Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1987 Sep;85(1):158–163. doi: 10.1104/pp.85.1.158

Functional Size of Photosynthetic Electron Transport Chain Determined by Radiation Inactivation 1

Run Sun Pan 1, Lee Feng Chien 1, May Yun Wang 1, Mai Yu Tsai 1, Rong Long Pan 1, Ban Dar Hsu 1
PMCID: PMC1054222  PMID: 16665649

Abstract

Radiation inactivation technique was employed to determine the functional size of photosynthetic electron transport chain of spinach chloroplasts. The functional size for photosystem I+II (H2O to methylviologen) was 623 ± 37 kilodaltons; for photosystem II (H2O to dimethylquinone/ferricyanide), 174 ± 11 kilodaltons; and for photosystem I (reduced diaminodurene to methylviologen), 190 ± 11 kilodaltons. The difference between 364 ± 22 (the sum of 174 ± 11 and 190 ± 11) kilodaltons and 623 ± 37 kilodaltons is partially explained to be due to the presence of two molecules of cytochrome b6/f complex of 280 kilodaltons. The molecular mass for other partial reactions of photosynthetic electron flow, also measured by radiation inactivation, is reported. The molecular mass obtained by this technique is compared with that determined by other conventional biochemical methods. A working hypothesis for the composition, stoichiometry, and organization of polypeptides for photosynthetic electron transport chain is proposed.

Full text

PDF
158

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Beauregard G., Potier M. Temperature dependence of the radiation inactivation of proteins. Anal Biochem. 1985 Oct;150(1):117–120. doi: 10.1016/0003-2697(85)90448-8. [DOI] [PubMed] [Google Scholar]
  2. Ben-Hayyim G., Neumann J. On the mechanism of action of silicomolybdic acid in chloroplasts. FEBS Lett. 1975 Aug 15;56(2):240–243. doi: 10.1016/0014-5793(75)81100-8. [DOI] [PubMed] [Google Scholar]
  3. Bengis C., Nelson N. Subunit structure of chloroplast photosystem I reaction center. J Biol Chem. 1977 Jul 10;252(13):4564–4569. [PubMed] [Google Scholar]
  4. Bennett N., Loomis W. E. TETRAZOLIUM CHLORIDE AS A TEST REAGENT FOR FREEZING INJURY OF SEED CORN. Plant Physiol. 1949 Jan;24(1):162–174. doi: 10.1104/pp.24.1.162. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Govindjee, Kambara T., Coleman W. The electron donor side of photosystem II: the oxygen evolving complex. Photochem Photobiol. 1985 Aug;42(2):187–210. doi: 10.1111/j.1751-1097.1985.tb01559.x. [DOI] [PubMed] [Google Scholar]
  6. Graan T., Ort D. R. Quantitation of 2,5-dibromo-3-methyl-6-isopropyl-p-benzoquinone binding sites in chloroplast membranes: evidence for a functional dimer of the cytochrome b6f complex. Arch Biochem Biophys. 1986 Aug 1;248(2):445–451. doi: 10.1016/0003-9861(86)90497-2. [DOI] [PubMed] [Google Scholar]
  7. Izawa S., Pan R. L. Photosystem I electron transport and phosphorylation supported by electron donation to the plastoquinone region. Biochem Biophys Res Commun. 1978 Aug 14;83(3):1171–1177. doi: 10.1016/0006-291x(78)91518-8. [DOI] [PubMed] [Google Scholar]
  8. Kempner E. S., Schlegel W. Size determination of enzymes by radiation inactivation. Anal Biochem. 1979 Jan 1;92(1):2–10. doi: 10.1016/0003-2697(79)90617-1. [DOI] [PubMed] [Google Scholar]
  9. Lee J. Y., Hsu B. D., Pan R. L. The high affinity binding site for calcium on the oxidizing side of photosystem II. Biochem Biophys Res Commun. 1985 Apr 16;128(1):464–469. doi: 10.1016/0006-291x(85)91701-2. [DOI] [PubMed] [Google Scholar]
  10. Mullet J. E., Burke J. J., Arntzen C. J. Chlorophyll proteins of photosystem I. Plant Physiol. 1980 May;65(5):814–822. doi: 10.1104/pp.65.5.814. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Nakatani H. Y. Photosynthetic oxygen evolution does not require the participation of polypeptides of 16 and 24 kilodaltons. Biochem Biophys Res Commun. 1984 Apr 16;120(1):299–304. doi: 10.1016/0006-291x(84)91448-7. [DOI] [PubMed] [Google Scholar]
  12. Nanba O., Satoh K. Isolation of a photosystem II reaction center consisting of D-1 and D-2 polypeptides and cytochrome b-559. Proc Natl Acad Sci U S A. 1987 Jan;84(1):109–112. doi: 10.1073/pnas.84.1.109. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Ort D. R., Izawa S. Studies on the Energy-coupling Sites of Photophosphorylation: V. Phosphorylation Efficiencies (P/e(2)) Associated with Aerobic Photooxidation of Artificial Electron Donors. Plant Physiol. 1974 Mar;53(3):370–376. doi: 10.1104/pp.53.3.370. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Shiozawa J. A., Alberte R. S., Thornber J. P. The P700-chlorophyll a-protein. Isolation and some characteristics of the complex in higher plants. Arch Biochem Biophys. 1974 Nov;165(1):388–397. doi: 10.1016/0003-9861(74)90177-5. [DOI] [PubMed] [Google Scholar]
  15. Takabe T., Ishikawa H., Niwa S., Itoh S. Electron transfer between plastocyanin and P700 in highly-purified photosystem I reaction center complex. Effects of pH, cations, and subunit peptide composition. J Biochem. 1983 Dec;94(6):1901–1911. doi: 10.1093/oxfordjournals.jbchem.a134544. [DOI] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES