Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1987 Sep;85(1):310–314. doi: 10.1104/pp.85.1.310

Involvement of Superoxide Radical in Extracellular Ferric Reduction by Iron-Deficient Bean Roots 1

Ismail Cakmak 1,2,3,2, Dirk A M van de Wetering 1,2,3, Horst Marschner 1,2,3, H Frits Bienfait 1,2,3
PMCID: PMC1054247  PMID: 16665677

Abstract

The recent proposal of Tipton and Thowsen (Plant Physiol 79: 432-435) that iron-deficient plants reduce ferric chelates in cell walls by a system dependent on the leakage of malate from root cells was tested. Results are presented showing that this mechanism could not be responsible for the high rates of ferric reduction shown by roots of iron-deficient bean (Phaseolus vulgaris L. var Prélude) plants. The role of O2 in the reduction of ferric chelates by roots of iron-deficient bean plants was also tested. The rate of Fe(III) reduction was the same in the presence and in the absence of O2. However, in the presence of O2 the reaction was partially inhibited by superoxide dismutase (SOD), which indicates a role for the superoxide radical, O2[unk], as a facultative intermediate electron carrier. The inhibition by SOD increased with substrate pH and with decrease in concentration of the ferrous scavenger bathophenanthroline-disulfonate. The results are consistent with a mechanism for transmembrane electron transport in which a flavin or quinone is the final electron carrier in the plasma membrane. The results are discussed in relation to the ecological importance that O2[unk] may have in the acquisition of ferric iron by dicotyledonous plants.

Full text

PDF
310

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Badwey J. A., Karnovsky M. L. Active oxygen species and the functions of phagocytic leukocytes. Annu Rev Biochem. 1980;49:695–726. doi: 10.1146/annurev.bi.49.070180.003403. [DOI] [PubMed] [Google Scholar]
  2. Bienfait H. F. Regulated redox processes at the plasmalemma of plant root cells and their function in iron uptake. J Bioenerg Biomembr. 1985 Apr;17(2):73–83. doi: 10.1007/BF00744199. [DOI] [PubMed] [Google Scholar]
  3. Chaney R. L., Brown J. C., Tiffin L. O. Obligatory reduction of ferric chelates in iron uptake by soybeans. Plant Physiol. 1972 Aug;50(2):208–213. doi: 10.1104/pp.50.2.208. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Federico R., Giartosio C. E. A transplasmamembrane electron transport system in maize roots. Plant Physiol. 1983 Sep;73(1):182–184. doi: 10.1104/pp.73.1.182. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Fong K. L., McCay P. B., Poyer J. L. Evidence for superoxide-dependent reduction of Fe3+ and its role in enzyme-generated hydroxyl radical formation. Chem Biol Interact. 1976 Sep;15(1):77–89. doi: 10.1016/0009-2797(76)90130-7. [DOI] [PubMed] [Google Scholar]
  6. GIBSON Q. H., HASTINGS J. W. The oxidation of reduced flavin mononucleotide by molecular oxygen. Biochem J. 1962 May;83:368–377. doi: 10.1042/bj0830368. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Lutter R., van Zwieten R., Weening R. S., Hamers M. N., Roos D. Cytochrome b, flavins, and ubiquinone-50 in enucleated human neutrophils (polymorphonuclear leukocyte cytoplasts). J Biol Chem. 1984 Aug 10;259(15):9603–9606. [PubMed] [Google Scholar]
  8. Misra H. P., Fridovich I. The univalent reduction of oxygen by reduced flavins and quinones. J Biol Chem. 1972 Jan 10;247(1):188–192. [PubMed] [Google Scholar]
  9. Muir Wood P. The redox potential of the system oxygen--superoxide. FEBS Lett. 1974 Aug 15;44(1):22–24. doi: 10.1016/0014-5793(74)80297-8. [DOI] [PubMed] [Google Scholar]
  10. Rich P. R., Bendall D. S. The kinetics and thermodynamics of the reduction of cytochrome c by substituted p-benzoquinols in solution. Biochim Biophys Acta. 1980 Oct 3;592(3):506–518. doi: 10.1016/0005-2728(80)90095-x. [DOI] [PubMed] [Google Scholar]
  11. Rubinstein B., Stern A. I., Stout R. G. Redox activity at the surface of oat root cells. Plant Physiol. 1984 Oct;76(2):386–391. doi: 10.1104/pp.76.2.386. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Römheld V., Marschner H. Mechanism of iron uptake by peanut plants : I. Fe reduction, chelate splitting, and release of phenolics. Plant Physiol. 1983 Apr;71(4):949–954. doi: 10.1104/pp.71.4.949. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Römheld V., Müller C., Marschner H. Localization and capacity of proton pumps in roots of intact sunflower plants. Plant Physiol. 1984 Nov;76(3):603–606. doi: 10.1104/pp.76.3.603. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Sijmons P. C., Lanfermeijer F. C., de Boer A. H., Prins H. B., Bienfait H. F. Depolarization of Cell Membrane Potential during Trans-Plasma Membrane Electron Transfer to Extracellular Electron Acceptors in Iron-Deficient Roots of Phaseolus vulgaris L. Plant Physiol. 1984 Dec;76(4):943–946. doi: 10.1104/pp.76.4.943. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Sijmons P. C., van den Briel W., Bienfait H. F. Cytosolic NADPH is the electron donor for extracellular fe reduction in iron-deficient bean roots. Plant Physiol. 1984 May;75(1):219–221. doi: 10.1104/pp.75.1.219. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Tipton C. L., Thowsen J. Fe reduction in cell walls of soybean roots. Plant Physiol. 1985 Oct;79(2):432–435. doi: 10.1104/pp.79.2.432. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Welkie G. W., Miller G. W. Iron Nutrition of Nicotiana Tabacum L. in Relation to Riboflavin, Riboflavin-5-phosphate, and Flavin Adenine Dinucleotide Content. Plant Physiol. 1960 Jul;35(4):516–520. doi: 10.1104/pp.35.4.516. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Yaguzhinsky L. S., Boguslavsky L. I., Ismailov A. D. Potential generation in bilayer lipid membranes in the NADH-flavin mononucleotide-ubiquinone-6-O2 system. Biochim Biophys Acta. 1974 Oct 18;368(1):22–28. doi: 10.1016/0005-2728(74)90093-0. [DOI] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES