Skip to main content
eClinicalMedicine logoLink to eClinicalMedicine
. 2023 Sep 25;64:102246. doi: 10.1016/j.eclinm.2023.102246

Comparison of post-chemoradiotherapy pneumonitis between Asian and non-Asian patients with locally advanced non-small cell lung cancer: a systematic review and meta-analysis

Tingting Liu a,b,e, Sihan Li a,e, Silu Ding a,e, Jingping Qiu a, Chengbo Ren c, Jun Chen d, He Wang a, Xiaoling Wang a, Guang Li a, Zheng He a,∗∗, Jun Dang a,
PMCID: PMC10539643  PMID: 37781162

Summary

Background

Pneumonitis is a common complication for patients with locally advanced non-small cell lung cancer undergoing definitive chemoradiotherapy (CRT). It remains unclear whether there is ethnic difference in the incidence of post-CRT pneumonitis.

Methods

PubMed, Embase, Cochrane Library, and Web of Science were searched for eligible studies from January 1, 2000 to April 30, 2023. The outcomes of interest were incidence rates of pneumonitis. The random-effect model was used for statistical analysis. This meta-analysis was registered with PROSPERO (CRD42023416490).

Findings

A total of 248 studies involving 28,267 patients were included. Among studies of CRT without immunotherapy, the pooled rates of pneumonitis for Asian patients were significantly higher than that for non-Asian patients (all grade: 66.8%, 95% CI: 59.2%–73.9% vs. 28.1%, 95% CI: 20.4%–36.4%; P < 0.0001; grade ≥2: 25.1%, 95% CI: 22.9%–27.3% vs. 14.9%, 95% CI: 12.0%–18.0%; P < 0.0001; grade ≥3: 6.5%, 95% CI: 5.6%–7.3% vs. 4.6%, 95% CI: 3.4%–5.9%; P = 0.015; grade 5: 0.6%, 95% CI: 0.3%–0.9% vs. 0.1%, 95% CI: 0.0%–0.2%; P < 0.0001). Regarding studies of CRT plus immunotherapy, Asian patients had higher rates of all-grade (74.8%, 95% CI: 63.7%–84.5% vs. 34.3%, 95% CI: 28.7%–40.2%; P < 0.0001) and grade ≥2 (34.0%, 95% CI: 30.7%–37.3% vs. 24.6%, 95% CI: 19.9%–29.3%; P = 0.001) pneumonitis than non-Asian patients, but with no significant differences in the rates of grade ≥3 and grade 5 pneumonitis. Results from subgroup analyses were generally similar to that from the all studies. In addition, the pooled median/mean of lung volume receiving ≥20 Gy and mean lung dose were relatively low in Asian studies compared to that in non-Asian studies.

Interpretation

Asian patients are likely to have a higher incidence of pneumonitis than non-Asian patients, which appears to be due to the poor tolerance of lung to radiation. Nevertheless, these findings are based on observational studies and with significant heterogeneity, and need to be validated in future large prospective studies focusing on the subject.

Funding

None.

Keywords: Locally advanced non-small cell lung cancer, Chemoradiotherapy, Immunotherapy, Pneumonitis, Meta-analysis


Research in context.

Evidence before this study

Recently, several studies reported a higher incidence of pneumonitis in Asian than in non-Asian patients with locally advanced non-small cell lung cancer (NSCLC) undergoing chemoradiotherapy (CRT). Nevertheless, limited by the small sample size of these studies and lack of randomized control trials, whether there is ethnic difference in the risk of pneumonitis needs further evaluation. We searched PubMed, Embase, Cochrane Library, and Web of Science for eligible studies from January 1, 2000 to April 30, 2023, mainly using the search terms “chemoradiotherapy” and “non-small cell lung cancer”.

Added value of this study

To our knowledge, this is the first and most comprehensive meta-analysis focusing on ethnic difference in the incidence of post-chemoradiotherapy pneumonitis for patients with locally advanced NSCLC. Among studies examining definitive CRT, the pooled rates of all-grade, grade ≥2, grade ≥3, and grade 5 pneumonitis for Asian patients were significantly higher than that for non-Asian patients. Regarding studies of CRT plus immunotherapy, Asian patients had higher rates of all-grade and grade ≥2 pneumonitis than non-Asian patients, but with no significant differences in the rates of grade ≥3 and grade 5 pneumonitis.

Implications of all the available evidence

Asian patients are likely to have a higher incidence of pneumonitis than non-Asian patients. The results can be helpful to understand the ethnic difference in risk of post-chemoradiotherapy pneumonitis, and to optimize CRT strategy in Asian patients. Nevertheless, the findings are based on observational studies and with significant heterogeneity, and need to be validated in future large prospective studies focusing on the subject.

Introduction

Non-small cell lung cancer (NSCLC) is the most common type of lung cancer, and approximately one-third of NSCLC patients have locally advanced (LA) disease at the time of diagnosis.1 Concurrent chemoradiotherapy (cCRT) has been the historical standard of care for patients with unresectable and LA-NSCLC. However, the survival outcomes of cCRT are unsatisfactory. Given the findings in the phase III PACIFIC trial2 that the addition of an immune checkpoint inhibitor (ICI) of durvalumab after cCRT significantly improved long-term survival (5-year survival of 42.9 vs 33.4%), the PACIFIC regimen has been the new standard of care in this setting. Nevertheless, treatment-related toxicities remain a issue of clinical concern, particular the toxicity of lung.

Radiation pneumonitis (RP) is a common complication for patients treated with thoracic radiotherapy (RT), which severely decreases patients quality of life. Many factors have been demonstrated to be predictive of RP (such as lung dose–volume parameters, RT technique, chemotherapy regimen, age, sex, history of surgery, and smoking, etc), while the predictive power of these factors appear to be moderate.3

Recently, several studies reported a higher rate of post-CRT pneumonitis in Asian than in non-Asian patients with LA-NSCLC. In subgroup analysis of the PACIFIC study,4 patients who developed pneumonitis were more likely Asian (47.9% vs. 17.6%). Results from a meta-analysis of patients undergoing CRT followed by durvalumab5 showed that the rate of all-grade pneumonitis from Asian studies was significantly higher than that from Western studies (62% vs. 22%, P = 0.017). Despite the limited sample size of the two studies, the findings suggested a potentially ethnic difference in risk of pneumonitis.

In light of this issue, we performed a systematic review and meta-analysis in LA-NSCLC patients undergoing definitive CRT with or without immunotherapy, aiming to clarify whether Asian patients were associated with a higher incidence of treatment-related pneumonitis than non-Asian patients.

Methods

Literature search

This systematic review and meta-analysis followed the Preferred Reporting Items for Systematic reviews and Meta-Analyses (PRISMA) 2020 statement6 and the Meta-analysis of Observational Studies in Epidemiology (MOOSE) reporting guideline,7 and was registered with PROSPERO (CRD42023416490). PubMed, Embase, Cochrane Library and Web of Science were searched for eligible publications between January 1, 2000 and April 30, 2023 by two authors (TL and SL) independently, using the search terms presented in Supplementary File: Table S1. Abstracts of recent international meetings were also inspected, including the American Society of Clinical Oncology (ASCO), European Society for Medical Oncology (ESMO), European Lung Cancer Congress (ELCC), and American Society for Radiation Oncology (ASTRO). References of relevant studies were reviewed for additional articles.

Inclusion and exclusion criteria

The inclusion criteria were as follows: (1) prospective and retrospective studies examining definitive CRT with or without immunotherapy in unresectable LA-NSCLC; (2) adopting conventionally fractionated RT (1.8–2.2Gy, once-daily) with 3-dimensional conformal radiation therapy (3D-CRT) or intensity-modulated radiation therapy (IMRT) technique; (3) reporting the incidence rate of pneumonitis during the study period; (4) published in English. The exclusion criteria included: (1) two-dimensional RT; (2) Co-60 or Proton or Carbon-ion RT; (3) hypofractionated or hyperfractionated or stereotactic body radiation therapy; (4) RT alone; (5) neoadjuvant or adjuvant CRT; (6) cCRT with gemcitabine based regimens; (7) endostatin or cetuximab or targeted agents concurrently used with cCRT; (8) only reporting the incidence of pneumonitis during CRT period or less than 3 months after RT; (9) only reporting the incidence of late lung toxicity such as lung fibrosis; (10) the median follow up time less than 6 months; (11) including other types of tumors such as small cell lung cancer and esophageal cancer. When multiple articles covered the similar study population, the one with the most comprehensive data was selected.

Data extraction

The following information were collected independently by three authors (TL and SL and SD): first author, publication year, study period, design, region, race, sample size, patients baseline characteristics (race, age, sex, Eastern Cooperative Oncology Group [ECOG] score, smoking, stage, interstitial lung disease [ILD], follow-up time), RT technique, total RT dose, fractionated dose, RT field, CT regimen, pneumonitis grading criteria, median or mean of lung volume receiving ≥20 Gy (V20), mean lung dose (MLD), and incidence rates of pneumonitis.

Quality assessment

Methodological Index for Non-randomized Studies (MINORS) was used to assess the quality of these non-randomized studies8 by two authors (SD and JQ) independently.

Statistics

The outcomes of interest were incidence rates of all grade, grade ≥2, grade ≥3, and grade 5 pneumonitis. The random effect model was used for statistical analysis, using the software R (version 3.5.3, R Foundation for Statistical Computing) via the meta package. The inverse variance method was used to calculate pooled estimates of the rates of pneumonitis and their 95% confidence intervals (CIs). Q test was used to test the differences between Asian and non-Asian. The Chi-square (χ2) and I-square (I2) test were used to detect the presence of heterogeneity, and significant heterogeneity was considered present if I2 greater than 50%. Meta-regression was performed to search for confounding factors. The following subgroup analyses were performed: prospective studies, retrospective studies, involved-field irradiation (IFI), and CRT with consolidation durvalumab. Given the improved RT techniques, CT drugs/regimens, and CRT strategy, we also conducted a subgroup analysis of studies published after 2015 for patients undergoing CRT alone. The publication bias was estimated using Begg's test and Egger's test.

Role of funding source

There was no funding obtained for this study.

Results

Eligible studies

A total of 11,661 records were identified through initial database search. After removing duplicates, 5358 records were identified, and 4804 of them were excluded through titles and abstracts review. The remaining 554 articles underwent full-text assessment. Finally, 248 studies involving 28,267 patients were eligible for inclusion. The study selection process and reasons for exclusion are shown in Fig. 1. Among the 248 studies, 174 studies (85 Asian and 89 non-Asian) with 20,999 patients examined definitive CRT without immunotherapy,9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35,36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69,70, 71, 72, 73, 74, 75, 76, 77, 78,78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88,89, 90, 91,92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128,129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159,160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181 64 studies (24 Asian and 40 non-Asian) with 6330 patients examined CRT plus immunotherapy,182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209,210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245 and 10 studies (all Asian) with 938 patients examined the both.246, 247, 248, 249, 250, 251, 252, 253, 254, 255 The majority of studies assessed cCRT (226/248, 91%), and using platinum-based doublet chemotherapy regimens. Most of pneumonitis was graded according to Common Toxicity Criteria for Adverse Events (CTCAEs) criteria. As for CRT without immunotherapy, the median age (63 years [IQR, 60–66 years] vs. 63 years [IQR, 60–65 years]), ECOG 0-2 (99% vs. 99%), stage 3 disease (99% vs. 95%), involved-field irradiation (IFI) (79% vs 84%), and the median follow-up (23 months [IQR, 15–33 months] vs. 24 months [IQR, 16–38 months]) were comparable between studies of Asian and non-Asian, while males (80% vs. 69%) and never smoking (14.6% vs. 5.7%) appeared to be unbalanced. Regarding CRT plus immunotherapy, all of studies were published after 2018. Durvalumab was the most common ICI used in studies, and other ICIs were used in 10 studies (1 of sugemalimab, 3 of atezolizumab, 3 of nivolumab, and 3 of pembrolizumab), and 5 studies adopted mixed ICIs. The median age (68 years [IQR, 64–70 years] vs. 66 years [IQR, 65–67 years]), ECOG ≥2 (99% vs. 99%), stage 3 disease (93% vs. 98%), and the median follow-up (15 months [IQR, 14–17 months] vs. 19 months [IQR, 15–21 months]) were also similar between Asian and non-Asian studies, while males (80% vs. 64%) and never smoking (13.7% vs. 7.5%) seemed to be unbalanced. There are 21 studies of Asian and 2 studies of non-Asian provided the information of preexisting ILD. Among these studies, preexisting ILD ranged from 0% to 25% for Asian studies and 0% and 2% for the two non-Asian studies. The main characteristics of studies are presented in Tables 1 and 2, and the main treatments and outcomes are shown in Supplementary File: Table S2 and S3, respectively.

Fig. 1.

Fig. 1

Literature search and selection. 2D, two-dimensional; RT, radiotherapy; CT, chemotherapy; cCRT, concurrent chemoradiotherapy; TKIs, tyrosine kinase inhibitors.

Table 1.

Characteristics of studies examining chemotherapy without immunotherapy.

Author/published year Time range Study design Study region Sample size Median follow-up (months) Median age Males (%) Never smoking (%) ECOG 0-2 (%) Stage III (%) Primary endpoint/main purpose
Asian
Tsujino/20039 1999–2000 retrospective Japan 71 8 67 82 13 NR 96 RP
Lee/200510 2002–2003 phase 2 Korea 31 24 59 85 NR 100 100 ORR
Kim/200511 2000–2002 phase 2 Korea 135 24 60 90 NR 100 100 ORR
Sekine/200612 2001–2003 prospective Japan 93 30 60 82 NR 100 100 efficacy, safety
Yuan/200713-ENI 1997–2001 prospective China 100 27 63 64 NR 100 100 LCR
Yuan/200713-IFI 1997–2001 prospective China 100 27 64 67 NR 100 100 LCR
Sekine/200714 2003–2004 phase 1 Japan 18 NR 63 78 NR 100 100 safety
Naito/200815 2000–2004 retrospective Japan 73 35 63 86 7 100 100 efficacy, safety
Hanna/200816 2002–2006 prospective India 147 42 NR NR NR 100 100 OS
Ohyanagi/200917 2005–2007 phase 2 Japan 48 25 63 86 NR 100 100 ORR
Nakamura/200918 1998–2004 prospective Japan 34 NR 61 94 NR 100 100 safety
Cho/200919 2003–2005 phase 2 Korea 49 37 64 90 NR 100 100 OS
Harada/200920 2002–2006 retrospective Japan 59 30 NR 80 NR 100 100 OS
Shi/201021 2005–2006 retrospective China 94 11 NR 78 50 85 100 RP
Ichinose/201122 2006–2007 phase 2 Japan 55 28 63 80 4 100 100 ORR
Xu/201123 2008–2009 phase 2 China 21 15 59 76 NR NR 100 ORR,safety
Lin/201124 2008–2010 prospective China 37 12 64 59 NR NR 65 safety
Kim/201125 2000–2010 retrospective Korea 49 NR 63 90 18 100 100 RP
Wang/201226-EP 2004–2007 phase 2 China 33 46 55 76 NR 100 100 OS
Wang/201226-PC 2004–2007 phase 2 China 32 46 61 79 NR 100 100 OS
Shukuya/201227-SP 2002–2010 retrospective Japan 39 NR 66 87 13 100 100 efficacy, safety
Shukuya/201227-NP 2002–2010 retrospective Japan 50 NR 64 74 16 100 100 efficacy, safety
Saitoh/201228 2000–2006 phase 2 Japan 116 62 65 85 NR 100 100 OS
Wang/201229 2006–2010 retrospective China 135 9 60 79 NR 84 97 RP
Chen/201330-IFI 2002–2011 prospective China 45 34 56 82 NR 100 100 efficacy
Chen/201330-ENI 2002–2011 prospective China 54 34 56 89 NR 100 100 efficacy
Kaira/201331 2007–2013 phase 2 Japan 41 15 64 88 NR 100 100 ORR
Sugawara/201332-UP 2006–2009 phase 2 Japan 35 20 62 80 NR 100 100 ORR
Sugawara/201332-NP 2006–2009 phase 2 Japan 31 20 61 84 NR 100 100 ORR
Lin/201333 2008–2010 phase 1 China 18 10 67 78 NR 100 78 safety
Oh/201334-TP 2005–2007 phase 3 Korea 33 ≥36 64 91 3 100 100 ORR
Oh/201334-DP 2005–2007 phase 3 Korea 29 ≥36 62 90 10 100 100 ORR
Park/201335 2003–2010 retrospective Korea 60 21 65 85 13 100 93 RP
Zhu/201436 2006–2008 phase 2 China 34 21 59 85 NR 100 100 OS
Ji/201437 2010–2012 retrospective China 48 20 58 77 31 96 100 efficacy, safety
Dang/201438 2009–2013 retrospective China 369 ≥6 NR 71 38 100 100 RP
Tsujino/201439 2001–2008 retrospective Japan 122 15 63 89 12 NR 98 RP
Liu/201540 2001–2010 retrospective China 203 23 56 84 NR 100 100 efficacy, safety
Liang/201541-CTV 2008–2012 retrospective China 55 NR 59 76 NR 100 100 efficacy, safety
LiangG/201541-NCTV 2008–2012 retrospective China 50 NR 62 80 NR 100 100 efficacy, safety
Nogami/201542 2006–2009 phase 2 Japan 48 54 66 77 NR 100 100 ORR
Yao/201543 2009–2011 prospective China 20 NR 60 75 NR 100 100 efficacy, safety
Takase/201644 2006–2014 retrospective Japan 114 15 61 96 6 100 100 OS,PFS
Wang/201645-PP NR phase 3 Multicentre 44 NR 54 59 52 100 100 OS
Wang/201645-EP NR phase 3 Multicentre 46 NR 57 62 43 100 100 OS
Feng/201646 2012–2014 prospective China 36 NR 63 67 NR 100 100 ORR
Lin/201647 2006–2013 phase 3 China 130 23 NR 82 NR 100 100 ORR
Noh/201648-3DRT 2010–2012 retrospective Korea 48 22 62 73 29 100 100 PFS,OS
Noh/201648-IMRT 2010–2012 retrospective Korea 29 22 59 62 41 100 100 PFS,OS
He/201649 2011–2013 retrospective China 35 26 NR 86 NR 100 100 efficacy, safety
Hasegawa/201650 2013–2014 prospective Japan 10 8 73 90 10 100 100 ORR
Oh/201751 2003–2012 retrospective Korea 204 NR NR 70 NR 100 100 OS
Liang/201752-EP 2007–2011 phase 3 China 95 73 59 84 26 100 100 OS
Liang/201752-PC 2007–2011 phase 3 China 96 73 57 89 24 100 100 OS
Ding/201753 2010–2015 retrospective China 40 NR 64 73 25 100 100 RP
Lee/201754 2010–2015 retrospective Korea 61 12 68 92 28 100 100 RP
Xu/201755 2009–2012 retrospective China 87 25 61 89 17 100 100 efficacy, safety
Sasaki/201856-SP 2009–2011 phase 2 Japan 54 32 60 78 11 100 100 OS
Sasaki/201856-NP 2009–2011 phase 2 Japan 54 32 62 80 13 100 100 OS
Jiang/201857-NS 2009–2014 retrospective China 47 41 57 94 NR 100 100 efficacy, safety
Jiang/201857-S 2009–2014 retrospective China 50 41 57 94 NR 100 100 efficacy, safety
Taira/201858 2005–2010 phase 2 Japan 39 70 66 80 10 100 100 OS
Xiao/201859 NR prospective China 42 9 NR 67 36 100 100 RP
Bi/201960 2011–2015 phase 2 China 51 50 60 76 24 100 100 OS
Zhou/201961 2013–2019 retrospective China 122 NR 61 88 18 100 100 RP
Wang/201962-SIB 2014–2016 retrospective China 128 25 62 79 29 100 100 OS,PFS
Wang/201962-IMRT 2014–2016 retrospective China 298 25 62 80 23 100 100 OS,PFS
Sakaguchi/201963 2011–2018 retrospective Japan 73 NR 69 85 NR 100 100 efficacy, safety
Sheng/201964 2010–2017 retrospective China 328 NR 62 92 NR NR 100 RP
Zhao/202065 2006–2012 prospective China 69 33 57 78 NR 100 100 OS
Xu/202066 2008–2017 retrospective China 59 20 NR 97 14 100 100 efficacy
Niho/202067-SP 2013–2016 phase 2 Japan 52 32 65 67 23 100 100 PFS
Niho/202067-PP 2013–2016 phase 2 Japan 50 32 64 66 24 100 100 PFS
Fukui/202068 2012–2018 retrospective Japan 108 21 65 75 10 100 100 efficacy, safety
Zhang/201069 2013–2017 retrospective China 749 22 NR 82 27 95 100 efficacy
Jung/2020246 2018–2019 retrospective Korea 40 NR 67 90 15 100 100 PFS
Katsui/202070 2004–2018 retrospective Japan 45 20 63 91 2 100 100 RP
Shimokawa/202171-SP 2011–2014 phase 2 Japan 53 NR 63 79 21 100 100 OS
Shimokawa/202171-DP 2011–2014 phase 2 Japan 53 NR 66 77 15 100 100 OS
Park/202172 2009–2019 retrospective Korea 40 11 68 80 NR 88 100 OS
Tanaka/202173 2016–2018 phase 2 Japan 28 33 66 96 NR 100 100 OS
Watanabe/202174-UP 2010–2017 phase 2 Japan 43 54 62 74 9 100 100 OS
Watanabe/202174-PP 2010–2017 phase 2 Japan 42 54 63 81 14 100 100 OS
Zhang/202175 NR retrospective China 57 23 NR 93 NR 100 100 efficacy, safety
Meng/202176 2017–2019 retrospective China 64 18 64 97 8 NR 100 RP
Sakaguchi/202177 2011–2018 retrospective Japan 103 NR 68 86 9 95 100 RP
Yang/202178-Train 2013–2017 retrospective China 356 40 60 82 24 100 100 efficacy
Yang/202178-Test 2013–2017 retrospective China 177 40 60 85 20 100 100 efficacy
Tsukita/2021247 2018–2019 retrospective Japan 20 14 NR NR NR 100 100 RP,PFS
Saito/2021248 2018–2019 retrospective Japan 77 8 NR NR NR 100 84 RP
Jang/2021249 2018–2020 retrospective Korea 55 12 66 89 18 NR 91 RP
Abe/2021250 2007–2018 retrospective Japan 76 26 70 86 NR NR 86 LCR
Fujiwara/2021251 2016–2019 phase 2 Japan 22 15 NR NR NR 100 100 RP,OS
Watanabe/2021252 2018–2020 retrospective Japan 16 16 71 73 NR NR NR RP
Kashihara/202179 2014–2017 retrospective Japan 145 24 68 72 NR 100 95 RP
Imano/202180 2008–2019 retrospective Japan 124 NR 69 81 NR 100 NR RP
Wu/202181 2014–2015 retrospective China 153 10 63 92 39 100 100 RP
Zhang/202182 2017–2019 retrospective China 81 23 61 48 65 NR 37 RP
Kim/202183 2016–2018 retrospective Korea 194 22 62 77 23 100 100 OS
Wu/202284 2019–2020 phase 3 China 81 NR 64 82 43 100 100 safety
Yang/202285 2019–2021 retrospective China 91 NR 59 78 29 100 92 RP
Yang/202278 2013–2017 retrospective China 533 40 60 83 23 100 100 OS
He/202286 2014–2019 retrospective China 122 30 62 88 25 NR 100 OS,safety
Kim/202287 2020–2017 phase 3 Korea 124 71 67 92 11 100 100 OS
Harada/202288 NR phase 2 Japan 21 NR 67 82 5 100 100 safety
Huang/2022253 2013–2020 retrospective Singapore 45 22 66 84 22 100 100 PFS,OS
Kim/202289-1 2018–2020 retrospective Korea 23 NR 65 87 17 NR 74 RP
Kim/202289-2 2018–2020 retrospective Korea 31 NR 60 77 19 NR 90 RP
Wu/202390 2013–2017 retrospective China 113 63 62 87 19 NR 100 RP
Lee/202391 2012–2020 retrospective Korea 317 30 66 16 NR 100 100 RP
Abe/2023254 2008–2022 retrospective Japan 17 22 68 88 NR NR 100 efficacy
Park/2023255 2020–2021 prospective Korea 27 27 69 96 7 NR 100 PFS OS
Park/202392 2014–2020 retrospective Korea 294 18 67 93 14 100 100 PFS OS
Non-Asian
Rosemman/200293 1996–1999 phase 1-2 USA 48 43 57 61 NR 100 100 OS
Semrau/200394 1997–2002 retrospective Germany 33 NR 65 NR NR 91 70 efficacy, safety
Vergnen'egre/200595 2000–2001 phase 2 France 40 35 55 93 NR 100 100 ORR
Fay/200596 1999–2001 retrospective Australia 156 14 NR 65 72 NR NR RP
Petris/200597 1999–2001 retrospective Sweden 32 14 63 56 NR 100 100 safety
Gandara/200698-9504 1996–1998 phase 2 USA 83 71 60 73 NR 100 100 OS
Gandara/200698-9019 1996–1998 phase 2 USA 50 71 58 82 NR 100 100 OS
Yom/200699-IMRT 2002–2005 retrospective USA 68 8 62 59 10 100 90 RP
Yom/200699-3DRT 2002–2005 retrospective USA 222 9 61 52 5 100 90 RP
Kosmidis/2007100 2000–2003 phase 2 Greece 32 44 63 93 NR 100 100 efficacy, safety
Semrau/2007101 1998–2005 retrospective Germany 66 13 68 85 NR NR 88 efficacy, safety
Tell/2008102 NR phase 2 Multicentre 64 NR 63 63 NR 100 100 efficacy, safety
Krzakowski/2008103 2002–2003 phase 2 Multicentre 54 37 58 76 NR 100 100 ORR
Steven/2009104 2003–2005 phase 2 USA 20 36 67 NR NR 100 100 efficacy, safety
Crvenkova/2009105-S 2005–2008 prospective Macedonia 45 13 59 89 NR 100 100 OS
Crvenkova/2009105-C 2005–2008 prospective Macedonia 40 22 57 88 NR 100 100 OS
Kocak/2009106 2003–2007 retrospective Turkey 90 16 60 100 NR 100 100 ORR
Garrido/2009107 2001–2006 phase 2 Spain 135 23 61 91 NR 100 100 OS
Schallier/2009108 2001–2005 phase 2 Belgium 64 59 66 80 NR 100 100 OS
Huber/2010109 2002–2003 phase 1 Germany 23 NR 59 91 NR 100 100 OS
Jiang/2010110 2005–2006 retrospective USA 165 17 63 59 5 NR 76 OS,safety
Bastos/2010111 2004–2007 phase 2 USA 32 34 58 66 NR 100 100 OS,safety
Barriger/2010112 2002–2006 prospective USA 243 16 63 83 54 NR 100 RP
Descourt/2011113 2006–2007 phase 2 France 38 NR 57 88 NR 100 100 ORR
Govindan/2011114 2005–2008 phase 2 USA 50 32 65 56 NR 100 100 OS
Shirish/2011115 2006–2009 phase 2 USA 28 41 60 68 NR 100 100 OS
Senan/2011116 2004–2005 phase 2 Multicentre 70 14 NR 83 NR 100 100 safety
Phernambucq/2011117 2003–2008 retrospective Netherlands 89 17 64 60 NR 100 100 OS,safety
Poudenx/2012118 2004–2007 phase 2 France 34 39 61 75 NR 100 100 ORR
Scotti/2012119 2003–2007 retrospective Italy 43 18 63 77 NR 100 100 efficacy, safety
Phernrmbucq/2012120 2003–2010 retrospective Netherlands 87 NR 60 70 NR NR 100 RP
Yirmibesoglu/2012121 2000–2010 retrospective USA 121 17 60 63 8 NR 86 RP
Stenmark/2012122 NR prospective USA 58 18 69 88 2 NR NR RP
Stephanie/2012123 2008–2011 retrospective Netherlands 86 12 67 NR NR NR 97 OS,safety
Spina/2013124 1994–2009 retrospective Australia 105 NR 64 71 9 98 100 OS
Liew/2013125-PC 2000–2011 retrospective Netherlands 44 52 71 80 7 100 100 OS,safety
Liew/2013125-EP 2000–2011 retrospective Netherlands 31 52 63 65 3 100 100 OS,safety
Choy/2013126 2007–2009 phase 2 USA 46 NR 63 65 NR NR 100 OS
Garrido/2013127 2001–2006 phase 2 Spain 139 57 62 91 NR 100 100 ORR
Terry/2013128 2004–2011 retrospective Netherlands 121 38 63 69 NR 100 100 OS,safety
Leprieur/2013129 2007–2010 retrospective France 47 NR 70 79 7 NR NR RP
Lerouge/2014130 2005–2008 phase 2 France 70 19 61 84 NR 100 100 ORR
Mertsoylu/2014131 2006–2012 retrospective Turkey 97 24 58 90 4 100 100 OS,PFS
Juan/2014132 2010–2011 phase 2 Spain 48 19 61 90 44 100 100 efficacy, safety
Trinh/2014133 2004–2012 prospective Australia 107 44 65 67 3 100 100 efficacy, safety
Bradley/2015134 2007–2011 phase 3 USA/Canada 217 23 64 59 7 100 100 OS
Garrido/2015135 2009–2011 phase 2 Multicentre 75 25 61 57 8 100 100 PFS
Chajon/2015136 2011–2014 retrospective France 21 18 NR NR NR NR 100 oesophagitis
Jaksic/2015137 2011–2016 retrospective France 59 NR 65 75 32 NR 88 efficacy, safety
Rodrigues/2015138-SD 1995–2010 retrospective Multicentre 143 89/40 61 74 12 100 100 OS
Rodrigues/2015138-ID 1995–2010 retrospective Multicentre 131 40 61 78 4 100 100 OS
Singhal/2015139 2008–2013 phase 2 Multicentre 43 NR 64 67 NR 100 100 PFS
Scher/2015140 2007–2013 retrospective USA 55 13 NR 49 NR NR 75 RP
Fournel/2016141-I NR phase 2 France 64 77 57 91 NR 100 100 ORR
Fournel/2016141-C NR phase 2 France 63 77 59 87 NR 100 100 ORR
Ozcelik/2016142-PC 2004–2014 retrospective Turkey 87 13 64 82 NR 100 100 efficacy, safety
Ozcelik/2016142-EP 2004–2014 retrospective Turkey 50 13 60 90 NR 100 100 efficacy, safety
Ozcelik/2016142-DP 2004–2014 retrospective Turkey 90 13 60 93 NR 100 100 efficacy, safety
Flentje/2016143 2005–2009 phase 3 Germany 279 16 60 71 NR 100 100 PFS
Brade/2016144 2007–2009 phase 2 Canada 39 29 62 46 NR 100 100 OS
Yılmaz/2016145 2008–2012 retrospective Turkey 82 40 57 96 NR 100 100 OS
Ling/2016146-ENI 1994–2014 retrospective USA 65 13 NR NR NR 100 100 OS,safety
Ling/2016146-IFI 1994–2014 retrospective USA 43 13 NR NR NR 100 100 OS,safety
Ling/2016146-IMRT 1994–2014 retrospective USA 37 13 NR NR NR 100 100 OS,safety
Sen/2016147-EP 2004–2012 retrospective Turkey 50 27 54 92 NR 100 100 OS,safety
Sen/2016147-DP 2004–2012 retrospective Turkey 55 19 55 96 NR NR 100 OS,safety
Matthew/2016148 2000–2007 retrospective New Zealand 43 12 70 56 NR NR 88 OS,safety
Wijsman/2016149 2008–2014 retrospective Netherlands 188 18 63 79 NR NR 100 efficacy, safety
Morth/2016150 2009–2012 retrospective Sweden 71 NR 71 46 11 100 92 RP
Hansen/2017151-60Gy 2009–2013 phase 2 Denmark 59 33 67 61 3 100 100 PFS
Hansen/2017151-66Gy 2009–2013 phase 2 Denmark 58 33 65 55 3 100 100 PFS
Hughes/2017152 2007–2010 phase 2 Australia 27 60 63 56 NR 100 100 efficacy, safety
Alharbi/2017153 2007–2015 retrospective Germany 732 NR NR NR NR NR 100 RP
Soler/2017154 2009–2014 retrospective Spain 64 16 64 86 6 NR 97 efficacy, safety
Okumus/2017155 2009–2012 retrospective Turkey 68 NR 59 93 3 100 91 OS,safety
Rivas/2018156 2012–2017 phase 2 Spain 48 21 60 79 NR 100 100 ORR
Zhang/2018157 2004–2014 phase 1 UK 25 27 61 54 NR 100 100 safety
Liao/2018158 2009–2014 prospective USA 92 24 NR 51 10 100 78 RP
Yegya-Raman/2018159-CBCT 2007–2015 retrospective USA 76 41 64 61 NR 100 76 RP
Yegya-Raman/2018159-Okv 2007–2015 retrospective USA 48 76 66 46 NR 100 88 RP
Sculier/2018160 2007–2013 phase 3 Multicentre 120 62 60 77 NR 100 100 OS
Topkan/2019161 2007–2012 retrospective Turkey 956 26 63 77 8 100 100 OS
Isla/2019162-NP 2011–2014 phase 2 Spain 69 24 64 87 3 100 97 PFS
Isla/2019162-EP 2011–2014 phase 2 Spain 71 24 61 86 0 100 97 PFS
Yegya-Raman/2019163 2009–2016 retrospective USA 82 38 65 59 NR 100 74 PFS
Yu/2019164 2016–2018 retrospective USA 46 11 69 52 20 85 83 efficacy, safety
Luna/2019165 2008–2016 retrospective USA 203 23 63 45 8 72 100 RP
Kaderbhaï/2020166 2005–2014 retrospective France 89 58 63 84 6 100 100 efficacy, safety
Nestle/2020167-Con 2009–2016 prospective Germany 99 29 64 72 NR 100 94 PFS
Nestle/2020167-PET 2009–2016 prospective Germany 105 29 66 74 NR 100 92 PFS
Ergen/2020168 2009–2015 retrospective Turkey 268 ≥6 60 89 12 100 94 RP
Harris/2020169 2011–2016 retrospective USA 78 NR 65 39 17 NR 100 RP
Spencer/2021170 2011–2014 retrospective UK 141 21 63 54 NR 96 100 OS,safety
Remmerts de Vries/2021171 2015–2017 retrospective Netherlands 64 29 67 50 5 100 100 OS,safety
Owen/2021172-3DRT 2007–2013 retrospective USA 58 NR NR 78 NR NR 79 RP
Owen/2021172-VMAT 2007–2013 retrospective USA 30 NR NR 60 NR NR 93 RP
Provencio/2021173 2017–2018 phase 2 Spain 54 29 62 77 5 100 100 PFS
Tsakiridis/2021174 2014–2019 phase 2 Canada 28 NR 65 43 NR 100 100 efficacy
Skinner/2021175 2014–2016 phase 2 Canada 75 28 64 59 NR 100 100 OS,safety
Mantel/2021176 2010–2018 retrospective Germany 138 18 63 68 NR NR 83 LCR,safety
Lim/2021177 2015–2018 phase 2 USA 19 24 68 45 5 NR 84 RP
Lutz/2021178-60Gy 2009–2013 prospective Denmark 59 NR 67 61 5 100 88 RP
Lutz/2021178-66Gy 2009–2013 prospective Denmark 58 NR 65 55 5 100 95 RP
McFarlane/2021179 2012–2019 prospective USA 1302 NR 68 51 4 NR 84 RP
Szejniuk/2021180 2012–2016 prospective Denmark 41 12 66 56 5 100 78 RP
Bourbons/2021181 2015–2018 retrospective France 165 ≥12 65 67 NR 100 100 RP

Abbreviations: ECO, Eastern Cooperative Oncology Group; OS, overall survival; PFS, progression-free survival; ORR, objective response rate; LCR, local control rate; RP, radiation pneumonitis; NR, not reported.

Table 2.

Characteristics of studies examining chemotherapy with immunotherapy.

Author/published year Time range Study design Study region Sample size Median follow-up (months) Median age Males (%) Never smoking (%) ECOG 0-2 (%) Stage III (%) Primary endpoint/main purpose
Asian
Jung/2020246 2018–2019 retrospective Korea 21 NR 66 90 24 100 100 PFS
Zhang/2020182 2018–2020 prospective China 20 11 61 80 30 NR 95 efficacy, safety
Saito/2020183 2018–2019 retrospective Japan 36 7 72 75 NR NR 75 RP
Miura/2020184 2018–2019 retrospective Japan 41 23 72 80 20 100 100 Safety
Inoue/2020185 2018–2019 retrospective Japan 30 8 68 63 23 NR 100 pneumonitis
Chu/2020186 2018–2019 retrospective China 31 NR 64 84 26 100 100 PFS
Tsukita/2021247 2018–2019 retrospective Japan 87 14 70 71 14 100 100 pneumonitis
Saito/2021248 2018–2019 retrospective Japan 225 8 NR NR NR 100 84 pneumonitis
Jang/2021249 2018–2020 retrospective Korea 51 12 62 78 28 100 90 RP
Oshiro/2021187 2018–2020 retrospective Japan 91 15 68 74 10 98 90 pneumonitis
Shintani/2021188 2018–2019 retrospective Japan 146 16 70 82 14 100 86 RP
Abe/2021250 2018–2019 retrospective Japan 44 17 73 77 NR NR 82 PFS/OS
Abe/2021189 2019–2020 retrospective Japan 20 8 71 75 NR NR 90 pneumonitis
Fujiwara/2021251 2016–2019 prospective Japan 20 15 NR NR NR 100 100 RP
Watanabe/2021252 2018–2020 retrospective Japan 21 16 NR NR NR NR NR pneumonitis
Sugimoto/2022190 2019 prospective Japan 35 16 69 72 11 100 100 safety
Mayahara/2022191 2018–2019 retrospective Japan 56 14 72 66 20 100 100 RP
Yamamoto/2022192 2016–2021 retrospective Japan 36 14 71 81 13 100 NR PFS
Zhou/2022193 2018–2020 prospective China 255 14 61 93 16 100 100 PFS
Tanzawa/2022194 2019–2020 prospective Japan 51 22 68 86 9 100 100 PFS
Huang/2022253 2013–2020 retrospective Singapore 39 15 64 80 21 100 100 PFS,OS
Araki/2022195 2018–2021 retrospective Japan 76 17 70 71 17 100 100 PFS,OS
Nishimura/2022196 2018–2020 retrospective Japan 82 15 70 66 18 NR 100 pneumonitis
Harada/2022197 2018–2020 retrospective Japan 26 15 66 77 12 100 100 pneumonitis
Kawanaka/2022198 2012–2019 retrospective Japan 20 NR NR NR NR 100 100 RP,PFS
Lu/2022199 2016–2021 retrospective China 196 18 61 82 27 94 78 pneumonitis
Abe/2022200 2020–2021 retrospective Japan 28 14 71 71 14 100 100 RP
Nakamichi/2022201 2020 prospective Japan 47 NR 65 87 NR 100 100 PFS
Mamesaya/2022202 2019–2021 prospective Japan 29 NR NR NR NR 100 100 ORR
Morimoto/2022203 2018–2019 retrospective Japan 34 13 73 73 NR 100 74 NR
Abe/2023254 2008–2022 retrospective Japan 12 14 70 67 NR NR 100 efficacy, safety
Park/2023255 2020–2021 prospective Korea 23 27 67 87 4 NR 100 PFS,OS
Wang/2023204 2018–2022 retrospective China 75 22 65 89 16 100 100 PFS,OS
Park/2023205 2018–2020 retrospective Korea 157 19 65 85 20 98 100 PFS
Non-Asian
Lin/2019206 2016–2018 prospective USA 40 15 67 68 22 100 85 safety
Shaverdian/2020207 2017–2019 retrospective USA 62 13 66 58 3 100 100 RP
Durm/2020208 2015–2016 prospective USA 92 32 66 64 5 NR 100 TMDD
Faehling/2020209 2017–2018 retrospective Germany 126 25 62 65 4 100 94 efficacy, safety
Offin/2020210 2017–2019 retrospective USA 62 12 66 58 3 100 100 efficacy, safety
Hassanzadeh/2020211 2017–2019 retrospective USA 34 12 68 54 5 100 94 pneumonitis
Yan/2020212 2017–2019 prospective USA 25 NR 62 NR NR NR 100 safety
Moore/2020213 2018–2019 retrospective Canada 39 NR 69 NR NR NR 100 pneumonitis
Jain/2020214 2018–2019 retrospective UK 28 21 NR NR NR NR 100 efficacy, safety
Jegannathen/2020215 2018–2019 retrospective Multicentre 18 NR NR 44 22 NR 100 efficacy, safety
Landman/2021216 2018–2020 retrospective Israel 39 20 67 64 15 100 100 PFS,OS
Jabbour/2021217-PC 2018–2020 prospective Multicentre 112 19 66 68 5 100 100 ORR/pneumonitis
Jabbour/2021217-PP 2018–2020 prospective Multicentre 102 14 64 61 5 100 100 ORR,pneumonitis
Peters/2021218 2016–2018 prospective Multicentre 77 21 62 67 4 100 100 PFS,OS
Desilets/2021219 2018–2019 retrospective Canada 147 16 67 67 10 100 100 PFS,OS,safety
Taugner/2021220 2018–2020 retrospective Germany 26 21 68 65 NR NR 96 PFS,OS
Bruni/2021221 2018–2020 retrospective Italy 155 14 66 70 36 100 100 PFS,OS,safety
Jabbour/2021222 2016–2018 prospective USA 21 16 70 48 5 100 100 safety
Kartolo/2021223 2018–2020 retrospective Canada 63 17 NR 51 5 NR 100 OS
Sally/2021224 2018–2020 retrospective Canada 82 NR NR NR NR NR 100 PFS,OS,safety
Kauffmann-Guerrero/2021225 NR prospective Germany 38 NR NR NR NR NR 100 pneumonitis
Ross/2021226 2017–2019 prospective USA 64 24 64 48 11 100 100 DCR
Koffer/2021227 NR retrospective USA 40 19 NR NR NR NR 90 pneumonitis
Hanayneh/2021228 NR retrospective USA 119 NR NR NR NR NR NR pneumonitis
Gao/2022229 2018–2021 retrospective USA 190 15 67 49 0 100 90 pneumonitis
Herbst/2022230 2019–2020 phase 2 Multicentre 183 12 65 68 7 100 100 ORR
LeClair/2022231 2018–2019 retrospective USA 83 NR 70 58 2 100 100 pneumonitis
Saad/2022232 2017–2020 retrospective Israel 71 19 67 63 10 91 100 PFS,OS,safety
Garassino/2022233 2019–2020 prospective Multicentre 117 13 68 62 8 100 100 safety
Raez/2022234 2018–2021 retrospective Multicentre 125 20 66 47 17 100 100 safety
Guberina/2022235 2017–2020 retrospective Germany 39 26 62 67 5 NR 100 safety
Riudavets/2022236 2015–2020 retrospective Multicentre 323 19 66 71 6 100 100 PFS,OS
Denault/2022237 2018–2020 retrospective Canada 205 NR NR 56 9 100 100 OS
Stevens/2022238 2018–2021 retrospective Australian 145 19 67 63 NR 100 100 safety
Gabelica/2022239 2019–2020 retrospective Croatia 42 NR 63 79 NR NR NR NR
Rimner/2022240 2019–2021 prospective USA 27 12 82 NR NR 100 93 PFS
Tavara/2022241 2018–2021 retrospective Spain 37 20 67 78 49 NR 100 NR
Saade/2022242 2018–2022 retrospective USA 14 NR 65 50 25 NR 100 pneumonitis
Girard/2023243 2017–2021 retrospective Multicentre 1399 24 66 67 8 99 95 PFS
Diamond/2023244 2018–2021 retrospective USA 62 17 67 48 0 NR 90 pneumonitis
Käsmann/2023245-Niv 2016–2020 prospective Germany 11 23 59 73 NR 100 100 PFS,OS,safety
Käsmann/2023245-Dur 2016–2020 prospective Germany 28 27 68 71 NR 100 100 PFS,OS,safety

Abbreviations: EOCG, Eastern Cooperative Oncology Group; OS, overall survival; PFS, progression-free survival; ORR, objective response rate; TMDD, time to metastatic disease or death; RP, radiation pneumonitis; NR, not reported.

Assessment of included studies and publication bias

All studies had a score of ≥8 by the MINORS quality assessment (ranged from 8 to 14), suggesting moderate to high quality of them (Supplementary File: Table S4).

The Begg's and Egger's test indicated significant publication bias (P < 0.05 for most of the pneumonitis outcomes) (Supplementary File: Table S5).

Comparison of rates of pneumonitis between Asian and non-Asian patients treated with CRT without immunotherapy

All studies

The pooled rates of all-grade (66.8%, 95% CI: 59.2%–73.9% vs. 28.1%, 95% CI: 20.4%–36.4%; P < 0.0001), grade ≥2 (25.1%, 95% CI: 22.9%–27.3% vs. 14.9%, 95% CI: 12.0%–18.0%; P < 0.0001), grade ≥3 (6.5%, 95% CI: 5.6%–7.3% vs. 4.6%, 95% CI: 3.4%–5.9%; P = 0.015), and grade 5 (0.6%, 95% CI: 0.3%–0.9% vs. 0.1%, 95% CI: 0.0%–0.2%; P < 0.0001) pneumonitis were significantly higher in Asian patients than that in non-Asian patients (Fig. 2).

Fig. 2.

Fig. 2

Comparison of rates of pneumonitis between Asian and non-Asian patients treated with CRT without immunotherapy. CRT, chemoradiotherapy; cCRT, concurrent chemoradiotherapy; IFI, involved-field irradiation; No., number; CI, confidence intervals. P-values of <0.05 were defined as statistically significant.

Subgroup of studies published after 2015

Similar to the results from all studies, the pooled rates of pneumonitis in Asian patients were significantly higher than that in non-Asian studies (all grade: 65.9%, 95% CI: 56.5%–74.7% vs. 27.3%, 95% CI: 18.6%–37.0%, P < 0.0001; grade ≥2: 25.2%, 95% CI: 22.8%–27.6% vs. 15.0%, 95% CI: 11.5%–19.0%, P < 0.0001; grade ≥3: 6.8%, 95% CI: 5.8%–7.8% vs. 4.4%, 95% CI: 2.9%–6.2%, P = 0.019; grade 5: 0.6%, 95% CI: 0.3%–0.9% vs. 0.01%, 95% CI: 0.0%–0.1%, P < 0.0001) (Fig. 2).

Subgroup of prospective studies

The pooled rates of all-grade (54.3%, 95% CI: 44.5%–63.9% vs. 24.4%, 95% CI: 15.2%–34.9%; P < 0.0001), grade ≥2 (21.3%, 95% CI: 17.6%–25.2% vs. 11.9%, 95% CI: 7.5%–17.1%; P = 0.0046), and grade 5 (0.6%, 95% CI: 0.3%–1.1% vs. 0.04%, 95% CI: 0.0%–0.2%; P = 0.0006) pneumonitis rates were significantly higher in Asian patients than that in non-Asian patients. Rate of grade ≥3 pneumonitis was also numerically high in Asian vs. Non-Asian (6.0%, 95% CI: 4.7%–7.4% vs. 4.1%, 95% CI: 2.5%–5.9%), but without statistical significance (P = 0.068) (Fig. 2).

We also performed a subgroup analysis of phase 3 trials (Supplementary File: Figure S1). Numerically high rates of pneumonitis were observed for Asian vs. non-Asian (all grade: 48.0%, 95% CI: 32.9%–63.2% vs. 41.7%, 95% CI: 32.9%–50.5%; P = 0.48; grade ≥2: 19.1%, 95% CI: 7.8%–30.3% vs. 12.0%, 95% CI: 0.4%–23.6%; P = 0.39; grade ≥3: 7.3%, 95% CI: 4.1%–10.6% vs. 3.8%, 95% CI: 1.4%–6.2%; P = 0.091; grade 5: 2.2%, 95% CI: 1.0%–3.8% vs. 0.1%, 95% CI: 0.0%–0.6%; P < 0.0001), but without statistical significance (except grade 5) (Fig. 2).

Subgroup of retrospective studies

Similar to the results from prospective studies, Asian patients were associated with higher rates of all-grade (79.4%, 95% CI: 71.2%–86.6% vs. 33.3%, 95% CI: 20.8%–47.0%; P < 0.0001), grade ≥2 (27.4%, 95% CI: 24.7%–30.0% vs. 17.0%, 95% CI: 13.9%–20.1%; P < 0.0001), and grade 5 (0.6%, 95% CI: 0.3%–1.0% vs. 0.08%, 95% CI: 0.0%–0.3%; P = 0.002) pneumonitis compared to non-Asian patients, but with no significant difference in rate of grade ≥3 pneumonitis (6.9%, 95% CI: 5.8%–8.0% vs. 5.2%, 95% CI: 3.5%–7.3%; P = 0.15) (Fig. 2).

Subgroup of patients undergoing cCRT

There were also higher rates of all-grade (65.5%, 95% CI: 57.2%–73.4% vs. 26.4%, 95% CI: 18.7%–35.0%; P < 0.0001), grade ≥2 (24.7%, 95% CI: 21.8%–27.7% vs. 13.3%, 95% CI: 10.0%–16.9%; P < 0.0001), and grade 5 (0.6%, 95% CI: 0.3%–0.9% vs. 0.04%, 95% CI: 0.0%–0.2%; P < 0.0001) pneumonitis in Asian patients than that in non-Asian patients, and without significant difference in rate of grade ≥3 pneumonitis (6.0%, 95% CI: 5.0%–7.0% vs. 4.7%, 95% CI: 3.4%–6.1%; P = 0.10) (Fig. 2).

Subgroup of patients undergoing CRT with IFI

Similarly, Asian patients were associated with higher rates of all-grade (66.0%, 95% CI: 57.0%–74.4% vs. 31.9%, 95% CI: 18.7%–46.9%; P = 0.0001), grade ≥2 (24.0%, 95% CI: 21.3%–26.7% vs. 15.1%, 95% CI: 12.1%–18.1%; P < 0.0001), and grade 5 (0.4%, 95% CI: 0.2%–0.8% vs. 0.1%, 95% CI: 0.0%–0.3%; P = 0.014) pneumonitis compared to non-Asian patients, but with no significant difference in rate of grade ≥3 pneumonitis (7.1%, 95% CI: 5.9%–8.3% vs. 5.2%, 95% CI: 3.5%–7.1%; P = 0.09) (Fig. 2).

Comparison of pneumonitis rates between Asian and non-Asian patients undergoing CRT plus immunotherapy

All studies

The pooled rates of all-grade (74.8%, 95% CI: 63.7%–84.5% vs. 34.3%, 95% CI: 28.7%–40.2%; P < 0.0001) and grade ≥2 (34.0%, 95% CI: 30.7%–37.3% vs. 24.6%, 95% CI: 19.9%–29.3%; P = 0.001) pneumonitis were significantly higher in Asian patients than that in non-Asian patients; while there were no significant differences in rates of grade ≥3 (4.7%, 95% CI: 3.6%–5.9% vs. 6.0%, 95% CI: 4.7%–7.5%; P = 0.24) and grade 5 (0.1%, 95% CI: 0.0%–0.5% vs. 0.1%, 95% CI: 0.0%–0.2%; P = 0.28) pneumonitis (Fig. 3).

Fig. 3.

Fig. 3

Comparison of rates of pneumonitis between Asian and non-Asian patients treated with CRT plus immunotherapy. CRT, chemoradiotherapy; cCRT, concurrent chemoradiotherapy; No., number; CI, confidence intervals. P-values of <0.05 were defined as statistically significant.

Subgroup of prospective studies

Different from the results of all studies, only rate of all-grade pneumonitis was significantly higher in Asian patients than in non-Asian patients (70.7%, 95% CI: 47.6%–86.6% vs. 38.9%, 95% CI: 23.9%–56.4%; P = 0.031), but with no significant differences in the rates of grade ≥2 (26.5%, 95% CI: 15.4%–37.6% vs. 23.8%, 95% CI: 16.1%–31.5%; P = 0.69), grade ≥3 (2.8%, 95% CI: 1.2%–4.4% vs. 5.3%, 95% CI: 3.3%–7.3%; P = 0.058) and grade 5 (0.0%, 95% CI: 0.0%–0.6% vs. 0.4%, 95% CI: 0.0%–1.3%; P = 0.25) pneumonitis (Fig. 3).

Subgroup of retrospective studies

Similar to the results from all studies, Asian patients were associated with higher rates of all-grade (76.2%, 95% CI: 65.8%–85.2% vs. 32.5%, 95% CI: 26.2%–39.1%; P < 0.0001) and grade ≥2 (35.1%, 95% CI: 31.8%–38.3% vs. 24.5%, 95% CI: 18.9%–30.2%; P = 0.002) pneumonitis compared non-Asian patients, but without significant differences in rates of grade ≥3 (5.4%, 95% CI: 4.2%–6.8% vs. 6.2%, 95% CI: 4.6%–7.9%; P = 0.79) and grade 5 (0.2%, 95% CI: 0.0%–0.7% vs. 0.1%, 95% CI: 0.0%–0.2%; P = 0.089) pneumonitis (Fig. 3).

Subgroup of patients undergoing cCRT with consolidation durvalumab

Consistently, the rates of all-grade (78.6%, 95% CI: 68.9%–86.9% vs. 35.0%, 95% CI: 27.8%–42.6%; P < 0.0001) and grade ≥2 (34.4%, 95% CI: 31.6%–37.1% vs. 25.6%, 95% CI: 19.3%–31.8%; P = 0.011) pneumonitis rates were significantly higher in Asian vs. non-Asian patients; there were no significant differences in rates of grade ≥3 (5.2%, 95% CI: 3.9%–6.7% vs. 6.0%, 95% CI: 4.4%–7.6%; P = 0.86) and grade 5 (0.1%, 95% CI: 0.0%–0.5% vs. 0.1%, 95% CI: 0.0%–0.3%; P = 0.22) pneumonitis (Fig. 3).

Comparison of grade ≥2 pneumonitis between Asian and non-Asian patients based on lung V20/MLD

There were 37 studies of Asian and 26 studies of non-Asian reporting data of V20 as well as the incidence of grade ≥2 pneumonitis for the study population. Among these studies, the pooled median/mean of V20 for Asian was 23.0% (IQR, 20.0%–25.7%) vs. 27.9% (IQR, 25.9%–30.0%) for non-Asian, with the pooled rate of grade ≥2 pneumonitis of 30.3% (95% CI, 27.0%–33.6%) vs. 22.3% (95% CI, 18.2%–26.4%, P = 0.003) (Fig. 4). In addition, there were 25 studies of Asian and 30 studies of non-Asian providing data of MLD (the pooled median/mean of 13.6 Gy [IQR, 11.9Gy–15.1Gy] vs. 16.0 Gy [IQR, 14.9Gy–17.2Gy]) with the incidence of grade ≥2 pneumonitis of 32.5% (95% CI, 28.4%–37.0%) vs. 20.7% (95% CI, 16.4%–25.4%, P = 0.0002) (Fig. 4).

Fig. 4.

Fig. 4

Comparison of grade ≥2 pneumonitis between Asian and non-Asian patients based on lung V20/MLD. V20, lung volume receiving ≥20 Gy, MLD, lung mean dose; No., number; CI, confidence intervals; IQR, interquartile range. P-values of <0.05 were defined as statistically significant.

The forest plots for the results

The forest plots for all results of meta-analysis are presented in Supplementary File: Figure S2–S47.

Heterogeneity

There were significant heterogeneity among studies, particularly for all-grade (I2 range, 90%–97%) and grade ≥2 (I2 range, 11%–94%) pneumonitis. The heterogeneity reduced somewhat in some subgroup analyses (Figs. 2 and 3). No significant heterogeneity were observed for grade 5 pneumonitis (I2 range, 0%–40%) (Figs. 2 and 3).

Meta-regression analysis

Meta-regression was conducted to investigate the influence of sex, smoking status, and stage on the incidence of pneumonitis (Supplementary File: Table S6). Due to too many missing data, we carried out meta-regression analyses with race (Asian) and then sex (model 1), smoking (model 2), and stage (model 3) separately as predictors of pneumonitis. As for CRT alone, race was significantly associated with the incidence of pneumonitis (P < 0.05 for each result), except grade ≥3 pneumonitis (P = 0.91) in model 2; sex significantly influenced the incidence of grade ≥2 (P = 0.01) and grade ≥3 (P = 0.03) pneumonitis; stage was an predictor of grade ≥2 pneumonitis (P = 0.01). Regarding CRT plus immunotherapy, race and sex were predictors of all-grade and grade ≥2 pneumonitis (P < 0.05 for each result).

Discussion

This study summarized incidence of pneumonitis after definitive CRT with or without immunotherapy in Asian and non-Asian patients with LA-NSCLC, respectively. As for CRT without immunotherapy, the pooled incidence rates of all-grade (66.8% vs. 28.1%, P < 0.0001), grade ≥2 (25.1% vs. 14.9%, P < 0.0001), grade ≥3 (6.5% vs. 4.6%, P < 0.015), and grade 5 (0.6% vs. 0.1%, P < 0.0001) pneumonitis were significantly higher in Asian than that in non-Asian patients. Regarding CRT plus immunotherapy, significantly higher rates of all-grade (74.8% vs. 34.3%, P < 0.0001) and grade ≥2 (34.0% vs. 24.6%, P = 0.001) pneumonitis was observed in Asian than in non-Asian patients; while, there were no significant differences in rates of grade ≥3 (4.7% vs. 6.0%, P = 0.24) and grade 5 (0.1% vs. 0.1%, P = 0.28) pneumonitis between the two population.

One of the explanations for the difference in incidence of pneumonitis is different genetic backgrounds between Asian and non-Asian patients, such as ethnic difference in single nucleotide polymorphisms (SNPs) of the TGF-β1 gene,256,257 epidermal growth factor receptor (EGFR) mutations,258 and Toll-like receptor 2 (TLR2) and TLR4 gene polymorphisms.259 For example, TGF-β1 rs1982073:T869C gene has been demonstrated to be associated with lower risk of radiation pneumonitis (RP) in white but not in Chinese NSCLC patients treated with definitive CRT.256,257 In addition, EGFR mutations are more common in Asian patients than in non-Asian patients with NSCLC (38.4% vs. 14.1%),258 and patients with EGFR mutations were found to have a higher risk of pneumonitis compared to EGFR wild-type patients (11.0% vs. 3.8%) in the subgroup analysis of PACIFIC study.4

However, there is also a possibility that Asian patients received higher lung dose than non-Asian patients, leading to the higher incidence of pneumonitis. In the present meta-analysis, a total of 63 studies reported the median/mean of lung V20 and 55 studies reported median/mean of MLD for the study population. In these studies, we found that although the pooled median/mean of V20 was relatively low for studies of Asian compared to that for studies of non-Asian (23% vs. 27.9%), rate of grade ≥2 pneumonitis was significantly higher in Asian vs. non-Asian studies (30.3% vs. 22.3%, P = 0.003). Similarly, the pooled median/mean MLD was 13.6Gy for Asian studies vs. 16.0Gy for non-Asian studies, with rate of grade ≥2 pneumonitis of 32.5% vs. 20.7% (P < 0.0002). These findings suggested the poor tolerance of lung to radiation in Asian patients.

It should be noted that there were no ethnic differences in rates of grade ≥3 and grade 5 pneumonitis in patients treated with CRT plus immunotherapy. Differences in ICI drugs used and combination therapy strategy adopted between Asian and non-Asian studies might account for the results, at least in part. For studies of Asian, cCRT followed by consolidation durvalumab was the common regimen. However, PD-1 inhibitors (pembrolizumab or nivolumab) and concurrent CRT and ICIs strategy were frequently adopted in the studies of non-Asian, which might result in the increased lung toxicity, leading to the comparable incidence of grade ≥3 pneumonitis to Asian patients. Nevertheless, there was also a possibility that Asian patients were only associated with an increased risk of moderate pneumonitis (grade 2) but not severe pneumonitis (grade 3–5) compared to non-Asian patients in the case of CRT plus immunotherapy.

There were significant heterogeneity among studies. To explore potential sources of heterogeneity, we conducted a number of subgroup analyses for both CRT alone and CRT plus immunotherapy. As for CRT alone, results from these subgroup analyses were similar to that from the all studies. Regarding CRT plus immunotherapy, subgroup analyses of retrospective studies and studies of cCRT followed by durvalumab showed comparable results to the all studies. However, rate of grade ≥2 pneumonitis in prospective studies was similar between Asian and non-Asian patients (26.5% vs. 23.8%, P = 0.69), which appeared to be due to the limited number of studies and small sample size in this subgroup. Overall, the findings from the subgroup analyses further supported that Asian patients were more likely to have a higher risk of pneumonitis compared to non-Asian patients.

To our knowledge, the present study is the first and most comprehensive meta-analysis focusing on ethnic differences in the incidence of post-chemoradiotherapy pneumonitis for patients with locally advanced NSCLC. It included a total of 248 studies involving 28,267 patients, and summarized the rates of all-grade, grade ≥2, grade ≥3, and grade 5 pneumonitis, respectively. In addition, a comprehensive subgroup analyses were conducted, with the results generally in agreement with that from the overall study population. Nevertheless, there are some limitations in this meta-analysis. First, due to lack of RCTs and cohort studies directly comparing the incidence of pneumonitis between Asian and non-Asian patients, this meta-analysis was performed based on cross-study comparisons between single-arm studies. This methodological limitation prevented us from drawing a firm conclusion. Second, pneumonitis grading criteria adopted in individual studies were inconsistent, which might result in bias in collection and reporting of pneumonitis. Third, the majority of studies reported incidence of pneumonitis during the study period. Studies only reporting the incidence of pneumonitis during CRT period or less than 3 months after RT, or only providing data of late lung toxicity such as lung fibrosis, were excluded from our analysis. The exclusion of these studies might lead to bias. Fourth, there were significant heterogeneity among studies. By subgroup analyses, we found that study design, RT field, CRT strategy, study published years appeared to account for some heterogeneity. In addition, CT regimens, RT techniques, RT dose, and PTV volume might also be confounding factors. However, we could not evaluate their effects on the incidence of pneumonitis between Asian and non-Asian patients due to insufficient data. Fifth, in the case of multiple articles covered the similar study population, the one with the most comprehensive data was selected. Nevertheless, there might be also studies of overlap patients which were not recognized and were included in our study, especially for some multi-center studies which were difficult to determine whether they had overlap patients or not. This might result in bias of the results. Sixth, meta-regression analyses showed that some patients baseline characteristics (sex and stage) were potential confounders for the incidence of pneumonitis, which might also lead to bias of the results. In addition, baseline ILD is also a risk factor for pneumonitis. However, the majority of included studies did not provide the information of the preexisting ILD. Thus, we could not evaluate its effects on the results. Finally, the primary endpoints or main purpose of the included studies were various (such as OS, and/or PFS, and/or safety), which might affect the results of pneumonitis. There might be difference somewhat in the frequency of pneumonitis depending on whether the purpose of the study is about treatment effects or mainly about side effects.

In conclusion, Asian patients are likely to have a higher incidence of pneumonitis than non-Asian patients treated with CRT with or without immunotherapy, which appears to be due to the poor tolerance of lung to radiation. These results can be helpful to understand the ethnic difference in risk of pneumonitis, and to optimize CRT strategy in Asian patients. Nevertheless, the findings are based on observational studies and with significant heterogeneity, and need to be validated in future large prospective studies focusing on the subject.

Contributors

The study was designed by JD, ZH, and GL. Literature search and data collection were done by TL, SL, SD, JQ, JC, CR, HW, and XW. Statistical analyses were done by TL, SL, and SD, and JQ. JD, ZH, TL, SL, SD, and JQ contributed to data analysis and interpretation. TL, SL, and HW verified the underlying data. All authors had full access to all of the data. The manuscript was drafted by JD, TL, SL, SD, and JQ. All authors read and approved the final version of the manuscript. JD had the final responsibility to submit for publication.

Data sharing statement

All data extracted and generated in this study can be shared with others on reasonable request via email to the corresponding author.

Declaration of interests

The authors declare no competing interests.

Acknowledgements

None.

Footnotes

Appendix A

Supplementary data related to this article can be found at https://doi.org/10.1016/j.eclinm.2023.102246.

Contributor Information

Zheng He, Email: hzlnsysy@163.com.

Jun Dang, Email: dangjunsy@163.com.

Appendix A. Supplementary data

Supplementary File
mmc1.docx (8MB, docx)

