Skip to main content
Journal of Medical Genetics logoLink to Journal of Medical Genetics
. 1997 May;34(5):371–374. doi: 10.1136/jmg.34.5.371

Analysis of the 5' upstream sequence of the Huntington's disease (HD) gene shows six new rare alleles which are unrelated to the age at onset of HD.

R Coles 1, J Leggo 1, D C Rubinsztein 1
PMCID: PMC1050943  PMID: 9152833

Abstract

The CAG repeat number in the Huntington's disease (HD) gene accounts for about 50% of the variation seen in age at onset of HD. In order to determine whether promoter sequence variation can contribute to the residual variation in age at onset, we studied the conserved 303 bp region upstream of the +1 translation start site in the HD gene in a population of 56 control East Anglians, 30 Africans, 34 Japanese, and 208 English Huntington's disease patients. A surprisingly high degree of variation was found. Seven alleles were identified, comprising four polymorphisms: two single base pair substitutions, a 6 bp VNTR present as one or two copies, and a 20 bp VNTR with one to three copies of the tandem repeat. No correlation between polymorphisms and age at onset of symptoms was found in HD patients. The 6 bp and 20 bp stretches are present only in single copies in the chimpanzees and gorilla, suggesting that these VNTRs have evolved by duplication of the core sequences in the human lineage.

