Abstract
Application of a 17-millimolar solution of glyphosate (GLP) to sugarbeet (Beta vulgaris L.) leaves resulted in an immediate and rapid decline in the level of ribulose bisphosphate (RuBP). Phosphoglyceric acid level began to decrease about 2 hours following the decline in RuBP level. Photosynthesis rate declined linearly with RuBP level, but only when the RuBP level had decreased to about twice the RuBP carboxylase active site concentration. This occurred about 4 hours following GLP-application. At this time starch synthesis also declined abruptly. The activation state of RuBP carboxylase did not change for 8 hours following GLP application and then decreased slightly from 70 to 50% when the RuBP level fell below the RuBP carboxylase active-site concentration. Triose-phosphate, hexose-phosphate, and adenylate energy charge did not change for 8 hours following GLP-application. These data indicate that GLP induced a depletion of carbon or phosphate or both from the photosynthetic carbon reduction cycle, reducing the rate of regeneration of RuBP, photosynthesis, and starch synthesis, while having little effect upon the rate of sucrose synthesis and transport.
Full text
PDF




Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Amrhein N., Deus B., Gehrke P., Steinrücken H. C. The Site of the Inhibition of the Shikimate Pathway by Glyphosate: II. INTERFERENCE OF GLYPHOSATE WITH CHORISMATE FORMATION IN VIVO AND IN VITRO. Plant Physiol. 1980 Nov;66(5):830–834. doi: 10.1104/pp.66.5.830. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Esen A. A simple method for quantitative, semiquantitative, and qualitative assay of protein. Anal Biochem. 1978 Aug 15;89(1):264–273. doi: 10.1016/0003-2697(78)90749-2. [DOI] [PubMed] [Google Scholar]
- Fondy B. R., Geiger D. R. Diurnal Pattern of Translocation and Carbohydrate Metabolism in Source Leaves of Beta vulgaris L. Plant Physiol. 1982 Sep;70(3):671–676. doi: 10.1104/pp.70.3.671. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fox T. C., Geiger D. R. Effects of decreased net carbon exchange on carbohydrate metabolism in sugar beet source leaves. Plant Physiol. 1984 Nov;76(3):763–768. doi: 10.1104/pp.76.3.763. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Geiger D. R., Kapitan S. W., Tucci M. A. Glyphosate inhibits photosynthesis and allocation of carbon to starch in sugar beet leaves. Plant Physiol. 1986 Oct;82(2):468–472. doi: 10.1104/pp.82.2.468. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Geiger D. R., Tucci M. A., Serviates J. C. Glyphosate effects on carbon assimilation and gas exchange in sugar beet leaves. Plant Physiol. 1987 Oct;85(2):365–369. doi: 10.1104/pp.85.2.365. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ghosh H. P., Preiss J. Adenosine diphosphate glucose pyrophosphorylase. A regulatory enzyme in the biosynthesis of starch in spinach leaf chloroplasts. J Biol Chem. 1966 Oct 10;241(19):4491–4504. [PubMed] [Google Scholar]
- Heldt H. W., Chon C. J., Maronde D. Role of orthophosphate and other factors in the regulation of starch formation in leaves and isolated chloroplasts. Plant Physiol. 1977 Jun;59(6):1146–1155. doi: 10.1104/pp.59.6.1146. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Latzko E., Gibbs M. Measurement of the intermediates of the photosynthetic carbon reduction cycle, using enzymatic methods. Methods Enzymol. 1972;24:261–268. doi: 10.1016/0076-6879(72)24073-3. [DOI] [PubMed] [Google Scholar]
- Perchorowicz J. T., Raynes D. A., Jensen R. G. Light limitation of photosynthesis and activation of ribulose bisphosphate carboxylase in wheat seedlings. Proc Natl Acad Sci U S A. 1981 May;78(5):2985–2989. doi: 10.1073/pnas.78.5.2985. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Seemann J. R., Sharkey T. D. Salinity and Nitrogen Effects on Photosynthesis, Ribulose-1,5-Bisphosphate Carboxylase and Metabolite Pool Sizes in Phaseolus vulgaris L. Plant Physiol. 1986 Oct;82(2):555–560. doi: 10.1104/pp.82.2.555. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Taylor S. E., Terry N. Limiting Factors in Photosynthesis: V. Photochemical Energy Supply Colimits Photosynthesis at Low Values of Intercellular CO(2) Concentration. Plant Physiol. 1984 May;75(1):82–86. doi: 10.1104/pp.75.1.82. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wintermans J. F., de Mots A. Spectrophotometric characteristics of chlorophylls a and b and their pheophytins in ethanol. Biochim Biophys Acta. 1965 Nov 29;109(2):448–453. doi: 10.1016/0926-6585(65)90170-6. [DOI] [PubMed] [Google Scholar]