References

  • 1.Bobbili P., Ryan K., Duh M.S., et al. Treatment patterns and overall survival among patients with unresectable, stage III non-small-cell lung cancer. Future Oncol. 2019;15(29):3381–3393. doi: 10.2217/fon-2019-0282. [DOI] [PubMed] [Google Scholar]
  • 2.Antonia S.J., Villegas A., Daniel D., et al. Durvalumab after chemoradiotherapy in stage III non-small-cell lung cancer. N Engl J Med. 2017;377(20):1919–1929. doi: 10.1056/NEJMoa1709937. [DOI] [PubMed] [Google Scholar]
  • 3.Arifin A.J., Palma D.A. The changing landscape of pneumonitis in non-small cell lung cancer. Lung Cancer. 2022;171:1–2. doi: 10.1016/j.lungcan.2022.07.008. [DOI] [PubMed] [Google Scholar]
  • 4.Faehling M., Schulz C., Laack H., et al. PACIFIC subgroup analysis: pneumonitis in stage III, unresectable NSCLC patients treated with durvalumab vs. placebo after CRT. Pneumologie. 2019;73(S01):272. [Google Scholar]
  • 5.Wang Y., Zhang T., Huang Y., et al. Real-World safety and efficacy of consolidation durvalumab after chemoradiation therapy for stage III non-small cell lung cancer: a systematic review and meta-analysis. Int J Radiat Oncol Biol Phys. 2022;112(5):1154–1164. doi: 10.1016/j.ijrobp.2021.12.150. [DOI] [PubMed] [Google Scholar]
  • 6.Page M.J., McKenzie J.E., Bossuyt P.M., et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ. 2021;372:n71. doi: 10.1136/bmj.n71. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 7.Stroup D.F., Berlin J.A., Morton S.C., et al. Meta-analysis of observational studies in epidemiology: a proposal for reporting. Meta-analysis of Observational Studies in Epidemiology (MOOSE) group. JAMA. 2000;283(15):2008–2012. doi: 10.1001/jama.283.15.2008. [DOI] [PubMed] [Google Scholar]
  • 8.Slim K., Nini E., Forestier D., Kwiatkowski F., Panis Y., Chipponi J. Methodological index for non-randomized studies (minors): development and validation of a new instrument. ANZ J Surg. 2003;73(9):712–716. doi: 10.1046/j.1445-2197.2003.02748.x. [DOI] [PubMed] [Google Scholar]
  • 9.Tsujino K., Hirota S., Endo M., et al. Predictive value of dose-volume histogram parameters for predicting radiation pneumonitis after concurrent chemoradiation for lung cancer. Int J Radiat Oncol Biol Phys. 2003;55(1):110–115. doi: 10.1016/s0360-3016(02)03807-5. [DOI] [PubMed] [Google Scholar]
  • 10.Lee D.H., Han J.Y., Cho K.H., et al. Phase II study of induction chemotherapy with gemcitabine and vinorelbine followed by concurrent chemoradiotherapy with oral etoposide and cisplatin in patients with inoperable stage III non-small-cell lung cancer. Int J Radiat Oncol Biol Phys. 2005;63(4):1037–1044. doi: 10.1016/j.ijrobp.2005.04.034. [DOI] [PubMed] [Google Scholar]
  • 11.Kim Y.S., Yoon S.M., Choi E.K., et al. Phase II study of radiotherapy with three-dimensional conformal boost concurrent with paclitaxel and cisplatin for Stage IIIB non-small-cell lung cancer. Int J Radiat Oncol Biol Phys. 2005;62(1):76–81. doi: 10.1016/j.ijrobp.2004.09.038. [DOI] [PubMed] [Google Scholar]
  • 12.Sekine I., Nokihara H., Sumi M., et al. Docetaxel consolidation therapy following cisplatin, vinorelbine, and concurrent thoracic radiotherapy in patients with unresectable stage III non-small cell lung cancer. J Thorac Oncol. 2006;1(8):810–815. [PubMed] [Google Scholar]
  • 13.Yuan S., Sun X., Li M., et al. A randomized study of involved-field irradiation versus elective nodal irradiation in combination with concurrent chemotherapy for inoperable stage III nonsmall cell lung cancer. Am J Clin Oncol. 2007;30(3):239–244. doi: 10.1097/01.coc.0000256691.27796.24. [DOI] [PubMed] [Google Scholar]
  • 14.Sekine I., Sumi M., Ito Y., et al. Phase I study of cisplatin analogue nedaplatin, paclitaxel, and thoracic radiotherapy for unresectable stage III non-small cell lung cancer. Jpn J Clin Oncol. 2007;37(3):175–180. doi: 10.1093/jjco/hym008. [DOI] [PubMed] [Google Scholar]
  • 15.Naito Y., Kubota K., Nihei K., et al. Concurrent chemoradiotherapy with cisplatin and vinorelbine for stage III non-small cell lung cancer. J Thorac Oncol. 2008;3(6):617–622. doi: 10.1097/JTO.0b013e3181753b38. [DOI] [PubMed] [Google Scholar]
  • 16.Hanna N., Neubauer M., Yiannoutsos C., et al. Phase III study of cisplatin, etoposide, and concurrent chest radiation with or without consolidation docetaxel in patients with inoperable stage III non-small-cell lung cancer: the Hoosier Oncology Group and U.S. Oncology. J Clin Oncol. 2008;26(35):5755–5760. doi: 10.1200/JCO.2008.17.7840. [DOI] [PubMed] [Google Scholar]
  • 17.Ohyanagi F., Yamamoto N., Horiike A., et al. Phase II trial of S-1 and cisplatin with concurrent radiotherapy for locally advanced non-small-cell lung cancer. Br J Cancer. 2009;101(2):225–231. doi: 10.1038/sj.bjc.6605152. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 18.Nakamura M., Koizumi T., Hayasaka M., et al. Cisplatin and weekly docetaxel with concurrent thoracic radiotherapy for locally advanced stage III non-small-cell lung cancer. Cancer Chemother Pharmacol. 2009;63(6):1091–1096. doi: 10.1007/s00280-008-0837-0. [DOI] [PubMed] [Google Scholar]
  • 19.Cho K.H., Ahn S.J., Pyo H.R., et al. A Phase II study of synchronous three-dimensional conformal boost to the gross tumor volume for patients with unresectable Stage III non-small-cell lung cancer: results of Korean Radiation Oncology Group 0301 study. Int J Radiat Oncol Biol Phys. 2009;74(5):1397–1404. doi: 10.1016/j.ijrobp.2008.10.020. [DOI] [PubMed] [Google Scholar]
  • 20.Harada H., Yamamoto N., Takahashi T., et al. Comparison of chemotherapy regimens for concurrent chemoradiotherapy in unresectable stage III non-small cell lung cancer. Int J Clin Oncol. 2009;14(6):507–512. doi: 10.1007/s10147-009-0907-2. [DOI] [PubMed] [Google Scholar]
  • 21.Shi A., Zhu G., Wu H., Yu R., Li F., Xu B. Analysis of clinical and dosimetric factors associated with severe acute radiation pneumonitis in patients with locally advanced non-small cell lung cancer treated with concurrent chemotherapy and intensity-modulated radiotherapy. Radiat Oncol. 2010;5:35. doi: 10.1186/1748-717X-5-35. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 22.Ichinose Y., Seto T., Sasaki T., et al. S-1 plus cisplatin with concurrent radiotherapy for locally advanced non-small cell lung cancer: a multi-institutional phase II trial (West Japan Thoracic Oncology Group 3706) J Thorac Oncol. 2011;6(12):2069–2075. doi: 10.1097/JTO.0b013e3182307e5a. [DOI] [PubMed] [Google Scholar]
  • 23.Xu Y., Ma S., Ji Y., et al. Concomitant chemoradiotherapy using pemetrexed and carboplatin for unresectable stage III non-small cell lung cancer (NSCLC): preliminary results of a phase II study. Lung Cancer. 2011;72(3):327–332. doi: 10.1016/j.lungcan.2010.09.012. [DOI] [PubMed] [Google Scholar]
  • 24.Lin Q., Wang J., Liu Y., et al. High-dose 3-dimensional conformal radiotherapy with concomitant vinorelbine plus carboplatin in patients with non-small cell lung cancer: a feasibility study. Oncol Lett. 2011;2(4):669–674. doi: 10.3892/ol.2011.317. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 25.Kim M., Lee J., Ha B., Lee R., Lee K.J., Suh H.S. Factors predicting radiation pneumonitis in locally advanced non-small cell lung cancer. Radiat Oncol J. 2011 Sep;29(3):181–190. doi: 10.3857/roj.2011.29.3.181. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 26.Wang L., Wu S., Ou G., et al. Randomized phase II study of concurrent cisplatin/etoposide or paclitaxel/carboplatin and thoracic radiotherapy in patients with stage III non-small cell lung cancer. Lung Cancer. 2012;77(1):89–96. doi: 10.1016/j.lungcan.2012.02.011. [DOI] [PubMed] [Google Scholar]
  • 27.Shukuya T., Takahashi T., Harada H., et al. Comparison of vinorelbine plus cisplatin and S-1 plus cisplatin in concurrent chemoradiotherapeutic regimens for unresectable stage III non-small cell lung cancer. Anticancer Res. 2012;32(2):675–680. [PubMed] [Google Scholar]
  • 28.Saitoh J., Saito Y., Kazumoto T., et al. Concurrent chemoradiotherapy followed by consolidation chemotherapy with bi-weekly docetaxel and carboplatin for stage III unresectable, non-small-cell lung cancer: clinical application of a protocol used in a previous phase II study. Int J Radiat Oncol Biol Phys. 2012;82(5):1791–1796. doi: 10.1016/j.ijrobp.2011.03.007. [DOI] [PubMed] [Google Scholar]
  • 29.Wang D., Shi J., Liang S., et al. Dose-volume histogram parameters for predicting radiation pneumonitis using receiver operating characteristic curve. Clin Transl Oncol. 2013;15(5):364–369. doi: 10.1007/s12094-012-0931-y. [DOI] [PubMed] [Google Scholar]
  • 30.Chen M., Bao Y., Ma H.L., et al. Involved-field radiotherapy versus elective nodal irradiation in combination with concurrent chemotherapy for locally advanced non-small cell lung cancer: a prospective randomized study. Biomed Res Int. 2013;2013 doi: 10.1155/2013/371819. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 31.Kaira K., Tomizawa Y., Yoshino R., et al. Phase II study of oral S-1 and cisplatin with concurrent radiotherapy for locally advanced non-small-cell lung cancer. Lung Cancer. 2013;82(3):449–454. doi: 10.1016/j.lungcan.2013.09.004. [DOI] [PubMed] [Google Scholar]
  • 32.Sugawara S., Maemondo M., Tachihara M., et al. Randomized phase II trial of uracil/tegafur and cisplatin versus vinorelbine and cisplatin with concurrent thoracic radiotherapy for locally advanced unresectable stage III non-small-cell lung cancer: NJLCG 0601. Lung Cancer. 2013;81(1):91–96. doi: 10.1016/j.lungcan.2013.04.010. [DOI] [PubMed] [Google Scholar]
  • 33.Lin Q., Liu Y., Wang N., et al. A modified Phase I trial of radiation dose escalation in 3D conformal radiation therapy with concurrent vinorelbine and carboplatin chemotherapy for non-small-cell lung cancer. J Radiat Res. 2013;54(1):126–134. doi: 10.1093/jrr/rrs081. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 34.Oh I.J., Kim K.S., Kim Y.C., et al. A phase III concurrent chemoradiotherapy trial with cisplatin and paclitaxel or docetaxel or gemcitabine in unresectable non-small cell lung cancer: KASLC 0401. Cancer Chemother Pharmacol. 2013;72(6):1247–1254. doi: 10.1007/s00280-013-2308-5. [DOI] [PubMed] [Google Scholar]
  • 35.Park Y.H., Kim J.S. Predictors of radiation pneumonitis and pulmonary function changes after concurrent chemoradiotherapy of non-small cell lung cancer. Radiat Oncol J. 2013;31(1):34–40. doi: 10.3857/roj.2013.31.1.34. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 36.Zhu Z.F., Ma H.L., Fan M., et al. Sequential chemoradiotherapy with accelerated hypofractionated radiotherapy compared to concurrent chemoradiotherapy with standard radiotherapy for locally advanced non-small cell lung cancer. Technol Cancer Res Treat. 2014;13(3):269–275. doi: 10.7785/tcrt.2012.500375. [DOI] [PubMed] [Google Scholar]
  • 37.Ji K., Zhao L.J., Liu W.S., et al. Simultaneous integrated boost intensity-modulated radiotherapy for treatment of locally advanced non-small-cell lung cancer: a retrospective clinical study. Br J Radiol. 2014;87(1035) doi: 10.1259/bjr.20130562. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 38.Dang J., Li G., Zang S., Zhang S., Yao L. Risk and predictors for early radiation pneumonitis in patients with stage III non-small cell lung cancer treated with concurrent or sequential chemoradiotherapy. Radiat Oncol. 2014;9:172. doi: 10.1186/1748-717X-9-172. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 39.Tsujino K., Hashimoto T., Shimada T., et al. Combined analysis of V20, VS5, pulmonary fibrosis score on baseline computed tomography, and patient age improves prediction of severe radiation pneumonitis after concurrent chemoradiotherapy for locally advanced non-small-cell lung cancer. J Thorac Oncol. 2014;9(7):983–990. doi: 10.1097/JTO.0000000000000187. [DOI] [PubMed] [Google Scholar]
  • 40.Liu L., Bi N., Ji Z., et al. Consolidation chemotherapy may improve survival for patients with locally advanced non-small-cell lung cancer receiving concurrent chemoradiotherapy--retrospective analysis of 203 cases. BMC Cancer. 2015;15:715. doi: 10.1186/s12885-015-1710-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 41.Liang X., Yu H., Yu R., Xu G., Zhu G. Efficacy of the smaller target volume for stage III non-small cell lung cancer treated with intensity-modulated radiotherapy. Mol Clin Oncol. 2015;3(5):1172–1176. doi: 10.3892/mco.2015.588. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 42.Nogami N., Takigawa N., Hotta K., et al. A phase II study of cisplatin plus S-1 with concurrent thoracic radiotherapy for locally advanced non-small-cell lung cancer: the Okayama Lung Cancer Study Group Trial 0501. Lung Cancer. 2015;87(2):141–147. doi: 10.1016/j.lungcan.2014.11.001. [DOI] [PubMed] [Google Scholar]
  • 43.Yao L., Xu S., Xu J., Yang C., Wang J., Sun D. S-1 plus cisplatin with concurrent radiotherapy versus cisplatin alone with concurrent radiotherapy for stage III non-small cell lung cancer: a pilot randomized controlled trial. Radiat Oncol. 2015;10:10. doi: 10.1186/s13014-014-0306-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 44.Takase N., Hattori Y., Kiriu T., et al. Concurrent chemoradiotherapy with cisplatin and S-1 or vinorelbine for patients with stage III unresectable non-small cell lung cancer: a retrospective study. Respir Investig. 2016;54(5):334–340. doi: 10.1016/j.resinv.2016.02.008. [DOI] [PubMed] [Google Scholar]
  • 45.Wang L., Wu Y.L., Lu S., et al. An East Asian subgroup analysis of PROCLAIM, a phase III trial of pemetrexed and cisplatin or etoposide and cisplatin plus thoracic radiation therapy followed by consolidation chemotherapy in locally advanced nonsquamous non-small cell lung cancer. Asia Pac J Clin Oncol. 2016;12(4):380–387. doi: 10.1111/ajco.12513. [DOI] [PubMed] [Google Scholar]
  • 46.Feng J., Xu J., Wang X., Zhao D. S-1 plus cisplatin with concurrent radiotherapy versus cisplatin alone with concurrent radiotherapy in Chinese patients with nonsmall-cell lung cancer: a multicentre randomized controlled trial. Medicine (Baltimore) 2016;95(36) doi: 10.1097/MD.0000000000004557. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 47.Lin H., Chen Y., Shi A., et al. Phase 3 randomized low-dose paclitaxel chemoradiotherapy study for locally advanced non-small cell lung cancer. Front Oncol. 2016;6:260. doi: 10.3389/fonc.2016.00260. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 48.Noh J.M., Kim J.M., Ahn Y.C., et al. Effect of radiation therapy techniques on outcome in N3-positive IIIB non-small cell lung cancer treated with concurrent chemoradiotherapy. Cancer Res Treat. 2016;48(1):106–114. doi: 10.4143/crt.2014.131. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 49.He J., Huang Y., Chen Y., et al. Feasibility and efficacy of helical intensity-modulated radiotherapy for stage III non-small cell lung cancer in comparison with conventionally fractionated 3D-CRT. J Thorac Dis. 2016;8(5):862–871. doi: 10.21037/jtd.2016.03.46. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 50.Hasegawa T., Futamura Y., Horiba A., et al. A phase II study of nab-paclitaxel plus carboplatin in combination with thoracic radiation in patients with locally advanced non-small-cell lung cancer. J Radiat Res. 2016;57(1):50–54. doi: 10.1093/jrr/rrv062. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 51.Oh D., Ahn Y.C., Park H.C., et al. The prognostic impact of supraclavicular lymph node in N3-IIIB stage non-small cell lung cancer patients treated with definitive concurrent chemo-radiotherapy. Oncotarget. 2017;8(22):35700–35706. doi: 10.18632/oncotarget.16054. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 52.Liang J., Bi N., Wu S., et al. Etoposide and cisplatin versus paclitaxel and carboplatin with concurrent thoracic radiotherapy in unresectable stage III non-small cell lung cancer: a multicenter randomized phase III trial. Ann Oncol. 2017;28(4):777–783. doi: 10.1093/annonc/mdx009. [DOI] [PubMed] [Google Scholar]
  • 53.Ding X., Man X., Sun M., et al. Which is the optimal threshold for defining functional lung in single-photon emission computed tomography lung perfusion imaging of lung cancer patients? Nucl Med Commun. 2018;39(2):103–109. doi: 10.1097/MNM.0000000000000774. [DOI] [PubMed] [Google Scholar]
  • 54.Lee Y.H., Choi H.S., Jeong H., et al. Neutrophil-lymphocyte ratio and a dosimetric factor for predicting symptomatic radiation pneumonitis in non-small-cell lung cancer patients treated with concurrent chemoradiotherapy. Clin Respir J. 2018;12(3):1264–1273. doi: 10.1111/crj.12660. [DOI] [PubMed] [Google Scholar]
  • 55.Xu Y., Zheng X., Bai X., et al. Simultaneous integrated boost intensity-modulated radiotherapy for locally advanced non-small cell lung cancer in Chinese population: a retrospective study. Oncotarget. 2017;8(30):49084–49092. doi: 10.18632/oncotarget.17094. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 56.Sasaki T., Seto T., Yamanaka T., et al. A randomised phase II trial of S-1 plus cisplatin versus vinorelbine plus cisplatin with concurrent thoracic radiotherapy for unresectable, locally advanced non-small cell lung cancer: WJOG5008L. Br J Cancer. 2018;119(6):675–682. doi: 10.1038/s41416-018-0243-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 57.Jiang C., Han S., Chen W., et al. A retrospective study of shrinking field radiation therapy during chemoradiotherapy in stage III non-small cell lung cancer. Oncotarget. 2018;9(15):12443–12451. doi: 10.18632/oncotarget.23849. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 58.Taira T., Yoh K., Nagase S., et al. Long-term results of S-1 plus cisplatin with concurrent thoracic radiotherapy for locally advanced non-small-cell lung cancer. Cancer Chemother Pharmacol. 2018;81(3):565–572. doi: 10.1007/s00280-018-3530-y. [DOI] [PubMed] [Google Scholar]
  • 59.Xiao L., Yang G., Chen J., et al. Comparison of predictive powers of functional and anatomic dosimetric parameters for radiation-induced lung toxicity in locally advanced non-small cell lung cancer. Radiother Oncol. 2018;129(2):242–248. doi: 10.1016/j.radonc.2018.09.005. [DOI] [PubMed] [Google Scholar]
  • 60.Bi N., Liang J., Zhou Z., et al. Effect of concurrent chemoradiation with celecoxib vs concurrent chemoradiation alone on survival among patients with non-small cell lung cancer with and without cyclooxygenase 2 genetic variants: a phase 2 randomized clinical trial. JAMA Netw Open. 2019;2(12) doi: 10.1001/jamanetworkopen.2019.18070. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 61.Zhou Y., Yan T., Zhou X., et al. Acute severe radiation pneumonitis among non-small cell lung cancer (NSCLC) patients with moderate pulmonary dysfunction receiving definitive concurrent chemoradiotherapy: impact of pre-treatment pulmonary function parameters. Strahlenther Onkol. 2020;196(6):505–514. doi: 10.1007/s00066-019-01552-4. [DOI] [PubMed] [Google Scholar]
  • 62.Wang D., Bi N., Zhang T., et al. Comparison of efficacy and safety between simultaneous integrated boost intensity-modulated radiotherapy and conventional intensity-modulated radiotherapy in locally advanced non-small-cell lung cancer: a retrospective study. Radiat Oncol. 2019;14(1):106. doi: 10.1186/s13014-019-1259-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 63.Sakaguchi T., Ito K., Furuhashi K., et al. Patients with unresectable stage III non-small cell lung cancer eligible to receive consolidation therapy with durvalumab in clinical practice based on PACIFIC study criteria. Respir Investig. 2019;57(5):466–471. doi: 10.1016/j.resinv.2019.03.011. [DOI] [PubMed] [Google Scholar]
  • 64.Sheng L., Cui X., Cheng L., Chen Y., Du X. Risk factors of grade ≥ 2 radiation pneumonitis after gemcitabine induction chemotherapy for patients with non-small cell lung cancer. Radiat Oncol. 2019;14(1):229. doi: 10.1186/s13014-019-1440-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 65.Zhao Q., Liu M., Wang Z., et al. High dose radiation therapy based on normal tissue constraints with concurrent chemotherapy achieves promising survival of patients with unresectable stage III non-small cell lung cancer. Radiother Oncol. 2020;145:7–12. doi: 10.1016/j.radonc.2019.11.024. [DOI] [PubMed] [Google Scholar]
  • 66.Xu H., Lv D., Meng Y., et al. Endostar improved efficacy of concurrent chemoradiotherapy with vinorelbine plus carboplatin in locally advanced lung squamous cell carcinoma patients with high serum Lp(a) concentration. Ann Palliat Med. 2020;9(2):298–307. doi: 10.21037/apm.2020.01.16. [DOI] [PubMed] [Google Scholar]
