Abstract
The appearance of enzymes involved in the formation of ureides, allantoin, and allantoic acid, from inosine 5′-monophosphate was analyzed in developing root nodules of soybean (Glycine max). Concomitant with development of effective nodules, a substantial increase in specific activities of the enzymes 5′-nucleotidase (35-fold), purine nucleosidase (10-fold), xanthine dehydrogenase (25-fold), and uricase (200-fold), over root levels was observed. The specific activity of allantoinase remained constant during nodule development. With ineffective nodules the activities were generally lower than in effective nodules; however, the activities of 5′-nucleotidase and allantoinase were 2-fold higher in ineffective nodules unable to synthesize leghemoglobin than in effective nodules. Since the expression of uricase has been shown to be regulated by oxygen (K Larsen, BU Jochimsen 1986 EMBO J 5: 15-19), the expression of the remaining enzymes in the purine catabolic pathway were tested in response to variations in O2 concentration in sterile soybean callus tissue. Purine nucleosidase responded to this treatment, exhibiting a 4-fold increase in activity around 2% O2. 5′-Nucleotidase, xanthine dehydrogenase, and allantoinase remained unaffected by variations in the O2 concentration. Hence, the expression of two enzymes involved in ureide formation, purine nucleosidase and uricase, has been demonstrated to be influenced by O2 concentration.
Full text
PDF




Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Atkins C. A., Ritchie A., Rowe P. B., McCairns E., Sauer D. De Novo Purine Synthesis in Nitrogen-Fixing Nodules of Cowpea (Vigna unguiculata [L.] Walp.) and Soybean (Glycine max [L.] Merr.). Plant Physiol. 1982 Jul;70(1):55–60. doi: 10.1104/pp.70.1.55. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Atkins C. A., Shelp B. J., Storer P. J. Purification and properties of inosine monophosphate oxidoreductase from nitrogen-fixing nodules of cowpea (Vigna unguiculata L. Walp). Arch Biochem Biophys. 1985 Feb 1;236(2):807–814. doi: 10.1016/0003-9861(85)90687-3. [DOI] [PubMed] [Google Scholar]
- Bergmann H., Preddie E., Verma D. P. Nodulin-35: a subunit of specific uricase (uricase II) induced and localized in the uninfected cells of soybean nodules. EMBO J. 1983;2(12):2333–2339. doi: 10.1002/j.1460-2075.1983.tb01743.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Boland M. J., Schubert K. R. Biosynthesis of purines by a proplastid fraction from soybean nodules. Arch Biochem Biophys. 1983 Jan;220(1):179–187. doi: 10.1016/0003-9861(83)90398-3. [DOI] [PubMed] [Google Scholar]
- Boland M. J., Schubert K. R. Purine biosynthesis and catabolism in soybean root nodules: incorporation of 14C from 14CO2 into xanthine. Arch Biochem Biophys. 1982 Feb;213(2):486–491. doi: 10.1016/0003-9861(82)90574-4. [DOI] [PubMed] [Google Scholar]
- Christensen T. M., Jochimsen B. U. Enzymes of ureide synthesis in pea and soybean. Plant Physiol. 1983 May;72(1):56–59. doi: 10.1104/pp.72.1.56. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fuller F., Künstner P. W., Nguyen T., Verma D. P. Soybean nodulin genes: Analysis of cDNA clones reveals several major tissue-specific sequences in nitrogen-fixing root nodules. Proc Natl Acad Sci U S A. 1983 May;80(9):2594–2598. doi: 10.1073/pnas.80.9.2594. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hanks J. F., Tolbert N. E., Schubert K. R. Localization of enzymes of ureide biosynthesis in peroxisomes and microsomes of nodules. Plant Physiol. 1981 Jul;68(1):65–69. doi: 10.1104/pp.68.1.65. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Herridge D. F., Atkins C. A., Pate J. S., Rainbird R. M. Allantoin and Allantoic Acid in the Nitrogen Economy of the Cowpea (Vigna unguiculata [L.] Walp.). Plant Physiol. 1978 Oct;62(4):495–498. doi: 10.1104/pp.62.4.495. [DOI] [PMC free article] [PubMed] [Google Scholar]
- LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
- Larsen Knud, Jochimsen Bjarne U. Expression of nodule-specific uricase in soybean callus tissue is regulated by oxygen. EMBO J. 1986 Jan;5(1):15–19. doi: 10.1002/j.1460-2075.1986.tb04171.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Legocki R. P., Verma D. P. A nodule-specific plant protein (nodulin-35) from soybean. Science. 1979 Jul 13;205(4402):190–193. doi: 10.1126/science.205.4402.190. [DOI] [PubMed] [Google Scholar]
- McClure P. R., Israel D. W. Transport of nitrogen in the xylem of soybean plants. Plant Physiol. 1979 Sep;64(3):411–416. doi: 10.1104/pp.64.3.411. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nguyen J. Catabolism of adenine derivatives in leaves: study of the role of light on the in vivo activity of xanthine dehydrogenase. Plant Physiol. 1980 Nov;66(5):935–939. doi: 10.1104/pp.66.5.935. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nguyen T., Zelechowska M., Foster V., Bergmann H., Verma D. P. Primary structure of the soybean nodulin-35 gene encoding uricase II localized in the peroxisomes of uninfected cells of nodules. Proc Natl Acad Sci U S A. 1985 Aug;82(15):5040–5044. doi: 10.1073/pnas.82.15.5040. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Noel K. D., Stacey G., Tandon S. R., Silver L. E., Brill W. J. Rhizobium japonicum mutants defective in symbiotic nitrogen fixation. J Bacteriol. 1982 Oct;152(1):485–494. doi: 10.1128/jb.152.1.485-494.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pate J. S., Atkins C. A., White S. T., Rainbird R. M., Woo K. C. Nitrogen Nutrition and Xylem Transport of Nitrogen in Ureide-producing Grain Legumes. Plant Physiol. 1980 May;65(5):961–965. doi: 10.1104/pp.65.5.961. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Reinert W. R., Marzluf G. A. Regulation of the purine catabolic enzymes in Neurospora crassa. Arch Biochem Biophys. 1975 Feb;166(2):565–574. doi: 10.1016/0003-9861(75)90421-x. [DOI] [PubMed] [Google Scholar]
- Schubert K. R. Enzymes of Purine Biosynthesis and Catabolism in Glycine max: I. COMPARISON OF ACTIVITIES WITH N(2) FIXATION AND COMPOSITION OF XYLEM EXUDATE DURING NODULE DEVELOPMENT. Plant Physiol. 1981 Nov;68(5):1115–1122. doi: 10.1104/pp.68.5.1115. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Triplett E. W. Intercellular nodule localization and nodule specificity of xanthine dehydrogenase in soybean. Plant Physiol. 1985 Apr;77(4):1004–1009. doi: 10.1104/pp.77.4.1004. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Triplett E. W., Lending C. R., Gumpf D. J., Ware C. F. Production, characterization, and applications of monoclonal antibodies reactive with soybean nodule xanthine dehydrogenase. Plant Physiol. 1986 Apr;80(4):965–971. doi: 10.1104/pp.80.4.965. [DOI] [PMC free article] [PubMed] [Google Scholar]
