Abstract
We have recently characterised the genomic organisation of a novel interphotoreceptor matrix proteoglycan, IMPG1, and have mapped the gene locus to chromosome 6q13-q15 by fluorescence in situ hybridisation. As the interphotoreceptor matrix (IPM) is thought to play a critical role in retinal adhesion and the maintenance of photoreceptor cells, it is conceivable that a defect in one of the IPM components may cause degenerative lesions in retinal structures and thus may be associated with human retinopathies. By genetic linkage analysis, several retinal dystrophies including one form of autosomal dominant Stargardt-like macular dystrophy (STGD3), progressive bifocal chorioretinal atrophy (PBCRA), and North Carolina macular dystrophy (MCDR1) have previously been localised to a region on proximal 6q that overlaps the IMPG1 locus. We have therefore assessed the entire coding region of IMPG1 by exon amplification and subsequent single stranded conformational analysis in patients from 6q linked multigeneration families diagnosed with PBCRA and MCDR1, as well as a single patient from an autosomal dominant STGD pedigree unlinked to either of the two known STGD2 and STGD3 loci on chromosomes 13q and 6q, respectively. No disease associated mutations were identified. In addition, using an intragenic polymorphism, IMPG1 was excluded by genetic recombination from both the PBCRA and the MCDR1 loci. However, as the autosomal dominant Stargardt-like macular dystrophies are genetically heterogeneous, other forms of this disorder, in particular STGD3 previously linked to 6q, may be caused by mutations in IMPG1.
Full text
PDF




Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Allikmets R., Singh N., Sun H., Shroyer N. F., Hutchinson A., Chidambaram A., Gerrard B., Baird L., Stauffer D., Peiffer A. A photoreceptor cell-specific ATP-binding transporter gene (ABCR) is mutated in recessive Stargardt macular dystrophy. Nat Genet. 1997 Mar;15(3):236–246. doi: 10.1038/ng0397-236. [DOI] [PubMed] [Google Scholar]
- Collins F. S. Positional cloning moves from perditional to traditional. Nat Genet. 1995 Apr;9(4):347–350. doi: 10.1038/ng0495-347. [DOI] [PubMed] [Google Scholar]
- Douglas A. A., Waheed I., Wyse C. T. Progressive bifocal chorio-retinal atrophy. A rare familial disease of the eyes. Br J Ophthalmol. 1968 Oct;52(10):742–751. doi: 10.1136/bjo.52.10.742. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dryja T. P., McGee T. L., Reichel E., Hahn L. B., Cowley G. S., Yandell D. W., Sandberg M. A., Berson E. L. A point mutation of the rhodopsin gene in one form of retinitis pigmentosa. Nature. 1990 Jan 25;343(6256):364–366. doi: 10.1038/343364a0. [DOI] [PubMed] [Google Scholar]
- Fariss R. N., Anderson D. H., Fisher S. K. Comparison of photoreceptor-specific matrix domains in the cat and monkey retinas. Exp Eye Res. 1990 Oct;51(4):473–485. doi: 10.1016/0014-4835(90)90160-v. [DOI] [PubMed] [Google Scholar]
- Farrar G. J., Kenna P., Jordan S. A., Kumar-Singh R., Humphries M. M., Sharp E. M., Sheils D. M., Humphries P. A three-base-pair deletion in the peripherin-RDS gene in one form of retinitis pigmentosa. Nature. 1991 Dec 12;354(6353):478–480. doi: 10.1038/354478a0. [DOI] [PubMed] [Google Scholar]
- Godley B. F., Tiffin P. A., Evans K., Kelsell R. E., Hunt D. M., Bird A. C. Clinical features of progressive bifocal chorioretinal atrophy: a retinal dystrophy linked to chromosome 6q. Ophthalmology. 1996 Jun;103(6):893–898. doi: 10.1016/s0161-6420(96)30590-3. [DOI] [PubMed] [Google Scholar]
- Hageman G. S., Marmor M. F., Yao X. Y., Johnson L. V. The interphotoreceptor matrix mediates primate retinal adhesion. Arch Ophthalmol. 1995 May;113(5):655–660. doi: 10.1001/archopht.1995.01100050123041. [DOI] [PubMed] [Google Scholar]
- Hollyfield J. G., Rayborn M. E., Landers R. A., Myers K. M. Insoluble interphotoreceptor matrix domains surround rod photoreceptors in the human retina. Exp Eye Res. 1990 Jul;51(1):107–110. doi: 10.1016/0014-4835(90)90177-v. [DOI] [PubMed] [Google Scholar]
- Johnson L. V., Hageman G. S., Blanks J. C. Interphotoreceptor matrix domains ensheath vertebrate cone photoreceptor cells. Invest Ophthalmol Vis Sci. 1986 Feb;27(2):129–135. [PubMed] [Google Scholar]
- Kelsell R. E., Godley B. F., Evans K., Tiffin P. A., Gregory C. Y., Plant C., Moore A. T., Bird A. C., Hunt D. M. Localization of the gene for progressive bifocal chorioretinal atrophy (PBCRA) to chromosome 6q. Hum Mol Genet. 1995 Sep;4(9):1653–1656. doi: 10.1093/hmg/4.9.1653. [DOI] [PubMed] [Google Scholar]
- Lazarus H. S., Hageman G. S. Xyloside-induced disruption of interphotoreceptor matrix proteoglycans results in retinal detachment. Invest Ophthalmol Vis Sci. 1992 Feb;33(2):364–376. [PubMed] [Google Scholar]
- Lopez P. F., Maumenee I. H., de la Cruz Z., Green W. R. Autosomal-dominant fundus flavimaculatus. Clinicopathologic correlation. Ophthalmology. 1990 Jun;97(6):798–809. doi: 10.1016/s0161-6420(90)32508-3. [DOI] [PubMed] [Google Scholar]
- Mieziewska K. E., van Veen T., Murray J. M., Aguirre G. D. Rod and cone specific domains in the interphotoreceptor matrix. J Comp Neurol. 1991 Jun 15;308(3):371–380. doi: 10.1002/cne.903080305. [DOI] [PubMed] [Google Scholar]
- Pauleikhoff D., Sauer C. G., Müller C. R., Radermacher M., Merz A., Weber B. H. Clinical and genetic evidence for autosomal dominant North Carolina macular dystrophy in a German family. Am J Ophthalmol. 1997 Sep;124(3):412–415. doi: 10.1016/s0002-9394(14)70842-6. [DOI] [PubMed] [Google Scholar]
- Perrault I., Rozet J. M., Calvas P., Gerber S., Camuzat A., Dollfus H., Châtelin S., Souied E., Ghazi I., Leowski C. Retinal-specific guanylate cyclase gene mutations in Leber's congenital amaurosis. Nat Genet. 1996 Dec;14(4):461–464. doi: 10.1038/ng1296-461. [DOI] [PubMed] [Google Scholar]
- Sauer C. G., Schworm H. D., Ulbig M., Blankenagel A., Rohrschneider K., Pauleikhoff D., Grimm T., Weber B. H. An ancestral core haplotype defines the critical region harbouring the North Carolina macular dystrophy gene (MCDR1). J Med Genet. 1997 Dec;34(12):961–966. doi: 10.1136/jmg.34.12.961. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Small K. W., Weber J. L., Roses A., Lennon F., Vance J. M., Pericak-Vance M. A. North Carolina macular dystrophy is assigned to chromosome 6. Genomics. 1992 Jul;13(3):681–685. doi: 10.1016/0888-7543(92)90141-e. [DOI] [PubMed] [Google Scholar]
- Stone E. M., Nichols B. E., Kimura A. E., Weingeist T. A., Drack A., Sheffield V. C. Clinical features of a Stargardt-like dominant progressive macular dystrophy with genetic linkage to chromosome 6q. Arch Ophthalmol. 1994 Jun;112(6):765–772. doi: 10.1001/archopht.1994.01090180063036. [DOI] [PubMed] [Google Scholar]
- Weber B. H., Vogt G., Pruett R. C., Stöhr H., Felbor U. Mutations in the tissue inhibitor of metalloproteinases-3 (TIMP3) in patients with Sorsby's fundus dystrophy. Nat Genet. 1994 Dec;8(4):352–356. doi: 10.1038/ng1294-352. [DOI] [PubMed] [Google Scholar]
- Zhang K., Bither P. P., Park R., Donoso L. A., Seidman J. G., Seidman C. E. A dominant Stargardt's macular dystrophy locus maps to chromosome 13q34. Arch Ophthalmol. 1994 Jun;112(6):759–764. doi: 10.1001/archopht.1994.01090180057035. [DOI] [PubMed] [Google Scholar]