Skip to main content
Journal of Medical Genetics logoLink to Journal of Medical Genetics
. 1995 May;32(5):389–392. doi: 10.1136/jmg.32.5.389

Linkage analysis of a large pedigree with hereditary sideroblastic anaemia.

J S Noble 1, G R Taylor 1, M S Losowsky 1, R Hall 1, G Turner 1, R F Mueller 1, A D Stewart 1
PMCID: PMC1050436  PMID: 7616548

Abstract

A large pedigree showing a history of pyridoxine responsive X linked sideroblastic anaemia was screened with several polymorphic DNA markers from the X chromosome. Linkage analysis between each marker and disease status was performed, giving a maximum two point lod score of 3.64 at zero recombination with the microsatellite marker PGK1P1 at Xq11.2-12. Close linkage to PGK at Xq13.3, one of the candidate regions for X linked sideroblastic anaemia, was excluded. Linkage to DNA markers distal to PGK and at Xp21 was also excluded. Multipoint linkage analysis was performed with markers located between Xq11.2-21. The maximum map specific lod score obtained was 3.56 at PGK1P1 (Xq11.2-12). Linkage remained significant over the interval 20 cM proximal to PGK1P1 and 5 cM distal to PGK1P1, with definite exclusion around the PGK locus. The most likely location of the gene involved in sideroblastic anaemia in this pedigree is therefore within the pericentromeric region of the X chromosome. This region includes the erythroid 5-aminolaevulinate synthetase gene of the haem synthesis pathway, which is a candidate gene for X linked sideroblastic anaemia located at Xp11.21.

