Skip to main content
Journal of Medical Genetics logoLink to Journal of Medical Genetics
. 1997 May;34(5):395–399. doi: 10.1136/jmg.34.5.395

Trisomy 15 rescue with jumping translocation of distal 15q in Prader-Willi syndrome.

K Devriendt 1, P Petit 1, G Matthijs 1, J R Vermeesch 1, M Holvoet 1, A De Muelenaere 1, P Marynen 1, J J Cassiman 1, J P Fryns 1
PMCID: PMC1050947  PMID: 9152837

Abstract

We report a patient with Prader-Willi syndrome (PWS) and mosaicism for a de novo jumping translocation of distal chromosome 15q, resulting in partial trisomy for 15q24-qter. A maternal uniparental heterodisomy for chromosome 15 was present in all cells, defining the molecular basis for the PWS in this patient. The translocated distal 15q fragment was of paternal origin and was present as a jumping translocation, involving three different translocation partners, chromosomes 14q, 4q, and 16p. The recipient chromosomes appeared cytogenetically intact and interstitial telomere DNA sequences were present at the breakpoint junctions. This strongly suggests that the initial event leading to the translocation of distal 15q was a non-reciprocal translocation, with fusion between the 15q24 break-point and the telomeres of the recipient chromosomes. These observations are best explained by a partial zygotic trisomy rescue and comprise a previously undescribed mechanism leading to partial trisomy.

Full text

PDF
395

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anvret M., Wahlström J., Skogsberg P., Hagberg B. Segregation analysis of the X-chromosome in a family with Rett syndrome in two generations. Am J Med Genet. 1990 Sep;37(1):31–35. doi: 10.1002/ajmg.1320370109. [DOI] [PubMed] [Google Scholar]
  2. Cassidy S. B., Lai L. W., Erickson R. P., Magnuson L., Thomas E., Gendron R., Herrmann J. Trisomy 15 with loss of the paternal 15 as a cause of Prader-Willi syndrome due to maternal disomy. Am J Hum Genet. 1992 Oct;51(4):701–708. [PMC free article] [PubMed] [Google Scholar]
  3. Dittrich B., Robinson W. P., Knoblauch H., Buiting K., Schmidt K., Gillessen-Kaesbach G., Horsthemke B. Molecular diagnosis of the Prader-Willi and Angelman syndromes by detection of parent-of-origin specific DNA methylation in 15q11-13. Hum Genet. 1992 Nov;90(3):313–315. doi: 10.1007/BF00220089. [DOI] [PubMed] [Google Scholar]
  4. Driscoll D. J., Waters M. F., Williams C. A., Zori R. T., Glenn C. C., Avidano K. M., Nicholls R. D. A DNA methylation imprint, determined by the sex of the parent, distinguishes the Angelman and Prader-Willi syndromes. Genomics. 1992 Aug;13(4):917–924. doi: 10.1016/0888-7543(92)90001-9. [DOI] [PubMed] [Google Scholar]
  5. Engel E. La disomie uniparentale: revue des causes et conséquences en clinique humaine. Ann Genet. 1995;38(3):113–136. [PubMed] [Google Scholar]
  6. Farrell S. A., Winsor E. J., Markovic V. D. Moving satellites and unstable chromosome translocations: clinical and cytogenetic implications. Am J Med Genet. 1993 Jul 1;46(6):715–720. doi: 10.1002/ajmg.1320460624. [DOI] [PubMed] [Google Scholar]
  7. Holm V. A., Cassidy S. B., Butler M. G., Hanchett J. M., Greenswag L. R., Whitman B. Y., Greenberg F. Prader-Willi syndrome: consensus diagnostic criteria. Pediatrics. 1993 Feb;91(2):398–402. [PMC free article] [PubMed] [Google Scholar]
  8. Jauch A., Robson L., Smith A. Investigations with fluorescence in situ hybridization (FISH) demonstrate loss of the telomeres on the reciprocal chromosome in three unbalanced translocations involving chromosome 15 in the Prader-Willi and Angelman syndromes. Hum Genet. 1995 Sep;96(3):345–349. doi: 10.1007/BF00210421. [DOI] [PubMed] [Google Scholar]
  9. Ledbetter D. H., Riccardi V. M., Airhart S. D., Strobel R. J., Keenan B. S., Crawford J. D. Deletions of chromosome 15 as a cause of the Prader-Willi syndrome. N Engl J Med. 1981 Feb 5;304(6):325–329. doi: 10.1056/NEJM198102053040604. [DOI] [PubMed] [Google Scholar]
  10. Lejeune J., Maunoury C., Prieur M., Van den Akker J. Translocation sauteuse (5p;15q), (8q;15q), (12q;15q). Ann Genet. 1979;22(4):210–213. [PubMed] [Google Scholar]
  11. Nicholls R. D., Knoll J. H., Butler M. G., Karam S., Lalande M. Genetic imprinting suggested by maternal heterodisomy in nondeletion Prader-Willi syndrome. Nature. 1989 Nov 16;342(6247):281–285. doi: 10.1038/342281a0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Park V. M., Gustashaw K. M., Wathen T. M. The presence of interstitial telomeric sequences in constitutional chromosome abnormalities. Am J Hum Genet. 1992 May;50(5):914–923. [PMC free article] [PubMed] [Google Scholar]
  13. Pinkel D., Straume T., Gray J. W. Cytogenetic analysis using quantitative, high-sensitivity, fluorescence hybridization. Proc Natl Acad Sci U S A. 1986 May;83(9):2934–2938. doi: 10.1073/pnas.83.9.2934. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Robinson W. P., Wagstaff J., Bernasconi F., Baccichetti C., Artifoni L., Franzoni E., Suslak L., Shih L. Y., Aviv H., Schinzel A. A. Uniparental disomy explains the occurrence of the Angelman or Prader-Willi syndrome in patients with an additional small inv dup(15) chromosome. J Med Genet. 1993 Sep;30(9):756–760. doi: 10.1136/jmg.30.9.756. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Rossi E., Floridia G., Casali M., Danesino C., Chiumello G., Bernardi F., Magnani I., Papi L., Mura M., Zuffardi O. Types, stability, and phenotypic consequences of chromosome rearrangements leading to interstitial telomeric sequences. J Med Genet. 1993 Nov;30(11):926–931. doi: 10.1136/jmg.30.11.926. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Toth-Fejel S., Olson S., Gunter K., Quan F., Wolford J., Popovich B. W., Magenis R. E. The impact of imprinting: Prader-Willi syndrome resulting from chromosome translocation, recombination, and nondisjunction. Am J Hum Genet. 1996 May;58(5):1008–1016. [PMC free article] [PubMed] [Google Scholar]
  17. Vermeesch J. R., De Meurichy W., Van Den Berghe H., Marynen P., Petit P. Differences in the distribution and nature of the interstitial telomeric (TTAGGG)n sequences in the chromosomes of the Giraffidae, okapai (Okapia johnstoni), and giraffe (Giraffa camelopardalis): evidence for ancestral telomeres at the okapi polymorphic rob(5;26) fusion site. Cytogenet Cell Genet. 1996;72(4):310–315. doi: 10.1159/000134211. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Medical Genetics are provided here courtesy of BMJ Publishing Group

RESOURCES