.P., Mathieu-Costello, O., Morsbach, D., Worley, M.B., Phillips, J.A., 1997. Skeletal muscle histology and biochemistry of an elite sprinter, the African cheetah. J Comp Physiol B 167, 527–535. https://doi.org/10.1007/s003600050105
255 Williams, T.M., Noren, S.R., Glenn, M., 2011. Extreme physiological adaptations as predictors of climate-change sensitivity in the narwhal, Monodon monoceros. Mar Mamm Sci 27, 334–349. https://doi.org/10.1111/j.1748-7692.2010.00408.x
256 Williamson, R.G., Frederick, E.C., 1977. A functional analysis of ankle extension in the ricochetal rodent (Dipodomys merriami). Anat Histol Embryol 6, 157–66. https://doi.org/10.1111/j.1439-0264.1977.tb00430.x
257 Wojtysiak, D., Górska, M., Wojciechowska, J., 2016. Muscle Fibre Characteristics and Physico-Chemical Parameters of m. semimembranosus from Puławska, Polish Large White and Pietrain Pigs. Folia Biol (Praha) 64, 197–204. https://doi.org/10.3409/fb64_3.197
258 Xu, R., Andres-Mateos, E., Mejias, R., MacDonald, E.M., Leinwand, L.A., Merriman, D.K., Fink, R.H.A., Cohn, R.D., 2013. Hibernating squirrel muscle activates the endurance exercise pathway despite prolonged immobilization. Exp Neurol 247, 392–401. https://doi.org/10.1016/j.expneurol.2013.01.005
259 Zacharová, G., Knotková-Urbancová, H., Hník, P., Soukup, T., 1997. Nociceptive atrophy of the rat soleus muscle induced by bone fracture: a morphometric study. J Appl Physiol 82, 552–7. https://doi.org/10.1152/jappl.1997.82.2.552
260 Zheng, A., Rahkila, P., Vuori, J., Rasi, S., Takala, T., Väänänen, H.K., 1992. Quantification of carbonic anhydrase III and myoglobin in different fiber types of human psoas muscle. Histochemistry 97, 77–81. https://doi.org/10.1007/BF00271284
261 Zhong, W.W.H., Lucas, C.A., Hoh, J.F.Y., 2008. Myosin isoforms and fibre types in limb muscles of Australian marsupials: adaptations to hopping and non-hopping locomotion. J Comp Physiol B: Biochem Syst Environ Physiol 178, 47–55. https://doi.org/10.1007/s00360-007-0198-8
262 Zhong, W.W.H., Withers, K.W., Hoh, J.F.Y., 2010. Effects of hypothyroidism on myosin heavy chain composition and fibre types of fast skeletal muscles in a small marsupial, Antechinus flavipes. J Comp Physiol B 180, 531–544. https://doi.org/10.1007/s00360-009-0431-8
263 Żochowska, J., Lachowicz, K., Gajowiecki, L., Sobczak, M., Kotowicz, M., Zych, A., 2005. Effects of carcass weight and muscle on texture, structure and myofibre characteristics of wild boar meat. Meat Sci 71, 244–248. https://doi.org/10.1016/j.meatsci.2005.03.019
264 Żochowska, J., Lachowicz, K., Gajowiecki, L., Sobczak, M., Kotowicz, M., Zych, A., 2006. Growth-related changes in muscle fibres, characteristics and rheological properties of wild boars meat. Med Weter 62, 47-50.
265 Żochowska-Kujawska, J., 2016. Effects of fibre type and structure of longissimus lumborum (Ll), biceps femoris (Bf) and semimembranosus (Sm) deer muscles salting with different Nacl addition on proteolysis index and texture of dry-cured meats. Meat Sci 121, 390–396. https://doi.org/10.1016/j.meatsci.2016.07.001
266 Żochowska-Kujawska, J., Kotowicz, M., Sobczak, M., Lachowicz, K., Wójcik, J., 2019. Age-related changes in the carcass composition and meat quality of fallow deer (DAMA DAMA L.). Meat Sci 147, 37–43. https://doi.org/10.1016/j.meatsci.2018.08.014
267 Żochowska-Kujawska, J., Lachowicz, K., Sobczak, M., 2012. Effects of fibre type and kefir, wine lemon, and pineapple marinades on texture and sensory properties of wild boar and deer longissimus muscle. Meat Sci 92, 675–680. https://doi.org/10.1016/j.meatsci.2012.06.020
268 Żochowska-Kujawska, J., Lachowicz, K., Sobczak, M., Gajowiecki, L., Kotowicz, M., Zych, A., Medrala, D., 2007. Effects of massaging on hardness, rheological properties, and structure of four wild boar muscles of different fibre type content and age. Meat Sci 75, 595–602. https://doi.org/10.1016/j.meatsci.2006.09.018
269 Żochowska-Kujawska, J., Sobczak, M., Lachowicz, K., 2009. Comparison of the texture, rheological properties and myofibre characteristics of SM (Semimembranosus) muscle of selected species of game animals. Pol J Food Nutr Sci 59, 243–246.

Eligible studies providing mammalian skeletal muscle fiber content are listed alphabetically in Table 1.

Fig. 2 The 269 eligible studies included in the meta-analysis were published between 1965 and 2023 (Fig. 2). Interest in, and ability to, determine the fiber composition of different skeletal muscles from various mammalian species increased in the 1970s. The earliest included study to use the histochemical assay for myofibrillar ATPase activity (mATPase) to determine fiber type across multiple skeletal muscles was published in 1969 [6]. Sodium dodecyl-sulfate polyacrylamide gel electrophoresis (SDS-PAGE) was first used in 1981 [7,8], and immunohistochemistry with myosin antibodies (mABs) was first used in 1990 [9]. The first RNA-based method to determine skeletal muscle fiber composition, reverse transcription-polymerase chain reaction (RT-PCR), was first used in 2003 [10].

Fig. 2.

Fig 2

Number of mammalian skeletal fiber composition publications included in the meta-analysis per year. Colored bars denote the first appearance of each fiber-typing method: mATPase (raspberry), SDS-PAGE (green), mABs (purple), and RT-PCR (orange).

Table 2 is the dataset behind Fig. 3, Fig. 4.

Table 2.

Taxonomic composition, diversity, and representation of each of the 15 mammalian orders present in the 269 eligible studies.

Order No. of families No. of genera No. of species No. of publications
Artiodactyla 9 21 26 53
Carnivora 8 17 22 36
Chiroptera 6 12 16 8
Cingulata 1 1 1 1
Dasyuromorphia 1 1 1 1
Didelphimorphia 1 3 3 4
Diprotodontia 2 5 8 4
Eulipotyphla 2 7 10 6
Lagomorpha 2 2 2 7
Perissodactyla 1 1 3 13
Pilosa 2 2 2 3
Primates 11 35 50 64
Proboscidea 1 1 1 1
Rodentia 10 23 26 66
Scandentia 1 1 3 1

Fig. 3.

Fig 3

Taxonomic representation across the 269 eligible mammalian fiber composition studies included in the meta-analysis.

Fig. 4.

Fig 4

Study representation and taxonomic diversity across the 15 mammalian orders. (A) Number of eligible studies/publications per taxonomic order. (B) Number of taxonomic families per taxonomic order. (C) Number of genera per taxonomic order. (D) Number of species per taxonomic order.

From these 269 eligible studies, skeletal muscle fiber composition data was collated from 174 species belonging to class Mammalia (Fig. 3). These species represent 15 unique taxonomic orders, 58 families, and 132 genera.

Within class Mammalia, orders Rodentia, Primates, and Artiodactyla are the most highly represented in the literature, whereas orders Cingulata, Dasyuromorphia, Proboscidea, and Scandentia are the least represented (Fig. 4A). Similarly, orders Rodentia, Primates, and Artiodactyla have the most diverse representation in the literature in terms of number of unique families (Fig. 4B), genera (Fig. 4C), and species (Fig. 4D).

Table 3 quantifies the number of studies used in the meta-analysis that did not report the number of individuals from which skeletal muscle fiber composition data was recorded (n = 22) or the body mass of the individuals from which skeletal muscle fiber composition data was recorded (n = 136). Sixteen of the 269 eligible studies reported neither the number of individuals nor the body mass of individuals from which skeletal muscle fiber composition data was recorded.

Table 3.

Number of eligible studies missing relevant data for meta-analysis.

Variable No. of publications
Did report number of individuals sampled 247
Did not report number of individuals sampled 22
Did report body mass of sampled individuals 133
Did not report body mass of sampled individuals 136
Did not report either number of individuals sampled or body mass of sampled individuals 16

Fourteen species across 6 taxonomic orders had skeletal muscle fiber composition data from 50 or more individuals (Fig. 5). Five species had skeletal muscle fiber composition data from 100 or more individuals: pigs (n = 825), humans (n = 338), horses (n = 193), rats (n = 168), and cats (n = 108).

Fig. 5.

Fig 5

Species with greater than 50 sampled individuals.

154 species had skeletal muscle fiber composition data from 50 or fewer individuals (Fig. 6). Of those, 33 species had skeletal muscle fiber composition data from only one individual: African savanna elephant, black lemur, black-tufted marmoset, bonobo, brush-tailed bettong, caracal, Dsinezumi shrew, Egyptian fruit bat, emperor tamarin, golden-headed lion tamarin, gray-cheeked mangabey, Himalayan black bear, Japanese water shrew, Lar gibbon, mandrill, Mindanao treeshrew, northern giraffe, Pacific white-sided dolphin, red kangaroo, red panda, red ruffed lemur, sea otter, small Japanese mole, stone marten, swamp wallaby, Tammar wallaby, tufted capuchin, western pygmy marmoset, white-crowned mangabey, white-headed marmoset, white-lipped tamarin, and yellow-cheeked gibbon.