Full text

PDF
389

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Beggs A. H., Kunkel L. M. A polymorphic CACA repeat in the 3' untranslated region of dystrophin. Nucleic Acids Res. 1990 Apr 11;18(7):1931–1931. doi: 10.1093/nar/18.7.1931. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Browne D. L., Zonana J., Litt M. Dinucleotide repeat polymorphism at the PGK1P1 locus. Nucleic Acids Res. 1992 Mar 11;20(5):1169–1169. doi: 10.1093/nar/20.5.1169-a. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Conboy J. G., Cox T. C., Bottomley S. S., Bawden M. J., May B. K. Human erythroid 5-aminolevulinate synthase. Gene structure and species-specific differences in alternative RNA splicing. J Biol Chem. 1992 Sep 15;267(26):18753–18758. [PubMed] [Google Scholar]
  4. Cotter P. D., Baumann M., Bishop D. F. Enzymatic defect in "X-linked" sideroblastic anemia: molecular evidence for erythroid delta-aminolevulinate synthase deficiency. Proc Natl Acad Sci U S A. 1992 May 1;89(9):4028–4032. doi: 10.1073/pnas.89.9.4028. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Cotter P. D., Willard H. F., Gorski J. L., Bishop D. F. Assignment of human erythroid delta-aminolevulinate synthase (ALAS2) to a distal subregion of band Xp11.21 by PCR analysis of somatic cell hybrids containing X; autosome translocations. Genomics. 1992 May;13(1):211–212. doi: 10.1016/0888-7543(92)90223-f. [DOI] [PubMed] [Google Scholar]
  6. Cox T. C., Bawden M. J., Abraham N. G., Bottomley S. S., May B. K., Baker E., Chen L. Z., Sutherland G. R. Erythroid 5-aminolevulinate synthase is located on the X chromosome. Am J Hum Genet. 1990 Jan;46(1):107–111. [PMC free article] [PubMed] [Google Scholar]
  7. Cox T. C., Bottomley S. S., Wiley J. S., Bawden M. J., Matthews C. S., May B. K. X-linked pyridoxine-responsive sideroblastic anemia due to a Thr388-to-Ser substitution in erythroid 5-aminolevulinate synthase. N Engl J Med. 1994 Mar 10;330(10):675–679. doi: 10.1056/NEJM199403103301004. [DOI] [PubMed] [Google Scholar]
  8. Cox T. C., Kozman H. M., Raskind W. H., May B. K., Mulley J. C. Identification of a highly polymorphic marker within intron 7 of the ALAS2 gene and suggestion of at least two loci for X-linked sideroblastic anemia. Hum Mol Genet. 1992 Nov;1(8):639–641. doi: 10.1093/hmg/1.8.639. [DOI] [PubMed] [Google Scholar]
  9. Dewald G. W., Pierre R. V., Phyliky R. L. Three patients with structurally abnormal X chromosomes, each with Xq13 breakpoints and a history of idiopathic acquired sideroblastic anemia. Blood. 1982 Jan;59(1):100–105. [PubMed] [Google Scholar]
  10. Graeber M. B., Monaco A. P., Chelly J., Müller U. Isolation of DNTR polymorphisms from yeast artificial chromosomes encompassing X chromosomal loci PGK1 and DXS56. Hum Genet. 1992 Nov;90(3):270–274. doi: 10.1007/BF00220077. [DOI] [PubMed] [Google Scholar]
  11. Kogan S. C., Doherty M., Gitschier J. An improved method for prenatal diagnosis of genetic diseases by analysis of amplified DNA sequences. Application to hemophilia A. N Engl J Med. 1987 Oct 15;317(16):985–990. doi: 10.1056/NEJM198710153171603. [DOI] [PubMed] [Google Scholar]
  12. Konradi C., Ozelius L., Breakefield X. O. Highly polymorphic (GT)n repeat sequence in intron II of the human MAOB gene. Genomics. 1992 Jan;12(1):176–177. doi: 10.1016/0888-7543(92)90426-s. [DOI] [PubMed] [Google Scholar]
  13. LOSOWSKY M. S., HALL R. HEREDITARY SIDEROBLASTIC ANAEMIA. Br J Haematol. 1965 Jan;11:70–85. doi: 10.1111/j.1365-2141.1965.tb00086.x. [DOI] [PubMed] [Google Scholar]
  14. Lafrenière R. G., Brown C. J., Powers V. E., Carrel L., Davies K. E., Barker D. F., Willard H. F. Physical mapping of 60 DNA markers in the p21.1----q21.3 region of the human X chromosome. Genomics. 1991 Oct;11(2):352–363. doi: 10.1016/0888-7543(91)90143-3. [DOI] [PubMed] [Google Scholar]
  15. Luty J. A., Guo Z., Willard H. F., Ledbetter D. H., Ledbetter S., Litt M. Five polymorphic microsatellite VNTRs on the human X chromosome. Am J Hum Genet. 1990 Apr;46(4):776–783. [PMC free article] [PubMed] [Google Scholar]
  16. Noble J. S., Taylor G. R., Stewart A. D., Mueller R. F., Murday V. A. A rapid PCR-based method to distinguish between fetal and maternal cells in chorionic biopsies using microsatellite polymorphisms. Dis Markers. 1991 Nov-Dec;9(6):301–306. [PubMed] [Google Scholar]
  17. Pagon R. A., Bird T. D., Detter J. C., Pierce I. Hereditary sideroblastic anaemia and ataxia: an X linked recessive disorder. J Med Genet. 1985 Aug;22(4):267–273. doi: 10.1136/jmg.22.4.267. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Peto T. E., Pippard M. J., Weatherall D. J. Iron overload in mild sideroblastic anaemias. Lancet. 1983 Feb 19;1(8321):375–378. doi: 10.1016/s0140-6736(83)91498-8. [DOI] [PubMed] [Google Scholar]
  19. Raskind W. H., Wijsman E., Pagon R. A., Cox T. C., Bawden M. J., May B. K., Bird T. D. X-linked sideroblastic anemia and ataxia: linkage to phosphoglycerate kinase at Xq13. Am J Hum Genet. 1991 Feb;48(2):335–341. [PMC free article] [PubMed] [Google Scholar]
  20. Weber J. L., Kwitek A. E., May P. E., Polymeropoulos M. H., Ledbetter S. Dinucleotide repeat polymorphisms at the DXS453, DXS454 and DXS458 loci. Nucleic Acids Res. 1990 Jul 11;18(13):4037–4037. doi: 10.1093/nar/18.13.4037. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Winship P. R., Rees D. J., Alkan M. Detection of polymorphisms at cytosine phosphoguanadine dinucleotides and diagnosis of haemophilia B carriers. Lancet. 1989 Mar 25;1(8639):631–634. doi: 10.1016/s0140-6736(89)92141-7. [DOI] [PubMed] [Google Scholar]
  22. van Waveren Hogervorst G. D., van Roermund H. P., Snijders P. J. Hereditary sideroblastic anaemia and autosomal inheritance of erythrocyte dimorphism in a Dutch family. Eur J Haematol. 1987 May;38(5):405–409. doi: 10.1111/j.1600-0609.1987.tb01436.x. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Medical Genetics are provided here courtesy of BMJ Publishing Group

RESOURCES