Skip to main content
Journal of Medical Genetics logoLink to Journal of Medical Genetics
. 1997 May;34(5):411–413. doi: 10.1136/jmg.34.5.411

Meiotic instability associated with the CAGR1 trinucleotide repeat at 13q13.

N T Potter 1
PMCID: PMC1050949  PMID: 9152839

Abstract

CAGR1 is a recently characterised polymorphic trinucleotide repeat localised to 13q13, which has been suggested as a possible candidate gene for neurological disorders that manifest genetic anticipation. To provide evidence in support of this hypothesis, a large number of chromosomes (n = 928) from patients with a wide variety of neurological diseases were screened for evidence of repeat expansion and meiotic instability. One person with a CAGR1 repeat number of 50 was identified (normal range 9-29). Subsequent molecular analyses of CAGR1 repeat number in additional family members showed meiotic instability of a (CAG)45 allele through three generations. While CAGR1 repeat number did not correlate with a readily discernible phenotype in this family, the finding of meiotic stability and mendelian inheritance of normal CAG alleles and meiotic instability of larger repeats fulfil several criteria thought essential for pathologically relevant mutations of this type. Thus, these data strengthen the hypothesis for a role of CAGR1 in the development of an as yet molecularly uncharacterised human neurological disease.

Full text

PDF
411

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adams M. D., Kerlavage A. R., Fleischmann R. D., Fuldner R. A., Bult C. J., Lee N. H., Kirkness E. F., Weinstock K. G., Gocayne J. D., White O. Initial assessment of human gene diversity and expression patterns based upon 83 million nucleotides of cDNA sequence. Nature. 1995 Sep 28;377(6547 Suppl):3–174. [PubMed] [Google Scholar]
  2. Haaf T., Sirugo G., Kidd K. K., Ward D. C. Chromosomal localization of long trinucleotide repeats in the human genome by fluorescence in situ hybridization. Nat Genet. 1996 Feb;12(2):183–185. doi: 10.1038/ng0296-183. [DOI] [PubMed] [Google Scholar]
  3. Jiang J. X., Deprez R. H., Zwarthoff E. C., Riegman P. H. Characterization of four novel CAG repeat-containing cDNAs. Genomics. 1995 Nov 1;30(1):91–93. doi: 10.1006/geno.1995.0015. [DOI] [PubMed] [Google Scholar]
  4. Junck L., Fink J. F. Machado-Joseph disease and SCA3: the genotype meets the phenotypes. Neurology. 1996 Jan;46(1):4–8. doi: 10.1212/wnl.46.1.4. [DOI] [PubMed] [Google Scholar]
  5. Koide R., Ikeuchi T., Onodera O., Tanaka H., Igarashi S., Endo K., Takahashi H., Kondo R., Ishikawa A., Hayashi T. Unstable expansion of CAG repeat in hereditary dentatorubral-pallidoluysian atrophy (DRPLA). Nat Genet. 1994 Jan;6(1):9–13. doi: 10.1038/ng0194-9. [DOI] [PubMed] [Google Scholar]
  6. Li S. H., McInnis M. G., Margolis R. L., Antonarakis S. E., Ross C. A. Novel triplet repeat containing genes in human brain: cloning, expression, and length polymorphisms. Genomics. 1993 Jun;16(3):572–579. doi: 10.1006/geno.1993.1232. [DOI] [PubMed] [Google Scholar]
  7. Margolis R. L., Stine O. C., McInnis M. G., Ranen N. G., Rubinsztein D. C., Leggo J., Brando L. V., Kidwai A. S., Loev S. J., Breschel T. S. cDNA cloning of a human homologue of the Caenorhabditis elegans cell fate-determining gene mab-21: expression, chromosomal localization and analysis of a highly polymorphic (CAG)n trinucleotide repeat. Hum Mol Genet. 1996 May;5(5):607–616. doi: 10.1093/hmg/5.5.607. [DOI] [PubMed] [Google Scholar]
  8. Nagafuchi S., Yanagisawa H., Sato K., Shirayama T., Ohsaki E., Bundo M., Takeda T., Tadokoro K., Kondo I., Murayama N. Dentatorubral and pallidoluysian atrophy expansion of an unstable CAG trinucleotide on chromosome 12p. Nat Genet. 1994 Jan;6(1):14–18. doi: 10.1038/ng0194-14. [DOI] [PubMed] [Google Scholar]
  9. Néri C., Albanèse V., Lebre A. S., Holbert S., Saada C., Bougueleret L., Meier-Ewert S., Le Gall I., Millasseau P., Bui H. Survey of CAG/CTG repeats in human cDNAs representing new genes: candidates for inherited neurological disorders. Hum Mol Genet. 1996 Jul;5(7):1001–1009. doi: 10.1093/hmg/5.7.1001. [DOI] [PubMed] [Google Scholar]
  10. O'Donovan M. C., Guy C., Craddock N., Murphy K. C., Cardno A. G., Jones L. A., Owen M. J., McGuffin P. Expanded CAG repeats in schizophrenia and bipolar disorder. Nat Genet. 1995 Aug;10(4):380–381. doi: 10.1038/ng0895-380. [DOI] [PubMed] [Google Scholar]
  11. Richards R. I., Sutherland G. R. Simple repeat DNA is not replicated simply. Nat Genet. 1994 Feb;6(2):114–116. doi: 10.1038/ng0294-114. [DOI] [PubMed] [Google Scholar]
  12. Riggins G. J., Lokey L. K., Chastain J. L., Leiner H. A., Sherman S. L., Wilkinson K. D., Warren S. T. Human genes containing polymorphic trinucleotide repeats. Nat Genet. 1992 Nov;2(3):186–191. doi: 10.1038/ng1192-186. [DOI] [PubMed] [Google Scholar]
  13. Ross C. A., McInnis M. G., Margolis R. L., Li S. H. Genes with triplet repeats: candidate mediators of neuropsychiatric disorders. Trends Neurosci. 1993 Jul;16(7):254–260. doi: 10.1016/0166-2236(93)90175-l. [DOI] [PubMed] [Google Scholar]
  14. Schalling M., Hudson T. J., Buetow K. H., Housman D. E. Direct detection of novel expanded trinucleotide repeats in the human genome. Nat Genet. 1993 Jun;4(2):135–139. doi: 10.1038/ng0693-135. [DOI] [PubMed] [Google Scholar]
  15. Warren S. T. The expanding world of trinucleotide repeats. Science. 1996 Mar 8;271(5254):1374–1375. doi: 10.1126/science.271.5254.1374. [DOI] [PubMed] [Google Scholar]
  16. Zoghbi H. Y. The expanding world of ataxins. Nat Genet. 1996 Nov;14(3):237–238. doi: 10.1038/ng1196-237. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Medical Genetics are provided here courtesy of BMJ Publishing Group

RESOURCES