Skip to main content
Journal of Medical Genetics logoLink to Journal of Medical Genetics
. 1994 Oct;31(10):749–753. doi: 10.1136/jmg.31.10.749

Mosaic uniparental disomy in Beckwith-Wiedemann syndrome.

R E Slatter 1, M Elliott 1, K Welham 1, M Carrera 1, P N Schofield 1, D E Barton 1, E R Maher 1
PMCID: PMC1050119  PMID: 7837249

Abstract

Beckwith-Wiedemann syndrome (BWS) is a congenital overgrowth syndrome with variable expression. The major features are anterior abdominal wall defects, macroglossia, and gigantism and less commonly neonatal hypoglycaemia, organomegaly, congenital renal anomalies, hemihypertrophy and embryonal tumours occur. BWS is a genetically heterogeneous disorder; most cases are sporadic but approximately 15% are familial and a small number of BWS patients have cytogenetic abnormalities involving chromosome 11p15. Genomic imprinting effects have been implicated in familial and non-familial BWS, and uniparental disomy (UPD) for chromosome 11 has been reported in sporadic cases. We investigated the incidence, pathogenesis, and clinical associations of UPD in 49 patients with non-familial BWS and a normal karyotype. UPD for chromosome 11p15 was detected in nine of 32 (28%) informative patients. A further two patients appeared to be disomic at the WT1 locus in chromosome 11p13, but were uninformative at chromosome 11p15.5 loci tested. In all cases with UPD the affected person was mosaic for a paternal isodisomy and a normal cell line indicating that UPD had arisen as a postzygotic event. Compared to cases in which paternal isodisomy for chromosomes 11p15.5 had been excluded (n = 23), BWS patients with UPD was more likely to have hemihypertrophy (6/9 versus 1/23, p < 0.001) and less likely to have exomphalos (0/9 versus 13/23, p < 0.01), but there were no significant differences between disomic and non-disomic cases in the incidence of hypoglycaemia, nephromegaly, neoplasia, and developmental delay. The detection of UPD in BWS patients allows accurate genetic counselling to be provided and provides an insight into the molecular pathogenesis of BWS.

