Skip to main content

This is a preprint.

It has not yet been peer reviewed by a journal.

The National Library of Medicine is running a pilot to include preprints that result from research funded by NIH in PMC and PubMed.

medRxiv logoLink to medRxiv
[Preprint]. 2023 Sep 8:2023.09.06.23295166. [Version 1] doi: 10.1101/2023.09.06.23295166

Impact of Age-related change in Caval Flow Ratio on Hepatic Flow Distribution in Fontan

V Govindarajan, L Marshall, A Sahni, M Cetatoiu, E Eickhoff, J Davee, N St Clair, N Schulz, DM Hoganson, P E Hammer, S Ghelani, A Prakash, P J del Nido, RH Rathod
PMCID: PMC10508792  PMID: 37732201

Abstract

Background

The Fontan operation is a palliative technique for patients born with single ventricle heart disease. The superior vena cava (SVC), inferior vena cava (IVC), and hepatic veins are connected to the pulmonary arteries in a total cavopulmonary connection by an extracardiac (EC) conduit or a lateral tunnel (LT) connection. A balanced hepatic flow distribution (HFD) to both lungs is essential to prevent pulmonary arteriovenous malformations and cyanosis. HFD is highly dependent on the local hemodynamics.

Objective

The effect of age-related changes in caval inflows on HFD was evaluated using cardiac MRI (CMR) data and patient-specific computational fluid dynamics (CFD) modeling.

Methods

SVC and IVC flow from 414 Fontan patients were collected to establish a relationship between SVC:IVC flow ratio and age. CFD modeling was performed in 60 (30 EC and 30 LT) patient models to quantify the HFD that corresponded to patient ages of 3, 8, and 15 years, respectively.

Results

SVC:IVC flow ratio inverted at ∼8 years of age, indicating a clear shift to lower body flow predominance. Our data showed that variation of HFD in response to age-related changes in caval inflows (SVC:IVC = 2,1, and 0.5 corresponded to ages 3, 8, and 15+ respectively) was not significant for EC but statistically significant for LT cohorts. For all three caval inflow ratios, a positive correlation existed between the IVC flow distribution to both the lungs and the HFD. However, as the SVC:IVC ratio changed from 2→0.5 (age 3→15+), the correlation’s strength decreased from 0.87→0.64, due to potential flow perturbation as IVC flow momentum increased.

Conclusion

Our analysis provided quantitative insights into the impact of the changing caval inflows on Fontan’s long-term HFD, highlighting the importance of including SVC:IVC variations over time to understand Fontan’s long-term hemodynamics. These findings broaden our understanding of Fontan hemodynamics and patient outcomes.

Clinical Perspective

With improvement in standard of care and management of single ventricle patients with Fontan physiology, the population of adults with Fontan circulation is increasing. Consequently, there is a clinical need to comprehend the impact of patient growth on Fontan hemodynamics. Using CMR data, we were able to quantify the relationship between changing caval inflows and somatic growth. We then used patient-specific computational flow modeling to quantify how this relationship affected the distribution of long-term hepatic flow in extracardiac and lateral tunnel Fontan types. Our findings demonstrated the significance of including SVC:IVC changes over time in CFD modeling to learn more about the long-term hemodynamics of Fontan. Fontan surgical approaches are increasingly planned and optimized using computational flow modeling. For a patient undergoing a Fontan procedure, the workflow presented in this study that takes into account the variations in Caval inflows over time can aid in predicting the long-term hemodynamics in a planned Fontan pathway.

Full Text Availability

The license terms selected by the author(s) for this preprint version do not permit archiving in PMC. The full text is available from the preprint server.


Articles from medRxiv are provided here courtesy of Cold Spring Harbor Laboratory Preprints

RESOURCES