Skip to main content
Journal of Medical Genetics logoLink to Journal of Medical Genetics
. 1997 Aug;34(8):696–699. doi: 10.1136/jmg.34.8.696

Familial four breakpoint complex chromosomal rearrangement as a cause of monosomy 9p22-->pter and trisomy 10p11.2-->pter and 11q21 analysed by dual and triple colour FISH.

P Stankiewicz 1, E Kostyk 1, E Bocian 1, H Stańczak 1, J Parczewska 1, E Piatkowska 1, T Mazurczak 1, J J Pietrzyk 1
PMCID: PMC1051038  PMID: 9279768

Abstract

A familial four breakpoint complex chromosomal rearrangement involving chromosomes 9, 10, and 11 was ascertained through a child with dysmorphic features, hypertrophic cardiomyopathy, and hypotonia. A cryptic insertion, invisible in G banded chromosomes was identified by fluorescence in situ hybridisation (FISH) using chromosome specific libraries. Possible mechanisms of its formation as well as karyotype-phenotype correlation are discussed.

Full text

PDF
696

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Batista D. A., Pai G. S., Stetten G. Molecular analysis of a complex chromosomal rearrangement and a review of familial cases. Am J Med Genet. 1994 Nov 15;53(3):255–263. doi: 10.1002/ajmg.1320530311. [DOI] [PubMed] [Google Scholar]
  2. Daniel A., Hook E. B., Wulf G. Risks of unbalanced progeny at amniocentesis to carriers of chromosome rearrangements: data from United States and Canadian laboratories. Am J Med Genet. 1989 May;33(1):14–53. doi: 10.1002/ajmg.1320330105. [DOI] [PubMed] [Google Scholar]
  3. Kleczkowska A., Fryns J. P., Van den Berghe H. Complex chromosomal rearrangements (CCR) and their genetic consequences. J Genet Hum. 1982 Oct;30(3):199–214. [PubMed] [Google Scholar]
  4. Kousseff B. G., Nichols P., Essig Y. P., Miller K., Weiss A., Tedesco T. A. Complex chromosome rearrangements and congenital anomalies. Am J Med Genet. 1987 Apr;26(4):771–782. doi: 10.1002/ajmg.1320260403. [DOI] [PubMed] [Google Scholar]
  5. Pai G. S., Thomas G. H., Mahoney W., Migeon B. R. Complex chromosome rearrangements. Report of a new case and literature review. Clin Genet. 1980 Dec;18(6):436–444. doi: 10.1111/j.1399-0004.1980.tb01790.x. [DOI] [PubMed] [Google Scholar]
  6. Pinkel D., Landegent J., Collins C., Fuscoe J., Segraves R., Lucas J., Gray J. Fluorescence in situ hybridization with human chromosome-specific libraries: detection of trisomy 21 and translocations of chromosome 4. Proc Natl Acad Sci U S A. 1988 Dec;85(23):9138–9142. doi: 10.1073/pnas.85.23.9138. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Schinzel A. A., Adelsberger P. A., Binkert F., Basaran S., Antonarakis S. E. No evidence for a paternal interchromosomal effect from analysis of the origin of nondisjunction in Down syndrome patients with concomitant familial chromosome rearrangements. Am J Hum Genet. 1992 Feb;50(2):288–293. [PMC free article] [PubMed] [Google Scholar]
  8. Spikes A. S., Hegmann K., Smith J. L., Shaffer L. G. Use of fluorescence in situ hybridization to clarify a complex chromosomal rearrangement in a child with multiple congenital anomalies. Am J Med Genet. 1995 May 22;57(1):31–34. doi: 10.1002/ajmg.1320570109. [DOI] [PubMed] [Google Scholar]
  9. Sullivan B. A., Leana-Cox J., Schwartz S. Clarification of subtle reciprocal rearrangements using fluorescence in situ hybridization. Am J Med Genet. 1993 Aug 15;47(2):223–230. doi: 10.1002/ajmg.1320470217. [DOI] [PubMed] [Google Scholar]
  10. Wang H., McLaughlin M., Thompson C., Hunter A. G. Use of fluorescence in situ hybridization to confirm the interpretation of a balanced complex chromosome rearrangement ascertained through prenatal diagnosis. Am J Med Genet. 1993 Jun 15;46(5):559–562. doi: 10.1002/ajmg.1320460520. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Medical Genetics are provided here courtesy of BMJ Publishing Group

RESOURCES