Fig. 6.

Fig 6

Species with fewer than 50 sampled individuals.

The 174 species included in the meta-analysis ranged in average body mass from 0.0019 kg (bumblebee bat, Craseonycteris thonglongyai) to 70,000 kg (fin whale, Balaenoptera physalus) (Fig. 7).

Fig. 7.

Fig 7

Body mass range of mammalian species included in the meta-analysis. Icons represent some of the species included within each mass bin and are colored by taxonomic order.

Most species providing skeletal muscle fiber composition data are terrestrial (n = 103), whereas marine (n = 11) species are the least represented (Fig. 8). Arboreal species are those that spend most of the time in the trees and locomote via arboreal quadrupedalism, vertical clinging and leaping, brachiation, suspension, and other scansorial activities. Marine species are those that spend most of the time in the ocean and locomote via swimming, diving, and other natatorial activities. Terrestrial species are those that spend most of the time on the ground and locomote via terrestrial quadrupedalism, bipedalism, or saltation, and may be fossorial, semi-fossorial, cursory, ambulatory, graviportal, generalized, amphibious, or scansorial. Volant species are those that primarily locomote via powered flight.

Fig. 8.

Fig 8

Broad locomotor strategy types employed by species included in the meta-analysis.

Skeletal muscle fiber composition data was provided for 238 muscles across 11 broad anatomical compartments: head, neck, shoulder, brachium (i.e. upper arm), antebrachium (i.e. lower arm), hand, trunk (i.e. back and abdominal musculature), pelvic/gluteal, thigh, leg and tail. Table 4 quantifies the number of unique skeletal muscle sampling terms (excluding differences in anatomical sampling location from the same muscle such as “superficial,” “deep,” “proximal,” “distal,” etc.) per anatomical compartment, as well as the number of data points per anatomical compartment. The anatomical compartment with the greatest number of unique skeletal muscle sampling terms is the trunk (n = 41). The most heavily sampled anatomical compartments are the leg (n = 684) and thigh (n = 661), followed by the shoulder (n = 340) and trunk (n = 331).

Table 4.

Number of unique skeletal muscle sampling terms and data points per anatomical compartment.

Anatomical compartment No. of unique skeletal muscle sampling terms No. of data points
Head 21 115
Neck 20 46
Shoulder 17 340
Brachium 12 238
Antebrachium 21 105
Hand 16 21
Trunk 41 331
Pelvic/gluteal 27 210
Thigh 27 661
Leg 23 684
Tail 13 27
Total 238 2,778

Sampling richness and taxonomic diversity across skeletal muscles from which fiber composition data was recorded (Table 5). Table 5 quantifies the number of data points, sampled individuals, sampled species, and studies per skeletal muscle, as well as the average (unweighted) slow fiber composition of each sampled skeletal muscle across species. Data from Table 5 is used for Fig. 9, Fig. 10.

Table 5.

Sampling characteristics and average (unweighted) slow fiber composition of each sampled skeletal muscle included in the meta-analysis. If the number of individuals sampled was not reported in the study, a value of “NA” is given in the “No. of individuals” column. Broad muscle terms marked as “undefined” are those from the literature that did not identify the specific muscle bellies included in the sample.

Muscle Anatomical compartment No. of data points No. of individuals No. of species No. of studies Avg. slow fiber composition (%)
Buccinator Head 1 6 1 1 13.4
Cheek pouch (undefined) Head 1 3 1 1 0.0
Cheek pouch retractor Head 1 3 1 1 15.0
Depressor conchae Head 1 10 1 1 30.0
Digastricus (anterior) Head 10 18 10 1 9.0
Digastricus (posterior) Head 1 7 1 1 2.3
Extraocular Head 1 NA 1 1 0.0
Frontalis Head 1 6 1 1 64.1
Masseter Head 26 94 21 13 19.9
Medial pterygoid Head 10 17 10 1 22.2
Mylohyoid Head 12 21 12 3 20.5
Nasorostralis superficialis Head 1 4 1 1 52.9
Orbicularis oculi Head 3 21 2 3 12.5
Orbicularis oris Head 1 10 1 1 15.0
Orbicularis oris (marginal) Head 1 5 1 1 34.0
Orbicularis oris (peripheral) Head 1 5 1 1 27.0
Styloglossus Head 2 11 2 1 33.8
Temporalis Head 18 50 14 7 16.9
Tensor tympani Head 10 17 10 1 21.5
Tensor veli palatini Head 10 17 10 1 15.0
Tongue (undefined) Head 3 NA 2 2 0.0
Biventer cervicis Neck 2 9 2 2 52.2
Brachiocephalicus Neck 2 3 2 2 37.7
Cleidocephalicus Neck 2 15 2 2 17.9
Cleidocervicalis Neck 1 3 1 1 24.0
Cleidomastoid Neck 1 3 1 1 23.0
Cleidooccipital Neck 1 6 1 1 28.0
Cricopharyngeus Neck 2 16 2 2 40.8
Obliques capitis Neck 1 6 1 1 39.0
Omotransversarius Neck 4 34 4 4 32.7
Rectus capitis posterior major Neck 2 12 2 2 39.2
Rectus capitis posterior minor Neck 1 6 1 1 23.0
Rhomboideus capitis Neck 1 6 1 1 56.0
Scalenus Neck 3 12 3 3 23.0
Semispinalis capitis Neck 5 21 5 5 45.2
Semispinalis cervicis Neck 1 6 1 1 38.0
Splenius Neck 7 29 7 7 33.8
Sternocephalicus Neck 3 12 3 3 29.2
Sternohyoid Neck 3 13 3 3 21.9
Sternomastoid Neck 3 19 3 3 28.0
Thyroarytenoideus Neck 1 8 1 1 2.5
Atlantoscapularis Shoulder 2 10 2 2 32.4
Cleidobrachialis Shoulder 2 12 2 2 20.2
Deltoid Shoulder 57 244 42 23 30.1
Dorsoepitrochlearis Shoulder 1 3 1 1 28.0
Infraspinatus Shoulder 31 152 25 19 27.7
Latissimus dorsi Shoulder 29 102 24 22 30.7
Pectoralis Shoulder 57 243 51 33 21.4
Pectoralis abdominis lateralis Shoulder 1 4 1 1 38.3
Rhomboid Shoulder 16 63 14 14 39.1
Spinodeltoidius Shoulder 1 3 1 1 2.0
Spinotrapezius Shoulder 2 7 2 2 42.3
Subclavius Shoulder 1 6 1 1 23.3
Subscapularis Shoulder 23 65 22 13 21.4
Supraspinatus Shoulder 51 137 23 20 33.2
Teres major Shoulder 30 87 29 16 27.3
Teres minor Shoulder 7 26 6 6 44.3
Trapezius Shoulder 29 151 25 19 30.1
Biceps brachii Brachium 42 208 30 21 24.6
Biceps brachii (long) Brachium 9 43 7 7 41.8
Biceps brachii (short) Brachium 7 34 5 6 26.7
Brachialis Brachium 22 80 21 13 30.4
Coracobrachialis Brachium 5 17 4 5 41.3
Tensor fascia antebrachii Brachium 2 10 2 2 32.1
Triceps brachii Brachium 42 250 20 17 31.7
Triceps brachii accessorius Brachium 1 3 1 1 90.0
Triceps brachii (angular) Brachium 1 4 1 1 24.5
Triceps brachii lateralis Brachium 32 104 29 21 19.7
Triceps brachii longus Brachium 44 187 33 24 25.7
Triceps brachii medialis Brachium 31 113 25 20 42.5
Abductor pollicis longus Antebrachium 2 9 2 2 43.2
Anconeus Antebrachium 3 18 3 3 87.6
Brachioradialis Antebrachium 9 43 6 7 40.4
Extensor carpi radialis Antebrachium 7 34 6 7 26.0
Extensor carpi ulnaris Antebrachium 5 24 5 5 38.8
Extensor digiti minimi (quinti) Antebrachium 2 7 2 2 59.6
Extensor digitorum communis Antebrachium 18 84 16 12 24.0
Extensor digitorum lateralis Antebrachium 2 5 2 2 16.7
Extensor indicis proprius Antebrachium 1 6 1 1 57.7
