Abstract
Mutations in the trabecular meshwork induced glucocorticoid response protein (TIGR) or myocilin (MYOC) has recently been shown to cause juvenile onset primary open angle glaucoma (JOAG). In this study, we identified two new mutations (Asp380Ala and Ser502Pro) in two British families and another (Pro370Leu) in a French-Canadian family. These mutations were not present in a total of 106 normal chromosomes. In another Turkish family with JOAG, we also detected a sequence variant that was proven to be an amino acid polymorphism (Arg76Lys). No other sequence changes were found in the entire coding region and splice junctions of the TIGR/MYOC gene in this family. However, it is still possible that mutations either in the TIGR promoter or in another neighbouring gene could cause glaucoma in this JOAG family. Our results confirm the role of the TIGR/MYOC gene in the aetiology of the JOAG phenotype.
Full text
PDF



Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Adam M. F., Belmouden A., Binisti P., Brézin A. P., Valtot F., Béchetoille A., Dascotte J. C., Copin B., Gomez L., Chaventré A. Recurrent mutations in a single exon encoding the evolutionarily conserved olfactomedin-homology domain of TIGR in familial open-angle glaucoma. Hum Mol Genet. 1997 Nov;6(12):2091–2097. doi: 10.1093/hmg/6.12.2091. [DOI] [PubMed] [Google Scholar]
- Belmouden A., Adam M. F., Dupont de Dinechin S., Brézin A. P., Rigault P., Chumakov I., Bach J. F., Garchon H. J. Recombinational and physical mapping of the locus for primary open-angle glaucoma (GLC1A) on chromosome 1q23-q25. Genomics. 1997 Feb 1;39(3):348–358. doi: 10.1006/geno.1996.4491. [DOI] [PubMed] [Google Scholar]
- Johnson A. T., Drack A. V., Kwitek A. E., Cannon R. L., Stone E. M., Alward W. L. Clinical features and linkage analysis of a family with autosomal dominant juvenile glaucoma. Ophthalmology. 1993 Apr;100(4):524–529. doi: 10.1016/s0161-6420(13)31615-7. [DOI] [PubMed] [Google Scholar]
- Kubota R., Noda S., Wang Y., Minoshima S., Asakawa S., Kudoh J., Mashima Y., Oguchi Y., Shimizu N. A novel myosin-like protein (myocilin) expressed in the connecting cilium of the photoreceptor: molecular cloning, tissue expression, and chromosomal mapping. Genomics. 1997 May 1;41(3):360–369. doi: 10.1006/geno.1997.4682. [DOI] [PubMed] [Google Scholar]
- Lichter P. R. Genetic clues to glaucoma's secrets. The L Edward Jackson Memorial Lecture. Part 2. Am J Ophthalmol. 1994 Jun 15;117(6):706–727. doi: 10.1016/s0002-9394(14)70314-9. [DOI] [PubMed] [Google Scholar]
- Michels-Rautenstrauss K. G., Mardin C. Y., Budde W. M., Liehr T., Polansky J., Nguyen T., Timmerman V., Van Broeckhoven C., Naumann G. O., Pfeiffer R. A. Juvenile open angle glaucoma: fine mapping of the TIGR gene to 1q24.3-q25.2 and mutation analysis. Hum Genet. 1998 Jan;102(1):103–106. doi: 10.1007/s004390050661. [DOI] [PubMed] [Google Scholar]
- Ortego J., Escribano J., Coca-Prados M. Cloning and characterization of subtracted cDNAs from a human ciliary body library encoding TIGR, a protein involved in juvenile open angle glaucoma with homology to myosin and olfactomedin. FEBS Lett. 1997 Aug 18;413(2):349–353. doi: 10.1016/s0014-5793(97)00934-4. [DOI] [PubMed] [Google Scholar]
- Quigley H. A. Number of people with glaucoma worldwide. Br J Ophthalmol. 1996 May;80(5):389–393. doi: 10.1136/bjo.80.5.389. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Raymond V. Molecular genetics of the glaucomas: mapping of the first five "GLC" loci. Am J Hum Genet. 1997 Feb;60(2):272–277. [PMC free article] [PubMed] [Google Scholar]
- Sarfarazi M. Recent advances in molecular genetics of glaucomas. Hum Mol Genet. 1997;6(10):1667–1677. doi: 10.1093/hmg/6.10.1667. [DOI] [PubMed] [Google Scholar]
- Sheffield V. C., Stone E. M., Alward W. L., Drack A. V., Johnson A. T., Streb L. M., Nichols B. E. Genetic linkage of familial open angle glaucoma to chromosome 1q21-q31. Nat Genet. 1993 May;4(1):47–50. doi: 10.1038/ng0593-47. [DOI] [PubMed] [Google Scholar]
- Stoilov I., Akarsu A. N., Alozie I., Child A., Barsoum-Homsy M., Turacli M. E., Or M., Lewis R. A., Ozdemir N., Brice G. Sequence analysis and homology modeling suggest that primary congenital glaucoma on 2p21 results from mutations disrupting either the hinge region or the conserved core structures of cytochrome P4501B1. Am J Hum Genet. 1998 Mar;62(3):573–584. doi: 10.1086/301764. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Stoilov I., Akarsu A. N., Sarfarazi M. Identification of three different truncating mutations in cytochrome P4501B1 (CYP1B1) as the principal cause of primary congenital glaucoma (Buphthalmos) in families linked to the GLC3A locus on chromosome 2p21. Hum Mol Genet. 1997 Apr;6(4):641–647. doi: 10.1093/hmg/6.4.641. [DOI] [PubMed] [Google Scholar]
- Stoilova D., Child A., Brice G., Crick R. P., Fleck B. W., Sarfarazi M. Identification of a new 'TIGR' mutation in a family with juvenile-onset primary open angle glaucoma. Ophthalmic Genet. 1997 Sep;18(3):109–118. doi: 10.3109/13816819709057124. [DOI] [PubMed] [Google Scholar]
- Stone E. M., Fingert J. H., Alward W. L., Nguyen T. D., Polansky J. R., Sunden S. L., Nishimura D., Clark A. F., Nystuen A., Nichols B. E. Identification of a gene that causes primary open angle glaucoma. Science. 1997 Jan 31;275(5300):668–670. doi: 10.1126/science.275.5300.668. [DOI] [PubMed] [Google Scholar]
- Suzuki R., Sugihara I., Kurimoto S. Retinal circulation in primary open-angle glaucoma tested by videodensitometric image analysis. Ann Ophthalmol. 1992 Jul;24(7):273–277. [PubMed] [Google Scholar]