Full text

PDF
371

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Andersen L. C., Beaty J. S., Nettles J. W., Seyfried C. E., Nepom G. T., Nepoom B. S. Allelic polymorphism in transcriptional regulatory regions of HLA-DQB genes. J Exp Med. 1991 Jan 1;173(1):181–192. doi: 10.1084/jem.173.1.181. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Balbin M., Grubb A., Abrahamson M. Demonstration of sequence variations in the promoter region of the human cystatin C gene. Biol Chem Hoppe Seyler. 1992 Jul;373(7):471–476. doi: 10.1515/bchm3.1992.373.2.471. [DOI] [PubMed] [Google Scholar]
  3. Burright E. N., Clark H. B., Servadio A., Matilla T., Feddersen R. M., Yunis W. S., Duvick L. A., Zoghbi H. Y., Orr H. T. SCA1 transgenic mice: a model for neurodegeneration caused by an expanded CAG trinucleotide repeat. Cell. 1995 Sep 22;82(6):937–948. doi: 10.1016/0092-8674(95)90273-2. [DOI] [PubMed] [Google Scholar]
  4. Cereb N., Yang S. Y. The regulatory complex of HLA class I promoters exhibits locus-specific conservation with limited allelic variation. J Immunol. 1994 Apr 15;152(8):3873–3883. [PubMed] [Google Scholar]
  5. Faisst S., Meyer S. Compilation of vertebrate-encoded transcription factors. Nucleic Acids Res. 1992 Jan 11;20(1):3–26. doi: 10.1093/nar/20.1.3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Fullerton S. M., Harding R. M., Boyce A. J., Clegg J. B. Molecular and population genetic analysis of allelic sequence diversity at the human beta-globin locus. Proc Natl Acad Sci U S A. 1994 Mar 1;91(5):1805–1809. doi: 10.1073/pnas.91.5.1805. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Hanlon C. S., Rubinsztein D. C. Arginine residues at codons 112 and 158 in the apolipoprotein E gene correspond to the ancestral state in humans. Atherosclerosis. 1995 Jan 6;112(1):85–90. doi: 10.1016/0021-9150(94)05402-5. [DOI] [PubMed] [Google Scholar]
  8. Kremer B., Squitieri F., Telenius H., Andrew S. E., Theilmann J., Spence N., Goldberg Y. P., Hayden M. R. Molecular analysis of late onset Huntington's disease. J Med Genet. 1993 Dec;30(12):991–995. doi: 10.1136/jmg.30.12.991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Li S. H., Schilling G., Young W. S., 3rd, Li X. J., Margolis R. L., Stine O. C., Wagster M. V., Abbott M. H., Franz M. L., Ranen N. G. Huntington's disease gene (IT15) is widely expressed in human and rat tissues. Neuron. 1993 Nov;11(5):985–993. doi: 10.1016/0896-6273(93)90127-d. [DOI] [PubMed] [Google Scholar]
  10. Li W. H., Sadler L. A. Low nucleotide diversity in man. Genetics. 1991 Oct;129(2):513–523. doi: 10.1093/genetics/129.2.513. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Lin B., Nasir J., Kalchman M. A., McDonald H., Zeisler J., Goldberg Y. P., Hayden M. R. Structural analysis of the 5' region of mouse and human Huntington disease genes reveals conservation of putative promoter region and di- and trinucleotide polymorphisms. Genomics. 1995 Feb 10;25(3):707–715. doi: 10.1016/0888-7543(95)80014-d. [DOI] [PubMed] [Google Scholar]
  12. Nasir J., Goldberg Y. P., Hayden M. R. Huntington disease: new insights into the relationship between CAG expansion and disease. Hum Mol Genet. 1996;5(Spec No):1431–1435. doi: 10.1093/hmg/5.supplement_1.1431. [DOI] [PubMed] [Google Scholar]
  13. Rubinsztein D. C., Barton D. E., Davison B. C., Ferguson-Smith M. A. Analysis of the huntingtin gene reveals a trinucleotide-length polymorphism in the region of the gene that contains two CCG-rich stretches and a correlation between decreased age of onset of Huntington's disease and CAG repeat number. Hum Mol Genet. 1993 Oct;2(10):1713–1715. doi: 10.1093/hmg/2.10.1713. [DOI] [PubMed] [Google Scholar]
  14. Rubinsztein D. C., Leggo J., Coles R., Almqvist E., Biancalana V., Cassiman J. J., Chotai K., Connarty M., Crauford D., Curtis A. Phenotypic characterization of individuals with 30-40 CAG repeats in the Huntington disease (HD) gene reveals HD cases with 36 repeats and apparently normal elderly individuals with 36-39 repeats. Am J Hum Genet. 1996 Jul;59(1):16–22. [PMC free article] [PubMed] [Google Scholar]
  15. Singal D. P., Qiu X., D'Souza M., Sood S. K. Polymorphism in the upstream regulatory regions of HLA-DRB genes. Immunogenetics. 1993;37(2):143–147. doi: 10.1007/BF00216839. [DOI] [PubMed] [Google Scholar]
  16. Stine O. C., Li S. H., Pleasant N., Wagster M. V., Hedreen J. C., Ross C. A. Expression of the mutant allele of IT-15 (the HD gene) in striatum and cortex of Huntington's disease patients. Hum Mol Genet. 1995 Jan;4(1):15–18. doi: 10.1093/hmg/4.1.15. [DOI] [PubMed] [Google Scholar]
  17. Telenius H., Kremer H. P., Theilmann J., Andrew S. E., Almqvist E., Anvret M., Greenberg C., Greenberg J., Lucotte G., Squitieri F. Molecular analysis of juvenile Huntington disease: the major influence on (CAG)n repeat length is the sex of the affected parent. Hum Mol Genet. 1993 Oct;2(10):1535–1540. doi: 10.1093/hmg/2.10.1535. [DOI] [PubMed] [Google Scholar]
  18. Vaishnaw A. K., Hargreaves R., Campbell R. D., Morley B. J., Walport M. J. DNase I hypersensitivity mapping and promoter polymorphism analysis of human C4. Immunogenetics. 1995;41(6):354–358. doi: 10.1007/BF00163992. [DOI] [PubMed] [Google Scholar]
  19. Yao Z., Volgger A., Scholz S., Albert E. D. Sequence polymorphism in the HLA-B promoter region. Immunogenetics. 1995;41(6):343–353. doi: 10.1007/BF00163991. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Medical Genetics are provided here courtesy of BMJ Publishing Group

RESOURCES