Extensor pollicis brevis Antebrachium 1 6 1 1 57.8
Extensor pollicis longus Antebrachium 1 6 1 1 50.4
Flexor carpi radialis Antebrachium 5 31 5 5 29.2
Flexor carpi ulnaris Antebrachium 11 59 10 10 38.6
Flexor digitorum communis Antebrachium 3 11 3 3 27.8
Flexor digitorum profundus Antebrachium 15 73 13 9 21.5
Flexor digitorum superficialis Antebrachium 8 55 7 8 40.2
Flexor pollicis longus Antebrachium 1 6 1 1 44.1
Palmaris longus Antebrachium 4 21 4 3 43.9
Pronator quadratus Antebrachium 2 9 2 2 56.8
Pronator teres Antebrachium 3 13 3 3 34.3
Supinator Antebrachium 2 9 2 2 41.3
Abductor digiti minimi Hand 2 12 1 2 56.5
Abductor pollicis brevis Hand 2 12 1 2 66.0
Adductor pollicis Hand 2 12 1 2 78.9
Extensor digitorum brevis Hand 2 7 2 2 53.7
Flexor digiti minimi brevis Hand 1 6 1 1 68.2
Flexor digitorum brevis Hand 1 6 1 1 44.5
Flexor pollicis brevis Hand 1 6 1 1 76.7
Interosseous (Dorsal, 1st) Hand 2 12 1 2 62.5
Interosseous (Dorsal, 4th) Hand 1 6 1 1 55.4
Interosseous (Palmar, 1st) Hand 1 6 1 1 60.6
Interosseous (Palmar, 3rd) Hand 1 6 1 1 46.9
Lumbrical (1st) Hand 1 6 1 1 82.7
Lumbrical (4th) Hand 1 6 1 1 86.3
Lumbricals (undefined) Hand 1 4 1 1 38.4
Opponens digiti minimi Hand 1 6 1 1 82.9
Opponens pollici Hand 1 6 1 1 74.7
Diaphragm Trunk 27 171 21 18 25.5
Erector spinae Trunk 2 7 2 2 49.9
Extensor caudae lateralis Trunk 2 10 2 2 38.5
Extensor caudae medialis Trunk 3 14 3 3 54.2
Flexor caudae lateralis Trunk 1 3 1 1 53.0
Flexor caudae medialis Trunk 1 3 1 1 50.0
Hypaxialis lumborum Trunk 2 7 2 2 52.5
Iliocostalis Trunk 6 28 6 4 38.8
Iliocostalis (lumbar) Trunk 6 23 6 3 46.4
Iliocostalis (thoracic) Trunk 6 20 6 3 40.9
Intercostals Trunk 4 14 4 3 51.8
Intermammillares mammilloaccessorii L4 Trunk 1 3 1 1 67.5
Intermammillares mammilloaccessorii L6 Trunk 1 3 1 1 81.2
Interpinales Trunk 5 17 5 4 29.5
Intertransversarii Trunk 5 22 5 5 52.8
Longissimus Trunk 53 411 21 30 29.5
Longissimus capitis Trunk 1 6 1 1 33.0
Longissimus dorsi Trunk 36 749 23 16 29.7
Longissimus (lumbar) Trunk 27 118 21 10 14.8
Longissimus (thoracic) Trunk 24 133 17 10 21.4
Longissimus (thoracic and lumbar) Trunk 4 17 2 3 11.6
Longissimus et multifidus (L3) Trunk 2 38 1 1 21.4
Longissimus et multifidus (Th9) Trunk 1 21 1 1 73.7
Multifidus Trunk 16 104 12 14 42.1
Multifidus (lumbar) Trunk 4 31 4 2 48.3
Multifidus (thoracic) Trunk 3 10 3 1 42.0
Obliques Trunk 19 57 19 11 23.7
Panniculus carnosus Trunk 1 4 1 1 66.2
Quadratus lumborum Trunk 4 12 4 3 31.4
Rectus abdominis Trunk 19 57 18 12 22.0
Rotatores Trunk 3 6 3 2 11.3
Sacrospinalis Trunk 5 15 5 4 5.6
Semispinalis and longissimus Trunk 1 3 1 1 46.3
Serratus abdominis Trunk 9 16 9 2 0.0
Serratus anterior Trunk 2 7 2 2 52.0
Serratus cervicis Trunk 1 3 1 1 60.6
Serratus dorsalis Trunk 1 3 1 1 57.0
Serratus ventralis Trunk 15 75 10 13 36.6
Spinalis transversospinalis (lumbar) Trunk 1 3 1 1 30.4
Spinalis transversospinalis (thoracic) Trunk 2 9 2 2 69.4
Transversus abdominis Trunk 5 17 5 5 41.8
Capsularis Pelvic/gluteal 1 3 1 1 99.0
Coccygeus Pelvic/gluteal 1 1 1 1 3.0
Cremaster Pelvic/gluteal 1 3 1 1 33.0
Gemelli (undefined) Pelvic/gluteal 1 3 1 1 69.0
Gemellus inferior Pelvic/gluteal 3 10 3 3 34.1
Gemellus superior Pelvic/gluteal 3 10 3 3 51.3
Gluteofemoralis Pelvic/gluteal 4 19 4 2 7.6
Gluteals (undefined) Pelvic/gluteal 4 21 3 3 29.2