  • 67.Niho S., Yoshida T., Akimoto T., et al. Randomized phase II study of chemoradiotherapy with cisplatin + S-1 versus cisplatin + pemetrexed for locally advanced non-squamous non-small cell lung cancer: SPECTRA study. Lung Cancer. 2020;141:64–71. doi: 10.1016/j.lungcan.2020.01.008. [DOI] [PubMed] [Google Scholar]
  • 68.Fukui T., Hosotani S., Soda I., et al. Current status and progress of concurrent chemoradiotherapy in patients with locally advanced non-small cell lung cancer prior to the approval of durvalumab. Thorac Cancer. 2020;11(4):1005–1014. doi: 10.1111/1759-7714.13357. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 69.Zhang T., Bi N., Zhou Z., et al. The impact of age on the survival outcomes and risk of radiation pneumonitis in patients with unresectable locally advanced non-small cell lung cancer receiving chemoradiotherapy. J Thorac Dis. 2020;12(8):4347–4356. doi: 10.21037/jtd-20-2137. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 70.Katsui K., Ogata T., Watanabe K., et al. Radiation pneumonitis after definitive concurrent chemoradiotherapy with cisplatin/docetaxel for non-small cell lung cancer: analysis of dose-volume parameters. Cancer Med. 2020;9(13):4540–4549. doi: 10.1002/cam4.3093. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 71.Shimokawa T., Yamada K., Tanaka H., et al. Randomized phase II trial of S-1 plus cisplatin or docetaxel plus cisplatin with concurrent thoracic radiotherapy for inoperable stage III non-small cell lung cancer. Cancer Med. 2021;10(2):626–633. doi: 10.1002/cam4.3641. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 72.Park S., Yoon W.S., Jang M.H., Rim C.H. Clinical impact of supraclavicular lymph node involvement of stage IIIC non-small cell lung cancer patients. Medicina (Kaunas) 2021;57(3):301. doi: 10.3390/medicina57030301. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 73.Tanaka H., Hasegawa Y., Makiguchi T., et al. A phase I/II study of biweekly carboplatin and nab-paclitaxel with concurrent radiotherapy for patients with locally advanced unresectable stage III non-small-cell lung cancer. Clin Lung Cancer. 2021;22(1):42–48. doi: 10.1016/j.cllc.2020.09.016. [DOI] [PubMed] [Google Scholar]
  • 74.Watanabe K., Toi Y., Nakamura A., et al. Randomized phase II trial of uracil/tegafur and cisplatin versus pemetrexed and cisplatin with concurrent thoracic radiotherapy for locally advanced unresectable stage III non-squamous non-small cell lung cancer: NJLCG1001. Transl Lung Cancer Res. 2021;10(2):712–722. doi: 10.21037/tlcr-20-721. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 75.Zhang Y., Li Z., Chen Y., et al. Outcomes of image-guided moderately hypofractionated radiotherapy for stage III non-small-cell lung cancer. J Oncol. 2021;2021 doi: 10.1155/2021/2721261. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 76.Meng Y., Luo W., Xu H., et al. Adaptive intensity-modulated radiotherapy with simultaneous integrated boost for stage III non-small cell lung cancer: is a routine adaptation beneficial? Radiother Oncol. 2021;158:118–124. doi: 10.1016/j.radonc.2021.02.019. [DOI] [PubMed] [Google Scholar]
  • 77.Sakaguchi T., Ito K., Furuya N., et al. Assessment of chemotherapy regimens on radiation pneumonitis in patients with unresectable stage III non-small-cell lung cancer after definitive chemoradiotherapy. Thorac Cancer. 2021;12(13):2024–2030. doi: 10.1111/1759-7714.14005. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 78.Yang Y., Zhang T., Zhou Z., et al. Development and validation of a prediction model using molecular marker for long-term survival in unresectable stage III non-small cell lung cancer treated with chemoradiotherapy. Thorac Cancer. 2022;13(3):296–307. doi: 10.1111/1759-7714.14218. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 79.Kashihara T., Nakayama Y., Ito K., et al. Usefulness of simple original interstitial lung abnormality scores for predicting radiation pneumonitis requiring steroidal treatment after definitive radiation therapy for patients with locally advanced non-small cell lung cancer. Adv Radiat Oncol. 2020;6(1) doi: 10.1016/j.adro.2020.10.019. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 80.Imano N., Kimura T., Kawahara D., et al. Potential benefits of volumetric modulated arc therapy to reduce the incidence of ≥ grade 2 radiation pneumonitis in radiotherapy for locally advanced non-small cell lung cancer patients. Jpn J Clin Oncol. 2021;51(12):1729–1735. doi: 10.1093/jjco/hyab163. [DOI] [PubMed] [Google Scholar]
  • 81.Wu A., Zhou Z., Song Y., Liang S., Li F. Application of a radiation pneumonitis prediction model in patients with locally advanced lung squamous cell cancer. Ann Palliat Med. 2021;10(4):4409–4417. doi: 10.21037/apm-21-459. [DOI] [PubMed] [Google Scholar]
  • 82.Zhang Y., You H., Duan J., Gao Y. Clinical value of serum Ape1/Ref-1 combined with TGF-β1 monitoring in predicting the occurrence of radiation pneumonitis (RP) in non-small cell lung cancer patients. Ann Palliat Med. 2021;10(3):3328–3335. doi: 10.21037/apm-21-423. [DOI] [PubMed] [Google Scholar]
  • 83.Kim N., Noh J.M., Lee W., Park B., Pyo H. Clinical outcomes of pencil beam scanning Proton therapy in locally advanced non-small cell lung cancer: propensity score analysis. Cancers (Basel) 2021;13(14):3497. doi: 10.3390/cancers13143497. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 84.Wu L., Zhu Y., Yuan X., et al. The efficacy and safety of Zengxiao Jiandu decoction combined with definitive concurrent chemoradiotherapy for unresectable locally advanced non-small cell lung cancer: a randomized, double-blind, placebo-controlled clinical trial. Ann Transl Med. 2022;10(14):800. doi: 10.21037/atm-22-2814. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 85.Yang S., Huang S., Ye X., Xiong K., Zeng B., Shi Y. Risk analysis of grade ≥ 2 radiation pneumonitis based on radiotherapy timeline in stage III/IV non-small cell lung cancer treated with volumetric modulated arc therapy: a retrospective study. BMC Pulm Med. 2022;22(1):402. doi: 10.1186/s12890-022-02211-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 86.He K., Zhang S., Pang J., et al. Genomic profiling reveals novel predictive biomarkers for chemo-radiotherapy efficacy and thoracic toxicity in non-small-cell lung cancer. Front Oncol. 2022;12 doi: 10.3389/fonc.2022.928605. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 87.Kim Y.H., Ahn S.J., Moon S.H., et al. Randomized, multicenter, phase 3 study of accelerated fraction radiation therapy with concomitant boost to the gross tumor volume compared with conventional fractionation in concurrent chemoradiation in patients with unresectable stage III non-small cell lung cancer: the Korean radiation oncology group 09-03 trial. Int J Radiat Oncol Biol Phys. 2023;115(4):873–885. doi: 10.1016/j.ijrobp.2022.10.014. [DOI] [PubMed] [Google Scholar]
  • 88.Harada H., Omori S., Mori K., et al. Multi-institutional feasibility study of intensity-modulated radiotherapy with chemotherapy for locally advanced non-small cell lung cancer. Int J Clin Oncol. 2022;27(6):1025–1033. doi: 10.1007/s10147-022-02151-7. [DOI] [PubMed] [Google Scholar]
  • 89.Kim K.H., Pyo H., Lee H., et al. Association of T Cell senescence with radiation pneumonitis in patients with non-small cell lung cancer. Int J Radiat Oncol Biol Phys. 2023;115(2):464–475. doi: 10.1016/j.ijrobp.2022.07.018. [DOI] [PubMed] [Google Scholar]
  • 90.Wu L., Gao Y., Wang D., et al. IDO1 activity predicts lung toxicity in patients with unresectable stage III NSCLC and chemoradiotherapy. J Oncol. 2023;2023 doi: 10.1155/2023/3591758. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 91.Lee T.H., Kang B.H., Kim H.J., Wu H.G., Lee J.H. Predictors of post-chemoradiotherapy pulmonary complication in locally advanced non-small cell lung cancer. Cancer Res Treat. 2023;55:865. doi: 10.4143/crt.2022.1538. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 92.Park C.K., Jeon N., Park H.K., et al. A propensity-matched retrospective comparative study with historical control to determine the real-world effectiveness of durvalumab after concurrent chemoradiotherapy in unresectable stage III non-small cell lung cancer. Cancers (Basel) 2023;15(5):1606. doi: 10.3390/cancers15051606. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 93.Rosenman J.G., Halle J.S., Socinski M.A., et al. High-dose conformal radiotherapy for treatment of stage IIIA/IIIB non-small-cell lung cancer: technical issues and results of a phase I/II trial. Int J Radiat Oncol Biol Phys. 2002;54(2):348–356. doi: 10.1016/s0360-3016(02)02958-9. [DOI] [PubMed] [Google Scholar]
  • 94.Semrau S., Bier A., Thierbach U., Virchow C., Ketterer P., Fietkau R. Concurrent radiochemotherapy with vinorelbine plus cisplatin or carboplatin in patients with locally advanced non-small-cell lung cancer (NSCLC) and an increased risk of treatment complications. Preliminary results. Strahlenther Onkol. 2003;179(12):823–831. doi: 10.1007/s00066-003-1127-8. [DOI] [PubMed] [Google Scholar]
  • 95.Vergnenègre A., Daniel C., Léna H., et al. Docetaxel and concurrent radiotherapy after two cycles of induction chemotherapy with cisplatin and vinorelbine in patients with locally advanced non-small-cell lung cancer. A phase II trial conducted by the Groupe Francais de Pneumo-Cancerologie (GFPC) Lung Cancer. 2005;47(3):395–404. doi: 10.1016/j.lungcan.2004.08.010. [DOI] [PubMed] [Google Scholar]
  • 96.Fay M., Tan A., Fisher R., Mac Manus M., Wirth A., Ball D. Dose-volume histogram analysis as predictor of radiation pneumonitis in primary lung cancer patients treated with radiotherapy. Int J Radiat Oncol Biol Phys. 2005;61(5):1355–1363. doi: 10.1016/j.ijrobp.2004.08.025. [DOI] [PubMed] [Google Scholar]
  • 97.De Petris L., Lax I., Sirzén F., Friesland S. Role of gross tumor volume on outcome and of dose parameters on toxicity of patients undergoing chemoradiotherapy for locally advanced non-small cell lung cancer. Med Oncol. 2005;22(4):375–381. doi: 10.1385/MO:22:4:375. [DOI] [PubMed] [Google Scholar]
  • 98.Gandara D.R., Chansky K., Albain K.S., et al. Long-term survival with concurrent chemoradiation therapy followed by consolidation docetaxel in stage IIIB non-small-cell lung cancer: a phase II Southwest Oncology Group Study (S9504) Clin Lung Cancer. 2006;8(2):116–121. doi: 10.3816/CLC.2006.n.039. [DOI] [PubMed] [Google Scholar]
  • 99.Yom S.S., Liao Z., Liu H.H., et al. Initial evaluation of treatment-related pneumonitis in advanced-stage non-small-cell lung cancer patients treated with concurrent chemotherapy and intensity-modulated radiotherapy. Int J Radiat Oncol Biol Phys. 2007;68(1):94–102. doi: 10.1016/j.ijrobp.2006.12.031. [DOI] [PubMed] [Google Scholar]
  • 100.Kosmidis P., Fountzilas G., Baka S., et al. Combination chemotherapy with paclitaxel and gemcitabine followed by concurrent chemoradiotherapy in non-operable localized non-small cell lung cancer. A hellenic cooperative oncology group (HeCOG) phase II study. Anticancer Res. 2007;27(6C):4391–4395. [PubMed] [Google Scholar]
  • 101.Semrau S., Bier A., Thierbach U., et al. 6-year experience of concurrent radiochemotherapy with vinorelbine plus a platinum compound in multimorbid or aged patients with inoperable non-small cell lung cancer. Strahlenther Onkol. 2007;183(1):30–35. doi: 10.1007/s00066-007-1593-5. [DOI] [PubMed] [Google Scholar]
  • 102.Tell R., Sederholm C., Klintenberg C., et al. Multicentre phase II trial of paclitaxel and carboplatin with concurrent radiotherapy in locally advanced non-small cell lung cancer. Anticancer Res. 2008;28(5B):2851–2857. [PubMed] [Google Scholar]
  • 103.Krzakowski M., Provencio M., Utracka-Hutka B., et al. Oral vinorelbine and cisplatin as induction chemotherapy and concomitant chemo-radiotherapy in stage III non-small cell lung cancer: final results of an international phase II trial. J Thorac Oncol. 2008;3(9):994–1002. doi: 10.1097/JTO.0b013e31818396cb. [DOI] [PubMed] [Google Scholar]
  • 104.Seung S.K., Ross H.J. Phase II trial of combined modality therapy with concurrent topotecan plus radiotherapy followed by consolidation chemotherapy for unresectable stage III and selected stage IV non-small-lung cancer. Int J Radiat Oncol Biol Phys. 2009;73(3):802–809. doi: 10.1016/j.ijrobp.2008.04.074. [DOI] [PubMed] [Google Scholar]
  • 105.Crvenkova S., Krstevska V. Sequential chemoradiotherapy compared with concurrent chemoradiotherapy in locally advanced non-small cell lung cancer: our experience. Prilozi. 2009;30(2):197–207. [PubMed] [Google Scholar]
  • 106.Kocak M., Ozkan A., Mayadagli A., et al. Induction chemotherapy and chemoradiation therapy for inoperable locally advanced non-small-cell lung cancer: a single-institution review of two different regimens. Clin Lung Cancer. 2009;10(2):124–129. doi: 10.3816/CLC.2009.n.016. [DOI] [PubMed] [Google Scholar]
  • 107.Garrido P., Rosell R., Massutí B., et al. Predictors of long-term survival in patients with lung cancer included in the randomized Spanish Lung Cancer Group 0008 phase II trial using concomitant chemoradiation with docetaxel and carboplatin plus induction or consolidation chemotherapy. Clin Lung Cancer. 2009;10(3):180–186. doi: 10.3816/CLC.2009.n.025. [DOI] [PubMed] [Google Scholar]
  • 108.Schallier D., Bral S., Ilsen B., et al. Final overall results of a study with a novel triplet induction chemotherapy regimen (PACCAGE) followed by consolidation radiotherapy in locally advanced inoperable non-small cell lung cancer (NSCLC) J Thorac Oncol. 2009;4(6):728–735. doi: 10.1097/JTO.0b013e3181a4ec14. [DOI] [PubMed] [Google Scholar]
  • 109.Huber R.M., Borgmeier A., Flentje M., et al. Concurrent chemoradiation therapy with docetaxel/cisplatin followed by docetaxel consolidation therapy in inoperable stage IIIA/B non-small-cell lung cancer: results of a phase I study. Clin Lung Cancer. 2010;11(1):45–50. doi: 10.3816/CLC.2010.n.007. [DOI] [PubMed] [Google Scholar]
  • 110.Jiang Z.Q., Yang K., Komaki R., et al. Long-term clinical outcome of intensity-modulated radiotherapy for inoperable non-small cell lung cancer: the MD Anderson experience. Int J Radiat Oncol Biol Phys. 2012;83(1):332–339. doi: 10.1016/j.ijrobp.2011.06.1963. [DOI] [PubMed] [Google Scholar]
  • 111.Bastos B.R., Hatoum G.F., Walker G.R., et al. Efficacy and toxicity of chemoradiotherapy with carboplatin and irinotecan followed by consolidation docetaxel for unresectable stage III non-small cell lung cancer. J Thorac Oncol. 2010;5(4):533–539. doi: 10.1097/JTO.0b013e3181ce3e00. [DOI] [PubMed] [Google Scholar]
  • 112.Barriger R.B., Fakiris A.J., Hanna N., Yu M., Mantravadi P., McGarry R.C. Dose-volume analysis of radiation pneumonitis in non-small-cell lung cancer patients treated with concurrent cisplatinum and etoposide with or without consolidation docetaxel. Int J Radiat Oncol Biol Phys. 2010;78(5):1381–1386. doi: 10.1016/j.ijrobp.2009.09.030. [DOI] [PubMed] [Google Scholar]
  • 113.Descourt R., Vergnenegre A., Barlesi F., et al. Oral vinorelbine and cisplatin with concurrent radiotherapy after induction chemotherapy with cisplatin and docetaxel for patients with locally advanced non-small cell lung cancer: the GFPC 05-03 study. J Thorac Oncol. 2011;6(2):351–357. doi: 10.1097/JTO.0b013e318200f47e. [DOI] [PubMed] [Google Scholar]
  • 114.Govindan R., Bogart J., Stinchcombe T., et al. Randomized phase II study of pemetrexed, carboplatin, and thoracic radiation with or without cetuximab in patients with locally advanced unresectable non-small-cell lung cancer: cancer and Leukemia Group B trial 30407. J Clin Oncol. 2011;29(23):3120–3125. doi: 10.1200/JCO.2010.33.4979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 115.Gadgeel S.M., Ruckdeschel J.C., Patel B.B., et al. Phase II study of pemetrexed and cisplatin, with chest radiotherapy followed by docetaxel in patients with stage III non-small cell lung cancer. J Thorac Oncol. 2011;6(5):927–933. doi: 10.1097/JTO.0b013e3182156109. [DOI] [PubMed] [Google Scholar]
  • 116.Senan S., Cardenal F., Vansteenkiste J., et al. A randomized phase II study comparing induction or consolidation chemotherapy with cisplatin-docetaxel, plus radical concurrent chemoradiotherapy with cisplatin-docetaxel, in patients with unresectable locally advanced non-small-cell lung cancer. Ann Oncol. 2011;22(3):553–558. doi: 10.1093/annonc/mdq388. [DOI] [PubMed] [Google Scholar]
  • 117.Phernambucq E.C.J., Spoelstra F.O.B., Verbakel W.F.A.R., et al. Outcomes of concurrent chemoradiotherapy in patients with stage III non-small-cell lung cancer and significant comorbidity. Ann Oncol. 2011;22(1):132–138. doi: 10.1093/annonc/mdq316. [DOI] [PubMed] [Google Scholar]
  • 118.Poudenx M., Bondiau P.Y., Chamorey E., et al. Cisplatin-docetaxel induction plus concurrent 3-D conformal radiotherapy and weekly chemotherapy for locally advanced non-small cell lung cancer patients: a phase II trial. Oncology. 2012;83(6):321–328. doi: 10.1159/000342081. [DOI] [PubMed] [Google Scholar]
  • 119.Scotti V., Saieva C., Di Cataldo V., et al. Vinorelbine-based chemo-radiotherapy in non-small cell lung cancer. Tumori. 2012;98(4):464–470. doi: 10.1177/030089161209800411. [DOI] [PubMed] [Google Scholar]
  • 120.Phernambucq E.C., Hartemink K.J., Smit E.F., et al. Tumor cavitation in patients with stage III non-small-cell lung cancer undergoing concurrent chemoradiotherapy: incidence and outcomes. J Thorac Oncol. 2012;7(8):1271–1275. doi: 10.1097/JTO.0b013e3182582912. [DOI] [PubMed] [Google Scholar]
  • 121.Yirmibesoglu E., Higginson D.S., Fayda M., et al. Challenges scoring radiation pneumonitis in patients irradiated for lung cancer. Lung Cancer. 2012;76(3):350–353. doi: 10.1016/j.lungcan.2011.11.025. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 122.Stenmark M.H., Cai X.W., Shedden K., et al. Combining physical and biologic parameters to predict radiation-induced lung toxicity in patients with non-small-cell lung cancer treated with definitive radiation therapy. Int J Radiat Oncol Biol Phys. 2012;84(2):e217–e222. doi: 10.1016/j.ijrobp.2012.03.067. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 123.Govaert S.L., Troost E.G., Schuurbiers O.C., et al. Treatment outcome and toxicity of intensity-modulated (chemo) radiotherapy in stage III non-small cell lung cancer patients. Radiat Oncol. 2012;7:150. doi: 10.1186/1748-717X-7-150. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 124.Spina R., Chu S.Y., Chatfield M., Chen J., Tin M.M., Boyer M. Outcomes of chemoradiation for patients with locally advanced non-small-cell lung cancer. Intern Med J. 2013;43(7):790–797. doi: 10.1111/imj.12138. [DOI] [PubMed] [Google Scholar]
  • 125.Liew M.S., Sia J., Starmans M.H., et al. Comparison of toxicity and outcomes of concurrent radiotherapy with carboplatin/paclitaxel or cisplatin/etoposide in stage III non-small cell lung cancer. Cancer Med. 2013;2(6):916–924. doi: 10.1002/cam4.142. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 126.Choy H., Schwartzberg L.S., Dakhil S.R., et al. Phase 2 study of pemetrexed plus carboplatin, or pemetrexed plus cisplatin with concurrent radiation therapy followed by pemetrexed consolidation in patients with favorable-prognosis inoperable stage IIIA/B non-small-cell lung cancer. J Thorac Oncol. 2013;8(10):1308–1316. doi: 10.1097/JTO.0b013e3182a02546. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 127.Garrido P., Rosell R., Arellano A., et al. Randomized phase II trial of non-platinum induction or consolidation chemotherapy plus concomitant chemoradiation in stage III NSCLC patients: mature results of the Spanish Lung Cancer Group 0008 study. Lung Cancer. 2013;81(1):84–90. doi: 10.1016/j.lungcan.2013.03.009. [DOI] [PubMed] [Google Scholar]
  • 128.Wiersma T.G., Dahele M., Verbakel W.F., et al. Concurrent chemoradiotherapy for large-volume locally-advanced non-small cell lung cancer. Lung Cancer. 2013;80(1):62–67. doi: 10.1016/j.lungcan.2013.01.006. [DOI] [PubMed] [Google Scholar]
  • 129.Leprieur E.G., Fernandez D., Chatellier G., Klotz S., Giraud P., Durdux C. Acute radiation pneumonitis after conformational radiotherapy for nonsmall cell lung cancer: clinical, dosimetric, and associated-treatment risk factors. J Cancer Res Ther. 2013;9(3):447–451. doi: 10.4103/0973-1482.119339. [DOI] [PubMed] [Google Scholar]
  • 130.Lerouge D., Rivière A., Dansin E., et al. A phase II study of cisplatin with intravenous and oral vinorelbine as induction chemotherapy followed by concomitant chemoradiotherapy with oral vinorelbine and cisplatin for locally advanced non-small cell lung cancer. BMC Cancer. 2014;14:231. doi: 10.1186/1471-2407-14-231. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 131.Mertsoylu H., Köse F., Sümbül A.T., et al. Concurrent chemoradiotherapy with vinorelbine plus split-dose cisplatin may be an option in inoperable stage III non-small cell lung cancer: a single-center experience. Med Sci Monit. 2015;21:661–666. doi: 10.12659/MSM.892730. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 132.Juan O., Sánchez-Hernández A., Vázquez S., et al. Full-dose cisplatin and oral vinorelbine concomitant with radiotherapy in unresectable stage III non-small cell lung cancer: a multi-center phase II study. Anticancer Res. 2014;34(4):1959–1966. [PubMed] [Google Scholar]
  • 133.Trinh H., Pinkham M.B., Lehman M., et al. Outcomes treating stage III non-small cell lung carcinoma with curative-intent radiotherapy and concurrent carboplatin-paclitaxel chemotherapy. Clin Respir J. 2016;10(4):428–434. doi: 10.1111/crj.12233. [DOI] [PubMed] [Google Scholar]
  • 134.Bradley J.D., Paulus R., Komaki R., et al. Standard-dose versus high-dose conformal radiotherapy with concurrent and consolidation carboplatin plus paclitaxel with or without cetuximab for patients with stage IIIA or IIIB non-small-cell lung cancer (RTOG 0617): a randomised, two-by-two factorial phase 3 study. Lancet Oncol. 2015;16(2):187–199. doi: 10.1016/S1470-2045(14)71207-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 135.Garrido P., Engel-Riedel W., Serke M., et al. Final results from a Phase II study of pemetrexed and cisplatin with concurrent thoracic radiation after Pem-Cis induction in patients with unresectable locally advanced non-squamous non-small cell lung cancer (NSCLC) Lung Cancer. 2015;88(2):160–166. doi: 10.1016/j.lungcan.2015.02.014. [DOI] [PubMed] [Google Scholar]
  • 136.Chajon E., Bellec J., Castelli J., et al. Simultaneously modulated accelerated radiation therapy reduces severe oesophageal toxicity in concomitant chemoradiotherapy of locally advanced non-small-cell lung cancer. Br J Radiol. 2015;88(1056) doi: 10.1259/bjr.20150311. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 137.Jaksic N., Chajon E., Bellec J., et al. Optimized radiotherapy to improve clinical outcomes for locally advanced lung cancer. Radiat Oncol. 2018;13(1):147. doi: 10.1186/s13014-018-1094-y. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 138.Rodrigues G., Oberije C., Senan S., et al. Is intermediate radiation dose escalation with concurrent chemotherapy for stage III non-small-cell lung cancer beneficial? A multi-institutional propensity score matched analysis. Int J Radiat Oncol Biol Phys. 2015;91(1):133–139. doi: 10.1016/j.ijrobp.2014.09.033. [DOI] [PubMed] [Google Scholar]
  • 139.Singhal N., Mislang A., Karapetis C.S., et al. Oral vinorelbine and cisplatin with concomitant radiotherapy in stage III non-small-cell lung cancer: an open-label phase II multicentre trial (COVeRT study) Anticancer Drugs. 2015;26(10):1083–1088. doi: 10.1097/CAD.0000000000000291. [DOI] [PubMed] [Google Scholar]
  • 140.Scher E.D., Kim S., Deek M.P., et al. Ambulatory pulse oximetry as a clinical aid for the diagnosis and treatment response of radiation pneumonitis. Pract Radiat Oncol. 2015;5(6):e635–e641. doi: 10.1016/j.prro.2015.08.003. [DOI] [PubMed] [Google Scholar]
  • 141.Fournel P., Vergnenégre A., Robinet G., et al. Induction or consolidation chemotherapy for unresectable stage III non-small-cell lung cancer patients treated with concurrent chemoradiation: a randomised phase II trial GFPC–IFCT 02-01. Eur J Cancer. 2016;52:181–187. doi: 10.1016/j.ejca.2015.10.072. [DOI] [PubMed] [Google Scholar]
  • 142.Ozcelik M., Korkmaz T., Odabas H., et al. Comparison of efficacy and safety of three different chemotherapy regimens delivered with concomitant radiotherapy in inoperable stage III non-small cell lung cancer patients. Tumour Biol. 2016;37(7):8901–8907. doi: 10.1007/s13277-015-4776-1. [DOI] [PubMed] [Google Scholar]
  • 143.Flentje M., Huber R.M., Engel-Riedel W., et al. GILT--A randomised phase III study of oral vinorelbine and cisplatin with concomitant radiotherapy followed by either consolidation therapy with oral vinorelbine and cisplatin or best supportive care alone in stage III non-small cell lung cancer. Strahlenther Onkol. 2016;192(4):216–222. doi: 10.1007/s00066-016-0941-8. [DOI] [PubMed] [Google Scholar]
  • 144.Brade A., MacRae R., Laurie S.A., et al. Phase II study of concurrent pemetrexed, cisplatin, and radiation therapy for stage IIIA/B unresectable non-small cell lung cancer. Clin Lung Cancer. 2016;17(2):133–141. doi: 10.1016/j.cllc.2015.12.008. [DOI] [PubMed] [Google Scholar]
  • 145.Yilmaz U., Yılmaz U., Yasar Z., et al. Definitive chemoradiotherapy in Stage III nonsmall cell lung cancer: Turkey experience. J Cancer Res Ther. 2016;12(1):334–339. doi: 10.4103/0973-1482.163682. [DOI] [PubMed] [Google Scholar]
  • 146.Ling D.C., Hess C.B., Chen A.M., Daly M.E. Comparison of toxicity between intensity-modulated radiotherapy and 3-dimensional conformal radiotherapy for locally advanced non-small-cell lung cancer. Clin Lung Cancer. 2016;17(1):18–23. doi: 10.1016/j.cllc.2015.07.006. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 147.Sen F., Tambas M., Ozkaya K., et al. Concomitant etoposide and cisplatin provided improved survival compared with docetaxel and cisplatin in patients with locally advanced non-small cell lung cancer treated with chemoradiotherapy. Medicine (Baltimore) 2016;95(30) doi: 10.1097/MD.0000000000004280. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 148.Johnson M.D., Sura K., Mangona V.S., et al. Matched-pair analysis of high dose versus standard dose definitive chemoradiation for locally advanced non-small-cell lung cancer. Clin Lung Cancer. 2017;18(2):149–155. doi: 10.1016/j.cllc.2016.06.004. [DOI] [PubMed] [Google Scholar]
  • 149.Wijsman R., Dankers F., Troost E.G.C., et al. Comparison of toxicity and outcome in advanced stage non-small cell lung cancer patients treated with intensity-modulated (chemo-)radiotherapy using IMRT or VMAT. Radiother Oncol. 2017;122(2):295–299. doi: 10.1016/j.radonc.2016.11.015. [DOI] [PubMed] [Google Scholar]
  • 150.Mörth C., Kafantaris I., Castegren M., Valachis A. Validation and optimization of a predictive model for radiation pneumonitis in patients with lung cancer. Oncol Lett. 2016;12(2):1144–1148. doi: 10.3892/ol.2016.4678. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 151.Hansen O., Knap M.M., Khalil A., et al. A randomized phase II trial of concurrent chemoradiation with two doses of radiotherapy, 60Gy and 66Gy, concomitant with a fixed dose of oral vinorelbine in locally advanced NSCLC. Radiother Oncol. 2017;123(2):276–281. doi: 10.1016/j.radonc.2017.03.017. [DOI] [PubMed] [Google Scholar]
  • 152.Hughes B.G., Ahern E., Lehman M., et al. Concurrent chemoradiation with cisplatin and vinorelbine followed by consolidation with oral vinorelbine in locally advanced non-small cell lung cancer (NSCLC): the phase II CONCAVE study. Asia Pac J Clin Oncol. 2017;13(3):137–144. doi: 10.1111/ajco.12649. [DOI] [PubMed] [Google Scholar]
  • 153.Alharbi M., Janssen S., Golpon H., Bremer M., Henkenberens C. Temporal and spatial dose distribution of radiation pneumonitis after concurrent radiochemotherapy in stage III non-small cell cancer patients. Radiat Oncol. 2017;12(1):165. doi: 10.1186/s13014-017-0898-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 154.Fondevilla Soler A., López-Guerra J.L., Dzugashvili M., et al. Outcome and toxicity of intensity modulated radiotherapy with simultaneous integrated boost in locally advanced non-small cell lung cancer patients. Clin Transl Oncol. 2017;19(12):1469–1477. doi: 10.1007/s12094-017-1689-z. [DOI] [PubMed] [Google Scholar]
  • 155.Okumus D., Sarihan S., Gozcu S., Sigirli D. The relationship between dosimetric factors, side effects, and survival in patients with non-small cell lung cancer treated with definitive radiotherapy. Med Dosim. 2017;42(3):169–176. doi: 10.1016/j.meddos.2017.02.002. [DOI] [PubMed] [Google Scholar]
  • 156.Costa Rivas M., Huidobro Vence G., Fírvida Pérez J.L., et al. Concurrent chemoradiation for locally advanced stage III non-small cell lung cancer with cisplatin, vinorelbine, and thoracic radiotherapy: a phase II study from the Galician Lung Cancer Group. Clin Transl Oncol. 2018;20(11):1467–1473. doi: 10.1007/s12094-018-1880-x. [DOI] [PubMed] [Google Scholar]
  • 157.Zhang T.W., Rodrigues G.B., Louie A.V., et al. Phase I study of concurrent and consolidation cisplatin and docetaxel chemotherapy with thoracic radiotherapy in non-small cell lung cancer. Curr Oncol. 2018;25(1):22–31. doi: 10.347/co.25.3657. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 158.Liao Z., Lee J.J., Komaki R., et al. Bayesian adaptive randomization trial of passive scattering proton therapy and intensity-modulated photon radiotherapy for locally advanced non-small-cell lung cancer. J Clin Oncol. 2018;36(18):1813–1822. doi: 10.1200/JCO.2017.74.0720. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 159.Yegya-Raman N., Kim S., Deek M.P., et al. Daily image guidance with cone beam computed tomography may reduce radiation pneumonitis in unresectable non-small cell lung cancer. Int J Radiat Oncol Biol Phys. 2018;101(5):1104–1112. doi: 10.1016/j.ijrobp.2018.03.025. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 160.Sculier J.P., Lafitte J.J., Berghmans T., et al. A phase III randomised study comparing concomitant radiochemotherapy with cisplatin and docetaxel as induction versus consolidation treatment in patients with locally advanced unresectable non-small cell lung cancer. Lung Cancer. 2018;117:32–37. doi: 10.1016/j.lungcan.2017.12.016. [DOI] [PubMed] [Google Scholar]
  • 161.Topkan E., Ozdemir Y., Kucuk A., et al. Significance of overall concurrent chemoradiotherapy duration on survival outcomes of stage IIIB/C non-small-cell lung carcinoma patients: analysis of 956 patients. PLoS One. 2019;14(7) doi: 10.1371/journal.pone.0218627. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 162.Isla D., De Las Peñas R., Insa A., et al. Oral vinorelbine versus etoposide with cisplatin and chemo-radiation as treatment in patients with stage III non-small cell lung cancer: a randomized phase II (RENO study) Lung Cancer. 2019;135:161–168. doi: 10.1016/j.lungcan.2018.11.041. [DOI] [PubMed] [Google Scholar]
  • 163.Yegya-Raman N., Reyhan M., Kim S., et al. Association of target volume margins with locoregional control and acute toxicities for non-small cell lung cancer treated with concurrent chemoradiation therapy. Pract Radiat Oncol. 2019;9(1):e74–e82. doi: 10.1016/j.prro.2018.08.007. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 164.Yu N.Y., DeWees T.A., Liu C., et al. Early outcomes of patients with locally advanced non-small cell lung cancer treated with intensity-modulated proton therapy versus intensity-modulated radiation therapy: the mayo clinic experience. Adv Radiat Oncol. 2019;5(3):450–458. doi: 10.1016/j.adro.2019.08.001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 165.Luna J.M., Chao H.H., Diffenderfer E.S., et al. Predicting radiation pneumonitis in locally advanced stage II-III non-small cell lung cancer using machine learning. Radiother Oncol. 2019;133:106–112. doi: 10.1016/j.radonc.2019.01.003. [DOI] [PubMed] [Google Scholar]
  • 166.Kaderbhaï C.G., Coudert B., Bertaut A., et al. Outcomes of concurrent radiotherapy with weekly docetaxel and platinum-based chemotherapy in stage III non-small-cell lung cancer. Cancer Radiother. 2020;24(4):279–287. doi: 10.1016/j.canrad.2019.09.009. [DOI] [PubMed] [Google Scholar]
  • 167.Nestle U., Schimek-Jasch T., Kremp S., et al. Imaging-based target volume reduction in chemoradiotherapy for locally advanced non-small-cell lung cancer (PET-Plan): a multicentre, open-label, randomised, controlled trial. Lancet Oncol. 2020;21(4):581–592. doi: 10.1016/S1470-2045(20)30013-9. [DOI] [PubMed] [Google Scholar]
  • 168.Ergen S.A., Dincbas F.O., Yücel B., et al. Risk factors of radiation pneumonitis in patients with NSCLC treated with concomitant chemoradiotherapy--Are we underestimating diabetes?--Turkish oncology group (TOG)/Lung cancer study group. Clin Respir J. 2020;14(9):871–879. doi: 10.1111/crj.13220. [DOI] [PubMed] [Google Scholar]
  • 169.Harris W.B., Zou W., Cheng C., et al. Higher dose volumes may Be better for evaluating radiation pneumonitis in lung proton therapy patients compared with traditional photon-based dose constraints. Adv Radiat Oncol. 2020;5(5):943–950. doi: 10.1016/j.adro.2020.06.023. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 170.Spencer A., Williams J., Samuel R., Boon I.S., Clarke K., Jain P. Concurrent versus sequential chemoradiotherapy for unresectable locally advanced stage III non-small cell lung cancer: retrospective analysis in a single United Kingdom cancer centre. Cancer Treat Res Commun. 2021;29 doi: 10.1016/j.ctarc.2021.100460. [DOI] [PubMed] [Google Scholar]
  • 171.Remmerts de Vries I.F., Ronden M.I., Bahce I., et al. Relationship between treatment plan dosimetry, toxicity, and survival following intensity-modulated radiotherapy, with or without chemotherapy, for stage III inoperable non-small cell lung cancer. Cancers (Basel) 2021;13(23):5923. doi: 10.3390/cancers13235923. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 172.Owen D.R., Sun Y., Boonstra P.S., et al. Investigating the SPECT dose-function metrics associated with radiation-induced lung toxicity risk in patients with non-small cell lung cancer undergoing radiation therapy. Adv Radiat Oncol. 2021;6(3) doi: 10.1016/j.adro.2021.100666. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 173.Provencio M., Majem M., Guirado M., et al. Phase II clinical trial with metronomic oral vinorelbine and tri-weekly cisplatin as induction therapy, subsequently concomitant with radiotherapy (RT) in patients with locally advanced, unresectable, non-small cell lung cancer (NSCLC). Analysis of survival and value of ctDNA for patient selection. Lung Cancer. 2021;153:25–34. doi: 10.1016/j.lungcan.2021.01.005. [DOI] [PubMed] [Google Scholar]
  • 174.Tsakiridis T., Pond G.R., Wright J., et al. Metformin in combination with chemoradiotherapy in locally advanced non-small cell lung cancer: the OCOG-ALMERA randomized clinical trial. JAMA Oncol. 2021;7(9):1333–1341. doi: 10.1001/jamaoncol.2021.2328. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 175.Skinner H., Hu C., Tsakiridis T., et al. Addition of metformin to concurrent chemoradiation in patients with locally advanced non-small cell lung cancer: the NRG-LU001 phase 2 randomized clinical trial. JAMA Oncol. 2021;7(9):1324–1332. doi: 10.1001/jamaoncol.2021.2318. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 176.Mantel F., Müller E., Kleine P., et al. Chemoradiotherapy by intensity-modulated radiation therapy with simultaneous integrated boost in locally advanced or oligometastatic non-small-cell lung cancer-a two center experience. Strahlenther Onkol. 2021;197(5):405–415. doi: 10.1007/s00066-021-01756-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 177.Lim T.L., Pietrofesa R.A., Arguiri E., et al. Phase II trial of flaxseed to prevent acute complications after chemoradiation for lung cancer. J Altern Complement Med. 2021;27(10):824–831. doi: 10.1089/acm.2020.0542. [DOI] [PubMed] [Google Scholar]
  • 178.Lutz C.M., Knap M.M., Hoffmann L., et al. Prospectively scored pulmonary toxicities in non-small cell lung cancer: results from a randomized phase II dose escalation trial. Clin Transl Radiat Oncol. 2020;27:8–14. doi: 10.1016/j.ctro.2020.11.013. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 179.McFarlane M.R., Hochstedler K.A., Laucis A.M., Sun Y., Chowdhury A., Matuszak M.M. Predictors of pneumonitis after conventionally fractionated radiotherapy for locally advanced lung cancer. Int J Radiat Oncol Biol Phys. 2021;111(5):1176–1185. doi: 10.1016/j.ijrobp.2021.07.1691. [DOI] [PubMed] [Google Scholar]
  • 180.Szejniuk W.M., Nielsen M.S., Takács-Szabó Z., et al. High-dose thoracic radiation therapy for non-small cell lung cancer: a novel grading scale of radiation-induced lung injury for symptomatic radiation pneumonitis. Radiat Oncol. 2021;16(1):131. doi: 10.1186/s13014-021-01857-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 181.Bourbonne V., Lucia F., Jaouen V., et al. Development and prospective validation of a spatial dose pattern based model predicting acute pulmonary toxicity in patients treated with volumetric arc-therapy for locally advanced lung cancer. Radiother Oncol. 2021;164:43–49. doi: 10.1016/j.radonc.2021.09.008. [DOI] [PubMed] [Google Scholar]
  • 182.Zhang T., Xu K., Bi N., et al. Efficacy and safety of immune checkpoint inhibitor consolidation after chemoradiation in patients of Asian ethnicity with unresectable stage III non-small cell lung cancer: Chinese multicenter report and literature review. Thorac Cancer. 2020;11(10):2916–2923. doi: 10.1111/1759-7714.13631. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 183.Saito S., Abe T., Kobayashi N., et al. Incidence and dose-volume relationship of radiation pneumonitis after concurrent chemoradiotherapy followed by durvalumab for locally advanced non-small cell lung cancer. Clin Transl Radiat Oncol. 2020;23:85–88. doi: 10.1016/j.ctro.2020.05.006. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 184.Miura Y., Mouri A., Kaira K., et al. Chemoradiotherapy followed by durvalumab in patients with unresectable advanced non-small cell lung cancer: management of adverse events. Thorac Cancer. 2020;11(5):1280–1287. doi: 10.1111/1759-7714.13394. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 185.Inoue H., Ono A., Kawabata T., et al. Correction to: clinical and radiation dose-volume factors related to pneumonitis after treatment with radiation and durvalumab in locally advanced non-small cell lung cancer. Invest New Drugs. 2021;39(3):899. doi: 10.1007/s10637-020-00969-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 186.Chu C.H., Chiu T.H., Wang C.C., et al. Consolidation treatment of durvalumab after chemoradiation in real-world patients with stage III unresectable non-small cell lung cancer. Thorac Cancer. 2020;11(6):1541–1549. doi: 10.1111/1759-7714.13426. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 187.Oshiro Y., Mizumoto M., Sekino Y., et al. Risk factor of pneumonitis on dose-volume relationship for chemoradiotherapy with durvalumab: multi-institutional research in Japan. Clin Transl Radiat Oncol. 2021;29:54–59. doi: 10.1016/j.ctro.2021.05.009. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 188.Shintani T., Kishi N., Matsuo Y., et al. Incidence and risk factors of symptomatic radiation pneumonitis in non-small-cell lung cancer patients treated with concurrent chemoradiotherapy and consolidation durvalumab. Clin Lung Cancer. 2021;22(5):401–410. doi: 10.1016/j.cllc.2021.01.017. [DOI] [PubMed] [Google Scholar]
  • 189.Abe T., Iino M., Saito S., et al. Feasibility of intensity modulated radiotherapy with involved field radiotherapy for Japanese patients with locally advanced non-small cell lung cancer. J Radiat Res. 2021;62(5):894–900. doi: 10.1093/jrr/rrab063. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 190.Sugimoto T., Fujimoto D., Sato Y., et al. Prospective multicenter cohort study of durvalumab for patients with unresectable stage III non-small cell lung cancer and grade 1 radiation pneumonitis. Lung Cancer. 2022;171:3–8. doi: 10.1016/j.lungcan.2022.07.005. [DOI] [PubMed] [Google Scholar]
  • 191.Mayahara H., Uehara K., Harada A., et al. Predicting factors of symptomatic radiation pneumonitis induced by durvalumab following concurrent chemoradiotherapy in locally advanced non-small cell lung cancer. Radiat Oncol. 2022;17(1):7. doi: 10.1186/s13014-021-01979-z. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 192.Yamamoto T., Tsukita Y., Katagiri Y., et al. Durvalumab after chemoradiotherapy for locally advanced non-small cell lung cancer prolonged distant metastasis-free survival, progression-free survival and overall survival in clinical practice. BMC Cancer. 2022;22(1):364. doi: 10.1186/s12885-022-09354-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 193.Zhou Q., Chen M., Jiang O., et al. Sugemalimab versus placebo after concurrent or sequential chemoradiotherapy in patients with locally advanced, unresectable, stage III non-small-cell lung cancer in China (GEMSTONE-301): interim results of a randomised, double-blind, multicentre, phase 3 trial. Lancet Oncol. 2022;23(2):209–219. doi: 10.1016/S1470-2045(21)00630-6. [DOI] [PubMed] [Google Scholar]
  • 194.Tanaka H., Tanzawa S., Misumi T., et al. A phase II study of S-1 and cisplatin with concurrent thoracic radiotherapy followed by durvalumab for unresectable, locally advanced non-small-cell lung cancer in Japan (SAMURAI study): primary analysis. Ther Adv Med Oncol. 2022;14 doi: 10.1177/17588359221142786. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 195.Araki T., Tateishi K., Komatsu M., et al. Predictive value of post-treatment C-reactive protein-to-albumin ratio in locally advanced non-small cell lung cancer patients receiving durvalumab after chemoradiotherapy. Thorac Cancer. 2022;13(14):2031–2040. doi: 10.1111/1759-7714.14484. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 196.Nishimura A., Ono A., Wakuda K., et al. Prognostic impact of pneumonitis after durvalumab therapy in patients with locally advanced non-small cell lung cancer. Invest New Drugs. 2022;40(2):403–410. doi: 10.1007/s10637-021-01191-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 197.Harada D., Shimonishi A., Saeki K., et al. Early administration of durvalumab after chemoradiotherapy increased risk of pneumonitis in patients with locally advanced non-small cell lung cancer. Asia Pac J Clin Oncol. 2023;19(2):e111–e117. doi: 10.1111/ajco.13803. [DOI] [PubMed] [Google Scholar]
  • 198.Kawanaka Y., Yasuda Y., Tanizaki J., et al. The safety and efficacy of durvalumab consolidation therapy in the management of patients with stage III non-small-cell lung cancer and preexisting interstitial lung disease. Respir Investig. 2022;60(5):667–673. doi: 10.1016/j.resinv.2022.05.004. [DOI] [PubMed] [Google Scholar]
  • 199.Lu X., Wang J., Zhang T., et al. Comprehensive pneumonitis profile of thoracic radiotherapy followed by immune checkpoint inhibitor and risk factors for radiation recall pneumonitis in lung cancer. Front Immunol. 2022;13 doi: 10.3389/fimmu.2022.918787. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 200.Abe T., Iino M., Saito S., et al. Simple method for evaluating achievement degree of lung dose optimization in individual patients with locally advanced non-small cell lung cancer treated with intensity modulated radiotherapy. Thorac Cancer. 2022;13(20):2890–2896. doi: 10.1111/1759-7714.14634. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 201.Nakamichi S., Kubota K., Misumi T., et al. A phase II study of durvalumab (MEDI4736) immediately after completion of chemoradiotherapy in unresectable stage III non–small cell lung cancer: TORG1937 (DATE study) J Clin Oncol. 2022;40(suppl 16):8536. doi: 10.1158/1078-0432.CCR-23-2568. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 202.Mamesaya N., Harada H., Hata A., et al. Intensity-modulated radiotherapy (IMRT)-adapted chemoradiotherapy (CRT) followed by durvalumab for locally advanced non-small cell lung cancer (NSCLC): a multicenter prospective observational study (WJOG12019L) Ann Oncol. 2022;33(suppl 7):S985. [Google Scholar]
  • 203.Morimoto M., Nishino K., Wada K., et al. Elective nodal irradiation for non-small cell lung cancer complicated with chronic obstructive pulmonary disease affects immunotherapy αfter definitive chemoradiotherapy. Anticancer Res. 2020 Dec;40(12):6957–6970. doi: 10.21873/anticanres.14720. [DOI] [PubMed] [Google Scholar]
  • 204.Wang Y., Zhang T., Wang J., et al. Induction immune checkpoint inhibitors and chemotherapy before definitive chemoradiation therapy for patients with bulky unresectable stage III non-small cell lung cancer. Int J Radiat Oncol Biol Phys. 2023;S0360-3016(22):3693–3698. doi: 10.1016/j.ijrobp.2022.12.042. [DOI] [PubMed] [Google Scholar]
  • 205.Park C.K., Oh H.J., Kim Y.C., et al. Korean real-world data on unresectable stage III non-small cell lung cancer (NSCLC) patients treated with durvalumab after chemoradiotherapy: PACIFIC-KR. J Thorac Oncol. 2023;S1556-0864(23):495–501. doi: 10.1016/j.jtho.2023.04.008. [DOI] [PubMed] [Google Scholar]
  • 206.Lin S.H., Lin Y., Yao L., et al. Phase II trial of concurrent atezolizumab with chemoradiation for unresectable NSCLC. J Thorac Oncol. 2020;15(2):248–257. doi: 10.1016/j.jtho.2019.10.024. [DOI] [PubMed] [Google Scholar]
  • 207.Shaverdian N., Thor M., Shepherd A.F., et al. Radiation pneumonitis in lung cancer patients treated with chemoradiation plus durvalumab. Cancer Med. 2020;9(13):4622–4631. doi: 10.1002/cam4.3113. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 208.Durm G.A., Jabbour S.K., Althouse S.K., et al. A phase 2 trial of consolidation pembrolizumab following concurrent chemoradiation for patients with unresectable stage III non-small cell lung cancer: hoosier Cancer Research Network LUN 14-179. Cancer. 2020;126(19):4353–4361. doi: 10.1002/cncr.33083. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 209.Faehling M., Schumann C., Christopoulos P., et al. Durvalumab after definitive chemoradiotherapy in locally advanced unresectable non-small cell lung cancer (NSCLC): real-world data on survival and safety from the German expanded-access program (EAP) Lung Cancer. 2020;150:114–122. doi: 10.1016/j.lungcan.2020.10.006. [DOI] [PubMed] [Google Scholar]
  • 210.Offin M., Shaverdian N., Rimner A., et al. Clinical outcomes, local-regional control and the role for metastasis-directed therapies in stage III non-small cell lung cancers treated with chemoradiation and durvalumab. Radiother Oncol. 2020;149:205–211. doi: 10.1016/j.radonc.2020.04.047. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 211.Hassanzadeh C., Sita T., Savoor R., et al. Implications of pneumonitis after chemoradiation and durvalumab for locally advanced non-small cell lung cancer. J Thorac Dis. 2020;12(11):6690–6700. doi: 10.21037/jtd-20-1792. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 212.Yan M., Durm G.A., Mamdani H., et al. Consolidation nivolumab/ipilimumab versus nivolumab following concurrent chemoradiation in patients with unresectable stage III NSCLC: a planned interim safety analysis from the BTCRC LUN 16-081 trial. J Clin Oncol. 2020;38(suppl 15):9010. [Google Scholar]
  • 213.Moore R., Lau S., Bezjak A., et al. The clinical relevance and management of grade 2 pneumonitis in stage III non-small cell lung cancer patients on adjuvant durvalumab. Int J Radiat Oncol Biol Phys. 2020;108(suppl):E100. [Google Scholar]
  • 214.Jain P., Murray P., Clarke K., et al. Early experience of maintenance durvalumab post chemoradiation (CRT) in stage III non-small cell lung cancer (NSCLC) across West Yorkshire network: from Expanded Access Programme (EAP) to routine clinical use. Lung Cancer. 2020;139(suppl 1):S46. [Google Scholar]
  • 215.Jegannathen A. Real-world data of using durvalumab in stage III non-small cell lung cancer (NSCLC): west Midlands experience. Lung Cancer. 2020;139(suppl):S51. [Google Scholar]
  • 216.Landman Y., Jacobi O., Kurman N., et al. Durvalumab after concurrent chemotherapy and high-dose radiotherapy for locally advanced non-small cell lung cancer. Oncoimmunology. 2021;10(1) doi: 10.1080/2162402X.2021.1959979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 217.Jabbour S.K., Lee K.H., Frost N., et al. Pembrolizumab plus concurrent chemoradiation therapy in patients with unresectable, locally advanced, stage III non-small cell lung cancer: the phase 2 KEYNOTE-799 nonrandomized trial. JAMA Oncol. 2021;7(9):1–9. doi: 10.1001/jamaoncol.2021.2301. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 218.Peters S., Felip E., Dafni U., et al. Progression-free and overall survival for concurrent nivolumab with standard concurrent chemoradiotherapy in locally advanced stage IIIA-B NSCLC: results from the European thoracic oncology platform NICOLAS phase II trial (European thoracic oncology platform 6-14) J Thorac Oncol. 2021;16(2):278–288. doi: 10.1016/j.jtho.2020.10.129. [DOI] [PubMed] [Google Scholar]
  • 219.Desilets A., Blanc-Durand F., Lau S., et al. Durvalumab therapy following chemoradiation compared with a historical cohort treated with chemoradiation alone in patients with stage III non-small cell lung cancer: a real-world multicentre study. Eur J Cancer. 2021;142:83–91. doi: 10.1016/j.ejca.2020.10.008. [DOI] [PubMed] [Google Scholar]
  • 220.Taugner J., Käsmann L., Eze C., et al. Real-world prospective analysis of treatment patterns in durvalumab maintenance after chemoradiotherapy in unresectable, locally advanced NSCLC patients. Invest New Drugs. 2021;39(4):1189–1196. doi: 10.1007/s10637-021-01091-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 221.Bruni A., Scotti V., Borghetti P., et al. A real-world, multicenter, observational retrospective study of durvalumab after concomitant or sequential chemoradiation for unresectable stage III non-small cell lung cancer. Front Oncol. 2021;11 doi: 10.3389/fonc.2021.744956. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 222.Jabbour S.K., Berman A.T., Decker R.H., et al. Phase 1 trial of pembrolizumab administered concurrently with chemoradiotherapy for locally advanced non-small cell lung cancer: a nonrandomized controlled trial. JAMA Oncol. 2020;6(6):848–855. doi: 10.1001/jamaoncol.2019.6731. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 223.Kartolo A., Shah H., Hopman W., Fung A.S., Wheatle-Price P., Robinson A. Consolidative durvalumab outcomes in stage III non-small cell lung cancer in a multi-centre study. Cancer Treat Res Commun. 2021;29 doi: 10.1016/j.ctarc.2021.100496. [DOI] [PubMed] [Google Scholar]
  • 224.Lau S.C.M., Ryan M., Weiss J., et al. Concurrent chemoradiation with or without durvalumab in elderly patients with unresectable stage III NSCLC: safety and efficacy. JTO Clin Res Rep. 2021;2(12) doi: 10.1016/j.jtocrr.2021.100251. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 225.Kauffmann-Guerrero D., Taugner J., Eze C., et al. Clinical management and outcome of grade III pneumonitis after chemoradioimmunotherapy for inoperable stage III non-small cell lung cancer-A prospective longitudinal assessment. Diagnostics (Basel) 2021;11(11):1968. doi: 10.3390/diagnostics11111968. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 226.Ross H.J., Kozono D.E., Urbanic J.J., et al. AFT16: phase II trial of neoadjuvant and adjuvant atezolizumab and chemoradiation (CRT) for stage III non-small cell lung cancer (NSCLC) J Clin Oncol. 2021;39(suppl 15):8513. [Google Scholar]
  • 227.Koffer P.P., Belani N., DiPetrillo T.A., Hepel J.T., Khurshid H., Azzoli C. Risk of pneumonitis in patients with stage III non-small cell lung cancer treated with definitive chemo-RT and durvalumab consolidation. Int J Radiat Oncol Biol Phys. 2021;111(suppl):E442. doi: 10.1016/j.adro.2022.101130. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 228.Hanayneh W., Boulwalre D., Saltos A., et al. Pneumonitis with durvalumab following concurrent chemoradiotherapy. J Thorac Oncol. 2021;16(suppl):S1045–S1046. [Google Scholar]
  • 229.Gao R.W., Day C.N., Yu N.Y., et al. Dosimetric predictors of pneumonitis in locally advanced non-small cell lung cancer patients treated with chemoradiation followed by durvalumab. Lung Cancer. 2022;170:58–64. doi: 10.1016/j.lungcan.2022.06.003. [DOI] [PubMed] [Google Scholar]
  • 230.Herbst R.S., Majem M., Barlesi F., et al. COAST: an open-label, phase II, multidrug platform study of durvalumab alone or in combination with oleclumab or monalizumab in patients with unresectable, stage III non-small-cell lung cancer. J Clin Oncol. 2022;40(29):3383–3393. doi: 10.1200/JCO.22.00227. [DOI] [PubMed] [Google Scholar]
  • 231.LeClair J.N., Merl M.Y., Cohenuram M., Luon D. Real-World incidence of pneumonitis in patients receiving durvalumab. Clin Lung Cancer. 2022;23(1):34–42. doi: 10.1016/j.cllc.2021.08.006. [DOI] [PubMed] [Google Scholar]
  • 232.Saad A., Goldstein J., Appel S., et al. Chemoradiation followed by adjuvant durvalumab in stage III non-small cell lung cancer: real-world comparison of treatment outcomes to historical controls treated with chemoradiation alone. Thorac Cancer. 2022;13(12):1763–1771. doi: 10.1111/1759-7714.14452. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 233.Garassino M.C., Mazieres J., Reck M., et al. Durvalumab after sequential chemoradiotherapy in stage III, unresectable NSCLC: the phase 2 PACIFIC-6 trial. J Thorac Oncol. 2022;17(12):1415–1427. doi: 10.1016/j.jtho.2022.07.1148. [DOI] [PubMed] [Google Scholar]
  • 234.Raez L.E., Arrieta O., Chamorro D.F., et al. Durvalumab after chemoradiation for unresectable stage III non-small cell lung cancer: inferior outcomes and lack of health equity in hispanic patients treated with PACIFIC protocol (LA1-CLICaP) Front Oncol. 2022;12 doi: 10.3389/fonc.2022.904800. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 235.Guberina M., Guberina N., Pöttgen C., et al. Effectiveness of durvalumab consolidation in stage III non-small-cell lung cancer: focus on treatment selection and prognostic factors. Immunotherapy. 2022;14(12):927–944. doi: 10.2217/imt-2021-0341. [DOI] [PubMed] [Google Scholar]
  • 236.Riudavets M., Auclin E., Mosteiro M., et al. Durvalumab consolidation in patients with unresectable stage III non-small cell lung cancer with driver genomic alterations. Eur J Cancer. 2022;167:142–148. doi: 10.1016/j.ejca.2022.02.014. [DOI] [PubMed] [Google Scholar]
  • 237.Denault M.H., Kuang S., Shokoohi A., et al. Comparison of 2-weekly versus 4-weekly durvalumab consolidation for locally advanced NSCLC treated with chemoradiotherapy: a brief report. JTO Clin Res Rep. 2022;3(5) doi: 10.1016/j.jtocrr.2022.100316. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 238.Stevens S., Nindra U., Shahnam A., et al. Real-world toxicity of consolidation durvalumab following chemoradiotherapy (CRT) in elderly and comorbid patients (pts) with unresectable stage III NSCLC: a multi-centre, Australian experience. Ann Oncol. 2022;33(suppl 7):S989. [Google Scholar]
  • 239.Bacelic Gabelica A., Seiwerth F., Bitar L., et al. EP05.01-018 chemoradiotherapy followed by durvalumab in unresectable locally advanced NSCLC- A single institution experience in Croatia. J Thorac Oncol. 2022;17(suppl):S275. [Google Scholar]
  • 240.Rimner A., Fitzgerald K., Iqbal A.N., et al. EP05.01-025 planned interim analysis of a phase II trial of concurrent durvalumab and radiation therapy for locally advanced lung cancer. J Thorac Oncol. 2022;17(suppl):S278. [Google Scholar]
  • 241.Tavara B., Garrido M.L., Rodríguez Z., et al. EP05.02-002 who benefits more of durvalumab after chemoradiotherapy (CRT) in real-world patients with locally advanced non-small-cell lung cancer (NSCLC)? J Thorac Oncol. 2022;17(suppl):S283. [Google Scholar]
  • 242.Saade L.J., Tfayli A. Pneumonitis in non-small cell lung cancer patients receiving atezolizumab post chemo-radiation. Asian Pac J Cancer Prev. 2023;24(3):737–740. doi: 10.31557/APJCP.2023.24.3.737. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 243.Girard N., Bar J., Garrido P., et al. Treatment characteristics and real-world progression-free survival in patients with unresectable stage III NSCLC who received durvalumab after chemoradiotherapy: findings from the PACIFIC-R study. J Thorac Oncol. 2023;18(2):181–193. doi: 10.1016/j.jtho.2022.10.003. [DOI] [PubMed] [Google Scholar]
  • 244.Diamond B.H., Belani N., Masel R., et al. Predictors of pneumonitis in patients with locally advanced non-small cell lung cancer treated with definitive chemoradiation followed by consolidative durvalumab. Adv Radiat Oncol. 2022;8(2) doi: 10.1016/j.adro.2022.101130. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 245.Käsmann L., Eze C., Taugner J., et al. Concurrent/sequential versus sequential immune checkpoint inhibition in inoperable large stage III non-small cell lung cancer patients treated with chemoradiotherapy: a prospective observational study. J Cancer Res Clin Oncol. 2023 doi: 10.1007/s00432-023-04654-w. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 246.Jung H.A., Noh J.M., Sun J.M., et al. Real world data of durvalumab consolidation after chemoradiotherapy in stage III non-small-cell lung cancer. Lung Cancer. 2020;146:23–29. doi: 10.1016/j.lungcan.2020.05.035. [DOI] [PubMed] [Google Scholar]
  • 247.Tsukita Y., Yamamoto T., Mayahara H., et al. Intensity-modulated radiation therapy with concurrent chemotherapy followed by durvalumab for stage III non-small cell lung cancer: a multi-center retrospective study. Radiother Oncol. 2021;160:266–272. doi: 10.1016/j.radonc.2021.05.016. [DOI] [PubMed] [Google Scholar]
  • 248.Saito G., Oya Y., Taniguchi Y., et al. Real-world survey of pneumonitis and its impact on durvalumab consolidation therapy in patients with non-small cell lung cancer who received chemoradiotherapy after durvalumab approval (HOPE-005/CRIMSON) Lung Cancer. 2021;161:86–93. doi: 10.1016/j.lungcan.2021.08.019. [DOI] [PubMed] [Google Scholar]
  • 249.Jang J.Y., Kim S.S., Song S.Y., Kim Y.J., Kim S.W., Choi E.K. Radiation pneumonitis in patients with non-small-cell lung cancer receiving chemoradiotherapy and an immune checkpoint inhibitor: a retrospective study. Radiat Oncol. 2021;16(1):231. doi: 10.1186/s13014-021-01930-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 250.Abe T., Saito S., Iino M., et al. Effect of durvalumab on local control after concurrent chemoradiotherapy for locally advanced non-small cell lung cancer in comparison with chemoradiotherapy alone. Thorac Cancer. 2021;12(2):245–250. doi: 10.1111/1759-7714.13764. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 251.Fujiwara M., Doi H., Igeta M., et al. Radiation pneumonitis after volumetric modulated arc therapy for non-small cell lung cancer. Anticancer Res. 2021;41(11):5793–5802. doi: 10.21873/anticanres.15396. [DOI] [PubMed] [Google Scholar]
  • 252.Watanabe S., Ogino I., Shigenaga D., Hata M. Relationship between radiation pneumonitis following definitive radiotherapy for non-small cell lung cancer and isodose line. In Vivo. 2021;35(6):3441–3448. doi: 10.21873/invivo.12644. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 253.Huang Y., Zhao J.J., Soon Y.Y., et al. Real-world experience of consolidation durvalumab after concurrent chemoradiotherapy in stage III non-small cell lung cancer. Thorac Cancer. 2022;13(22):3152–3161. doi: 10.1111/1759-7714.14667. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 254.Abe T., Iino M., Saito S., et al. Comparison of the efficacy and toxicity of concurrent chemoradiotherapy and durvalumab and concurrent chemoradiotherapy alone for locally advanced non-small cell lung cancer with N3 lymph node metastasis. Anticancer Res. 2023;43(2):675–682. doi: 10.21873/anticanres.16205. [DOI] [PubMed] [Google Scholar]
  • 255.Park C.K., Lee S.W., Cho H.J., et al. Blood-based biomarker analysis for predicting efficacy of chemoradiotherapy and durvalumab in patients with unresectable stage III non-small cell lung cancer. Cancers (Basel) 2023;15(4):1151. doi: 10.3390/cancers15041151. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 256.Yuan X., Liao Z., Liu Z., et al. Single nucleotide polymorphism at rs1982073:T869C of the TGFbeta 1 gene is associated with the risk of radiation pneumonitis in patients with non-small-cell lung cancer treated with definitive radiotherapy. J Clin Oncol. 2009;27(20):3370–3378. doi: 10.1200/JCO.2008.20.6763. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 257.Wang L., Bi N. TGF-beta1 gene polymorphisms for anticipating radiation-induced pneumonitis in non-small-cell lung cancer: different ethnic association. J Clin Oncol. 2010;28(30):e621–e622. doi: 10.1200/JCO.2010.31.0458. [DOI] [PubMed] [Google Scholar]
  • 258.Zhang Y.L., Yuan J.Q., Wang K.F., et al. The prevalence of EGFR mutation in patients with non-small cell lung cancer: a systematic review and meta-analysis. Oncotarget. 2016;7(48):78985–78993. doi: 10.18632/oncotarget.12587. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 259.Inoue H., Okamoto I. Immune checkpoint inhibitors for the treatment of unresectable stage III non-small cell lung cancer: emerging mechanisms and perspectives. Lung Cancer (Auckl) 2019;10:161–170. doi: 10.2147/LCTT.S184380. [DOI] [PMC free article] [PubMed] [Google Scholar]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Supplementary File
mmc1.docx (8MB, docx)

Articles from eClinicalMedicine are provided here courtesy of Elsevier

RESOURCES