Skip to main content
Journal of Medical Genetics logoLink to Journal of Medical Genetics
. 1987 Dec;24(12):725–732. doi: 10.1136/jmg.24.12.725

Cytogenetic and molecular studies of trisomy 13.

T Hassold 1, P A Jacobs 1, M Leppert 1, M Sheldon 1
PMCID: PMC1050401  PMID: 2892938

Abstract

Chromosome heteromorphisms, restriction fragment length polymorphisms, or both were used to study the parental origin of 33 cases of simple trisomy 13 and eight cases of translocation trisomy 13. The most common origin for the simple trisomies was non-disjunction at maternal meiosis I, while for the translocations an equal number of paternally and maternally derived cases was observed. In seven of the simple trisomies, information was obtained from both the cytogenetic and molecular markers, making it possible to study recombination between the two non-disjoined chromosomes. Five of the seven cases involved errors at meiosis I, with crossing over being detected in two of three cases of maternal origin and in one of two cases of paternal origin. This indicates that absence of recombination because of pairing failure is unlikely to be of major importance in the genesis of trisomy 13.

Full text

PDF
725

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Antonarakis S. E., Chakravarti A., Warren A. C., Slaugenhaupt S. A., Wong C., Halloran S. L., Metaxotou C. Reduced recombination rate on chromosomes 21 that have undergone nondisjunction. Cold Spring Harb Symp Quant Biol. 1986;51(Pt 1):185–190. doi: 10.1101/sqb.1986.051.01.022. [DOI] [PubMed] [Google Scholar]
  2. Antonarakis S. E., Kittur S. D., Metaxotou C., Watkins P. C., Patel A. S. Analysis of DNA haplotypes suggests a genetic predisposition to trisomy 21 associated with DNA sequences on chromosome 21. Proc Natl Acad Sci U S A. 1985 May;82(10):3360–3364. doi: 10.1073/pnas.82.10.3360. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Aymé S., Lippman-Hand A. Maternal-age effect in aneuploidy: does altered embryonic selection play a role? Am J Hum Genet. 1982 Jul;34(4):558–565. [PMC free article] [PubMed] [Google Scholar]
  4. Chamberlin J., Magenis R. E. Parental origin of de novo chromosome rearrangements. Hum Genet. 1980;53(3):343–347. doi: 10.1007/BF00287054. [DOI] [PubMed] [Google Scholar]
  5. Hassold T., Chiu D., Yamane J. A. Parental origin of autosomal trisomies. Ann Hum Genet. 1984 May;48(Pt 2):129–144. doi: 10.1111/j.1469-1809.1984.tb01008.x. [DOI] [PubMed] [Google Scholar]
  6. Hassold T., Kumlin E., Takaesu N., Leppert M. Determination of the parental origin of sex-chromosome monosomy using restriction fragment length polymorphisms. Am J Hum Genet. 1985 Sep;37(5):965–972. [PMC free article] [PubMed] [Google Scholar]
  7. Henderson S. A., Edwards R. G. Chiasma frequency and maternal age in mammals. Nature. 1968 Apr 6;218(5136):22–28. doi: 10.1038/218022a0. [DOI] [PubMed] [Google Scholar]
  8. Ishikiriyama S., Niikawa N. Origin of extra chromosome in Patau syndrome. Hum Genet. 1984;68(3):266–268. doi: 10.1007/BF00418400. [DOI] [PubMed] [Google Scholar]
  9. Jacobs P. A., Hassold T. J., Henry A., Pettay D., Takaesu N. Trisomy 13 ascertained in a survey of spontaneous abortions. J Med Genet. 1987 Dec;24(12):721–724. doi: 10.1136/jmg.24.12.721. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Jacobs P. A., Morton N. E. Origin of human trisomics and polyploids. Hum Hered. 1977;27(1):59–72. doi: 10.1159/000152852. [DOI] [PubMed] [Google Scholar]
  11. Laurie D. A., Hultén M. A. Further studies on bivalent chiasma frequency in human males with normal karyotypes. Ann Hum Genet. 1985 Jul;49(Pt 3):189–201. doi: 10.1111/j.1469-1809.1985.tb01693.x. [DOI] [PubMed] [Google Scholar]
  12. Leppert M., Cavenee W., Callahan P., Holm T., O'Connell P., Thompson K., Lathrop G. M., Lalouel J. M., White R. A primary genetic map of chromosome 13q. Am J Hum Genet. 1986 Oct;39(4):425–437. [PMC free article] [PubMed] [Google Scholar]
  13. Mikkelsen M., Poulsen H., Grinsted J., Lange A. Non-disjunction in trisomy 21: study of chromosomal heteromorphisms in 110 families. Ann Hum Genet. 1980 Jul;44(Pt 1):17–28. doi: 10.1111/j.1469-1809.1980.tb00942.x. [DOI] [PubMed] [Google Scholar]
  14. Ott J., Linder D., McCaw B. K., Lovrien E. W., Hecht F. Estimating distances from the centromere by means of benign ovarian teratomas in man. Ann Hum Genet. 1976 Nov;40(2):191–196. doi: 10.1111/j.1469-1809.1976.tb00179.x. [DOI] [PubMed] [Google Scholar]
  15. Risch N., Stein Z., Kline J., Warburton D. The relationship between maternal age and chromosome size in autosomal trisomy. Am J Hum Genet. 1986 Jul;39(1):68–78. [PMC free article] [PubMed] [Google Scholar]
  16. Southern E. M. Detection of specific sequences among DNA fragments separated by gel electrophoresis. J Mol Biol. 1975 Nov 5;98(3):503–517. doi: 10.1016/s0022-2836(75)80083-0. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Medical Genetics are provided here courtesy of BMJ Publishing Group

RESOURCES