Gluteobiceps Pelvic/gluteal 1 7 1 1 19.8
Gluteus accessorius Pelvic/gluteal 2 8 2 2 61.2
Gluteus maximus Pelvic/gluteal 6 36 5 4 34.1
Gluteus maximus ischiofemoralis Pelvic/gluteal 2 4 2 2 41.1
Gluteus maximus proprius Pelvic/gluteal 2 4 2 2 19.2
Gluteus medius Pelvic/gluteal 70 436 35 37 24.7
Gluteus minimus Pelvic/gluteal 8 50 8 5 40.0
Gluteus profundus Pelvic/gluteal 2 12 2 2 69.8
Gluteus superficialis Pelvic/gluteal 8 36 7 6 15.7
Iliacus Pelvic/gluteal 18 66 18 9 27.6
Iliopsoas Pelvic/gluteal 2 9 2 2 46.7
Levator ani Pelvic/gluteal 1 NA 1 1 0.0
Obturator externus Pelvic/gluteal 5 16 5 5 37.7
Obturator internus Pelvic/gluteal 4 13 4 4 38.9
Piriformis Pelvic/gluteal 7 47 7 5 43.5
Psoas major Pelvic/gluteal 38 189 25 22 23.8
Psoas minor Pelvic/gluteal 4 39 3 4 33.2
Psoas (major et minor) Pelvic/gluteal 3 6 3 2 1.0
Quadratus femoris Pelvic/gluteal 9 52 8 8 77.0
Abductor Thigh 1 3 1 1 20.0
Adductor brevis Thigh 15 69 11 9 38.4
Adductor longus Thigh 16 64 11 11 51.7
Adductor magnus Thigh 22 83 13 15 22.3
Adductor magnus ischiocondylaris Thigh 2 4 2 2 48.3
Adductor magnus pubofemoralis Thigh 2 4 2 2 39.1
Adductor tertius Thigh 1 6 1 1 1.2
Adductors (undefined) Thigh 17 56 16 10 10.3
Biceps femoris Thigh 102 648 46 47 21.0
Biceps femoris (long) Thigh 3 10 3 3 55.0
Biceps femoris (short) Thigh 3 10 3 3 40.9
Cruralis Thigh 1 1 1 1 53.0
Femorococcygeus Thigh 3 18 3 1 16.5
Gracilis Thigh 34 152 26 21 17.6
Hamstring (undefined) Thigh 1 NA 1 1 62.0
Pectineus Thigh 19 76 16 12 33.2
Quadriceps (undefined) Thigh 12 138 6 8 18.3
Rectus femoris Thigh 48 185 35 31 17.7
Sartorius Thigh 18 77 14 14 37.8
Semimembranosus Thigh 71 416 38 38 21.2
Semimembranosus accessorius Thigh 1 1 1 1 99.0
Semitendinosus Thigh 76 339 45 46 20.4
Tensor fascia latae Thigh 16 51 11 14 13.1
Tenuissimus Thigh 1 1 1 1 20.0
Vastus intermedius Thigh 49 203 24 30 60.8
Vastus lateralis Thigh 91 540 56 54 16.4
Vastus medialis Thigh 45 171 35 28 19.7
Extensor digitorum Leg 26 169 13 20 15.1
Extensor digitorum lateralis Leg 3 11 3 3 18.1
Extensor digitorum longus Leg 59 265 36 32 10.9
Extensor hallucis longus Leg 11 51 8 8 22.1
Flexor digitorum Leg 2 10 2 2 31.4
Flexor digitorum fibularis Leg 6 24 6 4 26.9
Flexor digitorum longus Leg 13 56 10 8 13.7
Flexor digitorum profundus Leg 11 22 11 5 19.3
Flexor digitorum superficialis Leg 10 61 7 9 42.2
Flexor digitorum tibialis Leg 5 22 5 3 18.2
Flexor hallucis longus Leg 11 58 9 9 22.1
Gastrocnemius Leg 71 237 44 32 25.4
Gastrocnemius lateralis Leg 61 303 43 45 20.1
Gastrocnemius medialis Leg 66 321 46 47 19.9
Peroneals (undefined) Leg 2 9 1 1 12.5
Peroneus brevis Leg 12 50 10 7 21.9
Peroneus longus Leg 17 72 12 12 23.1
Peroneus tertius Leg 4 20 4 3 10.0
Plantaris Leg 49 224 26 34 17.7
Popliteus Leg 7 21 7 5 31.3
Soleus Leg 141 820 58 87 69.4
Tibialis anterior Leg 81 301 46 50 16.8
Tibialis posterior Leg 15 67 11 11 18.5
Abductor caudae externus Tail 1 7 1 1 19.8
Abductor caudae internus Tail 1 7 1 1 16.8
Caudofemoralis Tail 5 7 4 3 1.4
Flexor caudae brevis Tail 1 7 1 1 21.6
Flexor caudae longus Tail 1 7 1 1 27.4
Sacrocaudalis Tail 2 13 2 2 10.6
Tail Tail 2 12 1 2 24.5
Tail (distal) Tail 4 23 3 3 24.9
Tail (mid dorsal) Tail 1 7 1 1 41.6
Tail (mid ventral) Tail 1 7 1 1 40.0
Tail (proximal) Tail 4 23 3 3 11.5
Tail (tip) Tail 1 7 1 1 5.0
Tail (transitional) Tail 3 16 3 2 20.3

