Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1987 Oct;85(2):446–451. doi: 10.1104/pp.85.2.446

Reduction of Purothionin by the Wheat Seed Thioredoxin System 1

Thomas C Johnson 1,2, Keishiro Wada 1,2,2, Bob B Buchanan 1,2, Arne Holmgren 1,2
PMCID: PMC1054276  PMID: 16665718

Abstract

Thioredoxin h, the thioredoxin characteristic of heterotrophic plant tissues, was purified to homogeneity from wheat endosperm (flour) and found to resemble its counterpart from carrot cell cultures. In the presence of NADPH, homogeneous thioredoxin h and partially purified wheat endosperm thioredoxin reductase (NADPH), (EC 1.6.4.5), purothionin promoted the activation of chloroplast fructose-1,6-bisphosphatase (EC 3.1.3.11). Under these conditions, NADPH provided the reducing equivalents for a series of thiol reactions in which (a) thioredoxin reductase reduced thioredoxin h thereby converting it from disulfide (S-S) to sulfhydryl (SH) form; (b) the sulfhydryl form of thioredoxin h reduced the disulfide form of purothionin—a 5 kilodalton seed storage protein with 4 S-S bridges; and (c) the sulfhydryl form of purothionin reductively activated fructose-1,6-bisphosphatase. The results show that, since thioredoxin h does not react effectively with fructose-1,6-bisphosphatase, the thioredoxin system can activate an enzyme through purothionin by secondary thiol redox control. In a related type reaction, purothionin, inhibited the activity of either Escherichia coli or calf thymus ribonucleotide reductase with reduced thioredoxin as hydrogen donor. The results suggest that purothionin competes with ribonucleotide reductase for reducing equivalents from thioredoxin. Thus, inhibition of deoxyribonucleotide synthesis should be considered a possible mechanism when examining the toxic effects of purothionin on mammalian cells in S-phase.

Full text

PDF
446

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Berstermann A., Vogt K., Follmann H. Plant seeds contain several thioredoxins of regular size. Eur J Biochem. 1983 Mar 15;131(2):339–344. doi: 10.1111/j.1432-1033.1983.tb07267.x. [DOI] [PubMed] [Google Scholar]
  2. Clore G. M., Nilges M., Sukumaran D. K., Brünger A. T., Karplus M., Gronenborn A. M. The three-dimensional structure of alpha1-purothionin in solution: combined use of nuclear magnetic resonance, distance geometry and restrained molecular dynamics. EMBO J. 1986 Oct;5(10):2729–2735. doi: 10.1002/j.1460-2075.1986.tb04557.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Crawford N. A., Yee B. C., Hutcheson S. W., Wolosiuk R. A., Buchanan B. B. Enzyme regulation in C4 photosynthesis: purification, properties, and activities of thioredoxins from C4 and C3 plants. Arch Biochem Biophys. 1986 Jan;244(1):1–15. doi: 10.1016/0003-9861(86)90088-3. [DOI] [PubMed] [Google Scholar]
  4. Engström N. E., Holmgren A., Larsson A., Söderhäll S. Isolation and characterization of calf liver thioredoxin. J Biol Chem. 1974 Jan 10;249(1):205–210. [PubMed] [Google Scholar]
  5. Engström Y., Eriksson S., Thelander L., Akerman M. Ribonucleotide reductase from calf thymus. Purification and properties. Biochemistry. 1979 Jul 10;18(14):2941–2948. doi: 10.1021/bi00581a004. [DOI] [PubMed] [Google Scholar]
  6. Hase T., Matsubara H., Yoshizumi H. Disulfide bonds of purothionine, a lethal toxin for yeasts. J Biochem. 1978 Jun;83(6):1671–1678. doi: 10.1093/oxfordjournals.jbchem.a132079. [DOI] [PubMed] [Google Scholar]
  7. Holmgren A. Bovine thioredoxin system. Purification of thioredoxin reductase from calf liver and thymus and studies of its function in disulfide reduction. J Biol Chem. 1977 Jul 10;252(13):4600–4606. [PubMed] [Google Scholar]
  8. Holmgren A., Reichard P. Thioredoxin 2: cleavage with cyanogen bromide. Eur J Biochem. 1967 Sep;2(2):187–196. doi: 10.1111/j.1432-1033.1967.tb00125.x. [DOI] [PubMed] [Google Scholar]
  9. Johnson T. C., Crawford N. A., Buchanan B. B. Thioredoxin system of the photosynthetic anaerobe Chromatium vinosum. J Bacteriol. 1984 Jun;158(3):1061–1069. doi: 10.1128/jb.158.3.1061-1069.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Luthman M., Eriksson S., Holmgren A., Thelander L. Glutathione-dependent hydrogen donor system for calf thymus ribonucleoside-diphosphate reductase. Proc Natl Acad Sci U S A. 1979 May;76(5):2158–2162. doi: 10.1073/pnas.76.5.2158. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Luthman M., Holmgren A. Rat liver thioredoxin and thioredoxin reductase: purification and characterization. Biochemistry. 1982 Dec 21;21(26):6628–6633. doi: 10.1021/bi00269a003. [DOI] [PubMed] [Google Scholar]
  12. Mellstrand S. T., Samuelsson G. Phoratoxin, a toxic protein from the mistletoe Phoradendron tomentosum subsp. macrophyllum (Loranthaceae). Improvements in the isolation procedure and further studies on the properties. Eur J Biochem. 1973 Jan 3;32(1):143–147. doi: 10.1111/j.1432-1033.1973.tb02590.x. [DOI] [PubMed] [Google Scholar]
  13. Nakanishi T., Yoshizumi H., Tahara S., Hakura A., Toyoshima K. Cytotoxicity of purothionin-A on various animal cells. Gan. 1979 Jun;70(3):323–326. [PubMed] [Google Scholar]
  14. Ohtani S., Okada T., Yoshizumi H., Kagamiyama H. Complete primary structures of two subunits of purothionin A, a lethal protein for brewer's yeast from wheat flour. J Biochem. 1977 Sep;82(3):753–767. doi: 10.1093/oxfordjournals.jbchem.a131752. [DOI] [PubMed] [Google Scholar]
  15. Ozaki Y., Wada K., Hase T., Matsubara H., Nakanishi T., Yoshizumi H. Amino acid sequence of a purothionin homolog from barley flour. J Biochem. 1980 Feb;87(2):549–555. doi: 10.1093/oxfordjournals.jbchem.a132777. [DOI] [PubMed] [Google Scholar]
  16. Wada K., Ozaki Y., Matsubara H., Yoshizumi H. Studies on purothionin by chemical modifications. J Biochem. 1982 Jan;91(1):257–263. doi: 10.1093/oxfordjournals.jbchem.a133683. [DOI] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES