Abstract
Dihydrodipicolinate synthase, the first enzyme unique to lysine biosynthesis in higher plants, was purified about 5100-fold from suspension-cultured cells of wheat (Triticum aestivum var Chinese Spring). The synthase has an average molecular weight of 123,000 as determined by gel filtration and exhibited maximum activity at pH 8.0. The kinetics of the condensation reaction are compatible with a “Ping Pong” mechanism in which pyruvate reacts first with the enzyme to form a Schiff base. Pyruvate and l-aspartic-β-semialdehyde (ASA) have respective Km values of 11.76 and 0.80 millimolar. Allosteric inhibition was observed with increasing concentrations of l-lysine and its structural analogs, including threo-4-hydroxy-l-lysine and S-(2-aminoethyl)-l-cysteine, with respective I0.5 values of 51, 141, and 288 micromolar. These amino acids were competitive inhibitors with respect to ASA and noncompetitive inhibitors with respect to pyruvate. We propose that the binding site for lysine overlaps with the ASA binding site, possibly by an attachment of the common alanyl moiety. The wheat enzyme was inhibited by Zn2+, Cd2+, and Hg2+ and also by sulfhydryl inhibitors, p-(hydroxymercuri)benzoic acid and p-chloromercuribenzenesulfonic acid.
Full text
PDF






Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- BLACK S., WRIGHT N. G. Aspartic beta-semialdehyde dehydrogenase and aspartic beta-semialdehyde. J Biol Chem. 1955 Mar;213(1):39–50. [PubMed] [Google Scholar]
- BLACK S., WRIGHT N. G. Homoserine dehydrogenase. J Biol Chem. 1955 Mar;213(1):51–60. [PubMed] [Google Scholar]
- Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1016/0003-2697(76)90527-3. [DOI] [PubMed] [Google Scholar]
- CLELAND W. W. The kinetics of enzyme-catalyzed reactions with two or more substrates or products. I. Nomenclature and rate equations. Biochim Biophys Acta. 1963 Jan 8;67:104–137. doi: 10.1016/0006-3002(63)91800-6. [DOI] [PubMed] [Google Scholar]
- Halling S. M., Stahly D. P. Dihydrodipicolinic acid synthase of Bacillus licheniformis. Quaternary structure, kinetics, and stability in the presence of sodium chloride and substrates. Biochim Biophys Acta. 1976 Dec 8;452(2):580–596. doi: 10.1016/0005-2744(76)90209-6. [DOI] [PubMed] [Google Scholar]
- Matthews B. F., Widholm J. M. Expression of aspartokinase, dihydrodipicolinic acid synthase and homoserine dehydrogenase during growth of carrot cell suspension cultures on lysine- and threonine-supplemented media. Z Naturforsch C. 1979 Dec;34(12):1177–1185. doi: 10.1515/znc-1979-1216. [DOI] [PubMed] [Google Scholar]
- Mazelis M., Whatley F. R., Whatley J. The enzymology of lysine biosynthesis in higher plants. The occurrence, characterization and some regulatory properties of dihydrodipicolinate synthase. FEBS Lett. 1977 Dec 15;84(2):236–240. doi: 10.1016/0014-5793(77)80696-0. [DOI] [PubMed] [Google Scholar]
- Richaud F., Richaud C., Ratet P., Patte J. C. Chromosomal location and nucleotide sequence of the Escherichia coli dapA gene. J Bacteriol. 1986 Apr;166(1):297–300. doi: 10.1128/jb.166.1.297-300.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rognes S. E., Lea P. J., Miflin B. J. S-adenosylmethionine--a novel regulator of aspartate kinase. Nature. 1980 Sep 25;287(5780):357–359. doi: 10.1038/287357a0. [DOI] [PubMed] [Google Scholar]
- Shedlarski J. G., Gilvarg C. The pyruvate-aspartic semialdehyde condensing enzyme of Escherichia coli. J Biol Chem. 1970 Mar 25;245(6):1362–1373. [PubMed] [Google Scholar]
- Shewry P. R., Miflin B. J. Properties and Regulation of Aspartate Kinase from Barley Seedlings (Hordeum vulgare L.). Plant Physiol. 1977 Jan;59(1):69–73. doi: 10.1104/pp.59.1.69. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Truffa-Bachi P., Patte J. C., Cohen G. N. Sur la dihydrodipicolinate synthétase d'Escherichia coli K12. C R Acad Sci Hebd Seances Acad Sci D. 1967 Sep 25;265(13):928–929. [PubMed] [Google Scholar]
- Wallsgrove R. M., Mazelis M. The enzymology of lysine biosynthesis in higher plants: complete localization of the regulatory enzyme dihydrodipicolinate synthase in the chloroplasts of spinach leaves. FEBS Lett. 1980 Jul 28;116(2):189–192. doi: 10.1016/0014-5793(80)80640-5. [DOI] [PubMed] [Google Scholar]
- YUGARI Y., GILVARG C. Coordinate end-product inhibition in lysine synthesis in Escherichia coli. Biochim Biophys Acta. 1962 Aug 27;62:612–614. doi: 10.1016/0006-3002(62)90256-1. [DOI] [PubMed] [Google Scholar]
- Yamakura F., Ikeda Y., Kimura K., Sasakawa T. Partial purification and some properties of pyruvate-aspartic semialdehyde condensing enzyme from sporulating Bacillus subtilis. J Biochem. 1974 Sep;76(3):611–621. doi: 10.1093/oxfordjournals.jbchem.a130605. [DOI] [PubMed] [Google Scholar]
- Yugari Y., Gilvarg C. The condensation step in diaminopimelate synthesis. J Biol Chem. 1965 Dec;240(12):4710–4716. [PubMed] [Google Scholar]