Fig. 9.

Fig 9

The most represented skeletal muscles in the literature by (A) number of data points, (B) number of individuals sampled across taxa, (C) number of species, and (D) number of studies.

Fig. 10.

Fig 10

The relationship between skeletal muscle slow fiber content (% fibers) and body mass (kg) for muscles that are represented in 10 or more unique species (n = 65 muscles). Gray line represents a slow fiber composition of 50%, above which denotes muscles that are slow fiber dominant. Species (data points) are colored by taxonomic order. Humans within the order Primates are distinguished by outlined triangles.

Certain skeletal muscles are more represented than others in the literature, with the m. soleus being the most represented (Fig. 9). The mm. soleus, biceps femoris, vastus lateralis, tibialis anterior, semitendinosus, semimembranosus, gastrocnemius, gluteus medius and extensor digitorum longus are the most heavily sampled muscles in terms number of data points (Fig. 9A). The mm. soleus, longissimus dorsi, biceps femoris, vastus lateralis, gluteus medius, semimembranosus, longissimus, semitendinosus, gastrocnemius, tibialis anterior, and extensor digitorum longus are the most heavily sampled muscles in terms number of individuals (Fig. 9B). The mm. soleus, vastus lateralis, pectoralis, biceps femoris, gastrocnemius, tibialis anterior, semitendinosus, deltoid, semimembranosus, and extensor digitorum longus are the most heavily sampled muscles in terms number of unique species (Fig. 9C). The mm. soleus, vastus lateralis, tibialis anterior, biceps femoris, gastrocnemius, semitendinosus, semimembranosus, gluteus medius, plantaris, and pectoralis are the most heavily sampled muscles in terms number of studies (Fig. 9D).

Sixty-five skeletal muscles are represented in 10 or more unique species. For these skeletal muscles, the relationship between skeletal muscle slow fiber content (% fibers) and average species body mass (kg) is depicted in Fig. 10.

4. Experimental Design, Materials and Methods

4.1. Eligibility Criteria and Study Selection

Published, peer-reviewed data were compiled for meta-analysis between June 1 2021 and November 30 2022 following a structure similar to Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA) [2], facilitating transparency and ease of reproducibility. Terms relating to mammalian skeletal muscle fiber composition (fiber type slow fast myofiber OR myosin OR “heavy chain” “skeletal muscle” -Xenopus -avian -denervated -transition -develop -developing -stimulated -training -switch -aging -athlete -cardiomyopathy -spaceflight -Duchenne -immobilization -suspension) were queried using academic search systems (Google Scholar, PubMed, and JSTOR) and library databases for relevant primary articles. Reference lists in relevant articles were thoroughly investigated for eligible studies. No restrictions were set on the date of publication.

Articles identified via academic search systems were screened for relevancy by reviewing published abstracts and data tables. When relevant articles were identified, the article DOI and/or citation were recorded and the article PDF and associated supplemental materials were downloaded and renamed under this format: “PublicationDate_FirstAuthorLastName_Species.pdf.” If multiple studies from the same first author from the same year exist, the second and third authors' last names were added to the file name.

Relevant articles were then assessed for eligibility. Eligible studies were published in the English language and provided muscle fiber composition data from at least one skeletal muscle from a species belonging to class Mammalia. Studies were not considered eligible for the meta-analysis for the following reasons: (i) muscle fiber composition data were not provided, (ii) muscle fiber composition data provided were ambiguous, (iii) muscle fiber composition data were provided for an unidentified muscle, (iv) muscle fiber composition data were provided for cardiac fibers, (v) muscle fiber composition data were provided for single muscle fibers, (vi) muscle fiber composition data were provided for a mammal under experimental manipulation (e.g. treadmill running, limb immobilization or dietary supplementation regime), (vii) the study duplicated another dataset, (viii) the source was secondary, and (ix) the source was an abstract (Fig. 1).

4.2. Data Extraction

The following data were recorded from the text, tables, figures, and supplementary materials of eligible studies when available: sampled species’ common name, scientific name, sex, age, breed/strain, method for classification of muscle fiber composition, slow muscle fiber terminology used (e.g. MyHC I, MHC I, Type I, beta, slow oxidative, red or slow twitch), number of individuals sampled, average body mass (kg), muscle(s) sampled and average percent slow fiber content (% fibers).

In most studies, body mass was reported; for those studies that did not report a body mass the species mean was taken from Clarke et al. [3] or Genoud et al. [4]. When muscle fiber content was recorded as the percentage of fast muscle fibers within a skeletal muscle, the proportion of slow muscle fibers was derived as 100 minus the total proportion of fast muscle fibers. If slow muscle fiber content was reported from multiple superficial and deep sampling sites across a single muscle, the average across the sampling sites was recorded as the percent slow muscle fiber content of that muscle. Skeletal muscle terms were then assessed for redundancy and updated when necessary to reflect modern anatomical terminology.

Given that most studies were published between 1965 and 1999, binomial and common names were updated when necessary to reflect the current understanding of phylogenetic relationships. Taxonomic data (i.e. class, infraclass, magnorder, superorder, order, suborder, infraorder, parvorder, clade, superfamily, family, subfamily, tribe, and subspecies) provided by NCBI Taxonomy [11] was recorded for each species when available. Species were then categorized into one of four locomotor types based on how the species navigates through its habitat matrix: arboreal, marine, terrestrial, and volant (Fig. 8).

Ethics Statements

This work meets all of the ethical requirements required for publication in Data in Brief. This work did not involve the use of animal or human subjects.

CRediT authorship contribution statement

Samantha R. Queeno: Conceptualization, Methodology, Software, Validation, Formal analysis, Investigation, Data curation, Writing – original draft, Visualization. Kirstin N. Sterner: Conceptualization, Supervision, Writing – review & editing. Matthew C. O'Neill: Conceptualization, Investigation, Data curation, Supervision, Writing – review & editing.

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgments

Thanks to P.J. Reiser, C.M. Orr and T.D. Capellini for their contributions to the corresponding article [1]. Thanks also to the Milwaukee Zoo and Smithsonian Institution for access to cadaveric material, and to R. Lieber for sharing his human MyHC dataset.

The study related to the corresponding article [1] was supported by the National Science Foundation (BCS 2018436 and BCS 1945809) and the Leakey Foundation.

Data Availability

References

  • 1.Queeno S.R., Reiser P.J., Orr C.M., Capellini T.D., Sterner K.N., O'Neill M.C. Human and African ape myosin heavy chain content and the evolution of hominin skeletal muscle. Comp. Biochem. Physiol. A Mol. Integr. Physiol. 2023;281 doi: 10.1016/j.cbpa.2023.111415. [DOI] [PubMed] [Google Scholar]
  • 2.Moher D. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. Ann. Intern. Med. 2009;151:264. doi: 10.7326/0003-4819-151-4-200908180-00135. [DOI] [PubMed] [Google Scholar]
  • 3.Clarke A., Rothery P., Isaac N.J.B. Scaling of basal metabolic rate with body mass and temperature in mammals. J. Anim. Ecol. 2010;79:610–619. doi: 10.1111/j.1365-2656.2010.01672.x. [DOI] [PubMed] [Google Scholar]
  • 4.Genoud M., Isler K., Martin R.D. Comparative analyses of basal rate of metabolism in mammals: data selection does matter. Biol. Rev. 2018;93:404–438. doi: 10.1111/brv.12350. [DOI] [PubMed] [Google Scholar]
  • 5.O'Neill M.C., Umberger B.R., Holowka N.B., Larson S.G., Reiser P.J. Chimpanzee super strength and human skeletal muscle evolution. Proc. Natl. Acad. Sci. 2017;114:7343–7348. doi: 10.1073/pnas.1619071114. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 6.Edström L., Nyström B. Histochemical types and sizes of fibres in normal human muscles. a biopsy study. Acta Neurol. Scand. 1969;45:257–269. doi: 10.1111/j.1600-0404.1969.tb01238.x. [DOI] [PubMed] [Google Scholar]
  • 7.Plaghki L., Goffart M., Beckers-Bleukx G., Moureau-Lebbe A. Some characteristics of the hind limb muscles in the leaping night monkey Aotus trivirgatus (primates, anthropoidae, cebidae) Comp. Biochem. Physiol. A Physiol. 1981;70:341–349. doi: 10.1016/0300-9629(81)90188-2. [DOI] [Google Scholar]
  • 8.Sickles D.W., Pinkstaff C.A. Comparative histochemical study of prosimian primate hindlimb muscles. II. populations of fiber types. Am. J. Anat. 1981;160:187–194. doi: 10.1002/aja.1001600205. [DOI] [PubMed] [Google Scholar]
  • 9.Gorza L. Identification of a novel type 2 fiber population in mammalian skeletal muscle by combined use of histochemical myosin ATPase and anti-myosin monoclonal antibodies. J. Histochem. Cytochem. 1990;38:257–265. doi: 10.1177/38.2.2137154. [DOI] [PubMed] [Google Scholar]
  • 10.Eizema K., van den Burg M., Kiri A., Dingboom E.G., van Oudheusden H., Goldspink G., Weijs W.A. Differential expression of equine myosin heavy-chain mRNA and protein isoforms in a limb muscle. J. Histochem. Cytochem. 2003;51:1207–1216. doi: 10.1177/002215540305100911. [DOI] [PubMed] [Google Scholar]
  • 11.Schoch C.L., Ciufo S., Domrachev M., Hotton C.L., Kannan S., Khovanskaya R., Leipe D., Mcveigh R., O’Neill K., Robbertse B., Sharma S., Soussov V., Sullivan J.P., Sun L., Turner S., Karsch-Mizrachi I. NCBI taxonomy: a comprehensive update on curation, resources and tools. Database. 2020 doi: 10.1093/database/baaa062. [DOI] [PMC free article] [PubMed] [Google Scholar]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Data Availability Statement


Articles from Data in Brief are provided here courtesy of Elsevier

RESOURCES