Full text

PDF
749

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bartolomei M. S., Zemel S., Tilghman S. M. Parental imprinting of the mouse H19 gene. Nature. 1991 May 9;351(6322):153–155. doi: 10.1038/351153a0. [DOI] [PubMed] [Google Scholar]
  2. Brannan C. I., Dees E. C., Ingram R. S., Tilghman S. M. The product of the H19 gene may function as an RNA. Mol Cell Biol. 1990 Jan;10(1):28–36. doi: 10.1128/mcb.10.1.28. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Brown K. W., Gardner A., Williams J. C., Mott M. G., McDermott A., Maitland N. J. Paternal origin of 11p15 duplications in the Beckwith-Wiedemann syndrome. A new case and review of the literature. Cancer Genet Cytogenet. 1992 Jan;58(1):66–70. doi: 10.1016/0165-4608(92)90136-v. [DOI] [PubMed] [Google Scholar]
  4. Chao L. Y., Huff V., Tomlinson G., Riccardi V. M., Strong L. C., Saunders G. F. Genetic mosaicism in normal tissues of Wilms' tumour patients. Nat Genet. 1993 Feb;3(2):127–131. doi: 10.1038/ng0293-127. [DOI] [PubMed] [Google Scholar]
  5. Crossey P. A., Foster K., Richards F. M., Phipps M. E., Latif F., Tory K., Jones M. H., Bentley E., Kumar R., Lerman M. I. Molecular genetic investigations of the mechanism of tumourigenesis in von Hippel-Lindau disease: analysis of allele loss in VHL tumours. Hum Genet. 1994 Jan;93(1):53–58. doi: 10.1007/BF00218913. [DOI] [PubMed] [Google Scholar]
  6. DeChiara T. M., Robertson E. J., Efstratiadis A. Parental imprinting of the mouse insulin-like growth factor II gene. Cell. 1991 Feb 22;64(4):849–859. doi: 10.1016/0092-8674(91)90513-x. [DOI] [PubMed] [Google Scholar]
  7. Elliott M., Maher E. R. Beckwith-Wiedemann syndrome. J Med Genet. 1994 Jul;31(7):560–564. doi: 10.1136/jmg.31.7.560. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Engström W., Lindham S., Schofield P. Wiedemann-Beckwith syndrome. Eur J Pediatr. 1988 Jun;147(5):450–457. doi: 10.1007/BF00441965. [DOI] [PubMed] [Google Scholar]
  9. Ferguson-Smith A. C., Cattanach B. M., Barton S. C., Beechey C. V., Surani M. A. Embryological and molecular investigations of parental imprinting on mouse chromosome 7. Nature. 1991 Jun 20;351(6328):667–670. doi: 10.1038/351667a0. [DOI] [PubMed] [Google Scholar]
  10. Ferguson-Smith A. C., Sasaki H., Cattanach B. M., Surani M. A. Parental-origin-specific epigenetic modification of the mouse H19 gene. Nature. 1993 Apr 22;362(6422):751–755. doi: 10.1038/362751a0. [DOI] [PubMed] [Google Scholar]
  11. Foster K., Crossey P. A., Cairns P., Hetherington J. W., Richards F. M., Jones M. H., Bentley E., Affara N. A., Ferguson-Smith M. A., Maher E. R. Molecular genetic investigation of sporadic renal cell carcinoma: analysis of allele loss on chromosomes 3p, 5q, 11p, 17 and 22. Br J Cancer. 1994 Feb;69(2):230–234. doi: 10.1038/bjc.1994.44. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Grundy P., Telzerow P., Paterson M. C., Haber D., Berman B., Li F., Garber J. Chromosome 11 uniparental isodisomy predisposing to embryonal neoplasms. Lancet. 1991 Oct 26;338(8774):1079–1080. doi: 10.1016/0140-6736(91)91937-p. [DOI] [PubMed] [Google Scholar]
  13. Grundy P., Wilson B., Telzerow P., Zhou W., Paterson M. C. Uniparental disomy occurs infrequently in Wilms tumor patients. Am J Hum Genet. 1994 Feb;54(2):282–289. [PMC free article] [PubMed] [Google Scholar]
  14. Haber D. A., Buckler A. J., Glaser T., Call K. M., Pelletier J., Sohn R. L., Douglass E. C., Housman D. E. An internal deletion within an 11p13 zinc finger gene contributes to the development of Wilms' tumor. Cell. 1990 Jun 29;61(7):1257–1269. doi: 10.1016/0092-8674(90)90690-g. [DOI] [PubMed] [Google Scholar]
  15. Hao Y., Crenshaw T., Moulton T., Newcomb E., Tycko B. Tumour-suppressor activity of H19 RNA. Nature. 1993 Oct 21;365(6448):764–767. doi: 10.1038/365764a0. [DOI] [PubMed] [Google Scholar]
  16. Henry I., Bonaiti-Pellié C., Chehensse V., Beldjord C., Schwartz C., Utermann G., Junien C. Uniparental paternal disomy in a genetic cancer-predisposing syndrome. Nature. 1991 Jun 20;351(6328):665–667. doi: 10.1038/351665a0. [DOI] [PubMed] [Google Scholar]
  17. Henry I., Puech A., Riesewijk A., Ahnine L., Mannens M., Beldjord C., Bitoun P., Tournade M. F., Landrieu P., Junien C. Somatic mosaicism for partial paternal isodisomy in Wiedemann-Beckwith syndrome: a post-fertilization event. Eur J Hum Genet. 1993;1(1):19–29. doi: 10.1159/000472384. [DOI] [PubMed] [Google Scholar]
  18. Heutink P., van der Mey A. G., Sandkuijl L. A., van Gils A. P., Bardoel A., Breedveld G. J., van Vliet M., van Ommen G. J., Cornelisse C. J., Oostra B. A. A gene subject to genomic imprinting and responsible for hereditary paragangliomas maps to chromosome 11q23-qter. Hum Mol Genet. 1992 Apr;1(1):7–10. doi: 10.1093/hmg/1.1.7. [DOI] [PubMed] [Google Scholar]
  19. Jones M. H., Nakamura Y. Detection of loss of heterozygosity at the human TP53 locus using a dinucleotide repeat polymorphism. Genes Chromosomes Cancer. 1992 Jul;5(1):89–90. doi: 10.1002/gcc.2870050113. [DOI] [PubMed] [Google Scholar]
  20. Junien C. Beckwith-Wiedemann syndrome, tumourigenesis and imprinting. Curr Opin Genet Dev. 1992 Jun;2(3):431–438. doi: 10.1016/s0959-437x(05)80154-6. [DOI] [PubMed] [Google Scholar]
  21. Koufos A., Grundy P., Morgan K., Aleck K. A., Hadro T., Lampkin B. C., Kalbakji A., Cavenee W. K. Familial Wiedemann-Beckwith syndrome and a second Wilms tumor locus both map to 11p15.5. Am J Hum Genet. 1989 May;44(5):711–719. [PMC free article] [PubMed] [Google Scholar]
  22. Moutou C., Junien C., Henry I., Bonaïti-Pellié C. Beckwith-Wiedemann syndrome: a demonstration of the mechanisms responsible for the excess of transmitting females. J Med Genet. 1992 Apr;29(4):217–220. doi: 10.1136/jmg.29.4.217. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Nyström A., Cheetham J. E., Engström W., Schofield P. N. Molecular analysis of patients with Wiedemann-Beckwith syndrome. II. Paternally derived disomies of chromosome 11. Eur J Pediatr. 1992 Jul;151(7):511–514. doi: 10.1007/BF01957756. [DOI] [PubMed] [Google Scholar]
  24. Ogawa O., Becroft D. M., Morison I. M., Eccles M. R., Skeen J. E., Mauger D. C., Reeve A. E. Constitutional relaxation of insulin-like growth factor II gene imprinting associated with Wilms' tumour and gigantism. Nat Genet. 1993 Dec;5(4):408–412. doi: 10.1038/ng1293-408. [DOI] [PubMed] [Google Scholar]
  25. Ohlsson R., Nyström A., Pfeifer-Ohlsson S., Töhönen V., Hedborg F., Schofield P., Flam F., Ekström T. J. IGF2 is parentally imprinted during human embryogenesis and in the Beckwith-Wiedemann syndrome. Nat Genet. 1993 May;4(1):94–97. doi: 10.1038/ng0593-94. [DOI] [PubMed] [Google Scholar]
  26. Ping A. J., Reeve A. E., Law D. J., Young M. R., Boehnke M., Feinberg A. P. Genetic linkage of Beckwith-Wiedemann syndrome to 11p15. Am J Hum Genet. 1989 May;44(5):720–723. [PMC free article] [PubMed] [Google Scholar]
  27. Polymeropoulos M. H., Xiao H., Rath D. S., Merril C. R. Dinucleotide repeat polymorphism at the human non-histone chromosomal protein HMG14 gene. Nucleic Acids Res. 1991 Jul 11;19(13):3753–3753. [PMC free article] [PubMed] [Google Scholar]
  28. Rainier S., Johnson L. A., Dobry C. J., Ping A. J., Grundy P. E., Feinberg A. P. Relaxation of imprinted genes in human cancer. Nature. 1993 Apr 22;362(6422):747–749. doi: 10.1038/362747a0. [DOI] [PubMed] [Google Scholar]
  29. Robinson W. P., Bernasconi F., Mutirangura A., Ledbetter D. H., Langlois S., Malcolm S., Morris M. A., Schinzel A. A. Nondisjunction of chromosome 15: origin and recombination. Am J Hum Genet. 1993 Sep;53(3):740–751. [PMC free article] [PubMed] [Google Scholar]
  30. Schneid H., Seurin D., Vazquez M. P., Gourmelen M., Cabrol S., Le Bouc Y. Parental allele specific methylation of the human insulin-like growth factor II gene and Beckwith-Wiedemann syndrome. J Med Genet. 1993 May;30(5):353–362. doi: 10.1136/jmg.30.5.353. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Viljoen D., Ramesar R. Evidence for paternal imprinting in familial Beckwith-Wiedemann syndrome. J Med Genet. 1992 Apr;29(4):221–225. doi: 10.1136/jmg.29.4.221. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Weksberg R., Shen D. R., Fei Y. L., Song Q. L., Squire J. Disruption of insulin-like growth factor 2 imprinting in Beckwith-Wiedemann syndrome. Nat Genet. 1993 Oct;5(2):143–150. doi: 10.1038/ng1093-143. [DOI] [PubMed] [Google Scholar]
  33. Weksberg R., Teshima I., Williams B. R., Greenberg C. R., Pueschel S. M., Chernos J. E., Fowlow S. B., Hoyme E., Anderson I. J., Whiteman D. A. Molecular characterization of cytogenetic alterations associated with the Beckwith-Wiedemann syndrome (BWS) phenotype refines the localization and suggests the gene for BWS is imprinted. Hum Mol Genet. 1993 May;2(5):549–556. doi: 10.1093/hmg/2.5.549. [DOI] [PubMed] [Google Scholar]
  34. Zhang Y., Tycko B. Monoallelic expression of the human H19 gene. Nat Genet. 1992 Apr;1(1):40–44. doi: 10.1038/ng0492-40. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Medical Genetics are provided here courtesy of BMJ Publishing Group

RESOURCES